Aufgabe 11.1 Fockspace calculation

Verify that the scalar product in the Fockspace is given by (Eq. (10.44))

$$
\left\langle\left\{n_{\mathbf{k}, \lambda}\right\} \mid\left\{n_{\mathbf{k}, \lambda}^{\prime}\right\}\right\rangle=\prod_{\mathbf{k} \in \Lambda^{*}, \lambda=1,2} \delta_{n_{\mathbf{k}, \lambda}, n_{\mathbf{k}, \lambda}^{\prime}}
$$

using $a_{\mathbf{k}, \lambda}|0\rangle=0,\langle 0 \mid 0\rangle=1$ and the commutation relation $\left[a_{\mathbf{k}, \lambda}, a_{\mathbf{k}^{\prime}, \lambda^{\prime}}^{\dagger}\right]=\delta_{\mathbf{k}, \mathbf{k}^{\prime}} \delta_{\lambda, \lambda^{\prime}}$.

Aufgabe 11.2 Second quantized form of free field operators

Use the Fourier series representation for $\mathbf{A}(\mathbf{x}, t)$ (Eq. 10.21 with $c=1$),

$$
\begin{equation*}
\mathbf{A}(\mathbf{x}, t)=\sqrt{\frac{\hbar}{V}} \sum_{\mathbf{k}, \lambda} \frac{\mathbf{e}_{\lambda}(\mathbf{k})}{\sqrt{2 \omega(\mathbf{k})}}\left[a_{\mathbf{k}, \lambda} e^{i(\mathbf{k} \cdot \mathbf{x}-\omega(\mathbf{k}) t)}+a_{\mathbf{k}, \lambda}^{\dagger} e^{-i(\mathbf{k} \cdot \mathbf{x}-\omega(\mathbf{k}) t)}\right] \tag{1}
\end{equation*}
$$

to verify that
a)

$$
U=\frac{1}{2} \int\left(\mathbf{E}^{2}+\mathbf{B}^{2}\right) d^{3} x=\frac{1}{2} \int(\dot{\mathbf{A}} \cdot \dot{\mathbf{A}}-\mathbf{A} \cdot \ddot{\mathbf{A}}) d^{3} x=\sum_{\mathbf{k}, \lambda} \hbar \omega(\mathbf{k})\left(a_{\mathbf{k}, \lambda}^{\dagger} a_{\mathbf{k}, \lambda}+\frac{1}{2}\right)
$$

b)

$$
\mathbf{P}=\int(\mathbf{E} \wedge \mathbf{B}) d^{3} x=-\int(\dot{\mathbf{A}} \wedge(\nabla \wedge \mathbf{A})) d^{3} x=\sum_{\mathbf{k}, \lambda} \hbar \mathbf{k}\left(a_{\mathbf{k}, \lambda}^{\dagger} a_{\mathbf{k}, \lambda}+\frac{1}{2}\right)
$$

Aufgabe 11.3 Limit $L \rightarrow \infty$

Eq. (1) is defined in a box with $V=L^{3}$ and $\mathbf{k} \in \Lambda^{*}$ where $\Lambda^{*}=\left\{\mathbf{k} \left\lvert\, \mathbf{k}=\frac{2 \pi}{L} \mathbf{n}\right., \mathbf{n} \in \mathbb{Z}^{3}\right\}$ and the commutation relation is given by $\left[a_{\mathbf{k}, \lambda}, a_{\mathbf{k}^{\prime}, \lambda^{\prime}}^{\dagger}\right]=\delta_{\mathbf{k}, \mathbf{k}^{\prime}} \delta_{\lambda, \lambda^{\prime}}$. What form takes $\mathbf{A}(\mathbf{x}, t)$ and the commutation relation when we let $L \rightarrow \infty$?

Aufgabe 11.4 Commutation relation of the electro-magnetic field
Show that $D_{i j}(t, \mathbf{x}, \mathbf{y})=\left[E_{i}(\mathbf{x}, t), B_{j}(\mathbf{y}, 0)\right]=0$ except when $(c t)^{2}-(\mathbf{x}-\mathbf{y})^{2}=0$.

