Aufgabe 10.1 Estimation of the lifetime of a shape resonance

Consider a quantum mechanical particle moving in one dimension under the influence of a potential v_{θ} , with

$$v_{\theta}(x) := \theta^2 v(x/\theta) \qquad 1 \le \theta < \infty, \tag{1}$$

and v(x) having the shape depicted in the figure below.

- a) Analyze why it is $\sigma(H_{\theta}) = [0, +\infty)$.
- b) In the vicinity of x = 0 it reasonable to express the Hamiltonian as

$$H_{\theta} = H_{1\theta} + \delta v_{\theta}, \tag{2}$$

where

$$H_{1\theta} = -\frac{1}{2}\frac{d^2}{dx^2} + \theta^2 v(0) + \frac{\omega^2 x^2}{2}.$$
(3)

Find $\sigma(H_{1\theta})$ and show that $\sigma(H_{1\theta}) \subset \sigma(H_{\theta})$.

c) The system is initially prepared in ψ_i , which is an eigenstate of $H_{1\theta}$ that is localized inside the well of $v_{\theta}(x)$.

$$q_t := tr(e^{-iH_\theta t}P_i e^{+iH_\theta t}P_\theta) \tag{4}$$

is the probability of finding the particle in any state inside the well at time t, where P_i is the projector onto $|\psi_i\rangle$ and P_{θ} is the projector onto the subspace spanned by all the eigenstates of $H_{1\theta}$ that are contained inside the well of $v_{\theta}(x)$.

- i) Estimate dq_t/dt using that $|tr(PA)| \le (trP)||A||$
- ii) Knowing that δv is small when x/θ is also small (more formally, it can be assumed that for $|x| < \epsilon \theta$ is $|\delta v| < e^{-\delta \theta^2}$), find an lower bound for τ , where τ is defined by $q_{\tau} = 1/2$.
- iii) What is the physical meaning of τ ?

HINT: You might need to think about how the height and the width of the well scale with θ . Also remember that the width of the n-th Hermite polynomial is \sqrt{n} .

Aufgabe 10.2 Bargmann coherent states

The phase space of a classical system with N degrees of freedom is given by $(q^1, \ldots, q^N, p_1, \ldots, p_N) \in \mathbb{R}^{2N}$. These canonical variables have the well known Poisson Brackets

$$\{q^{i}, q^{j}\}_{PB} = \{p_{i}, p_{j}\}_{PB} = 0 \qquad \{q^{i}, p_{j}\}_{PB} = \delta^{i}_{j}, \qquad (5)$$

and upon applying Dirac quatization rule

$$\{ , \}_{PB} \to \frac{1}{i\hbar} [,] \tag{6}$$

the transition from classical to quantum mechanics is achieved.

a) Show that

$$z_j = \frac{1}{\sqrt{2}}(q^j + ip_j)$$
 $\bar{z}_j = \frac{1}{\sqrt{2}}(q^j - ip_j)$ $j = 1, \dots, N$ (7)

have the following Poisson brackets

$$\{z^{i}, z^{j}\}_{PB} = \{\bar{z}_{i}, \bar{z}_{j}\}_{PB} = 0 \qquad \{z^{i}, \bar{z}_{j}\}_{PB} = -i\delta^{i}_{j}, \qquad (8)$$

- b) Promote z_i and \bar{z}_i to operators a_i and a_i^{\dagger} respectively, and apply Dirac quantization rule to verify that these operators are the same creation and annihilation operators that arise in the quantum treatment of the simple harmonic oscillator.
- c) Show that the coherent state

$$|z\rangle := e^{za^{\intercal}}|0\rangle \tag{9}$$

is an eigenstate of a with eigenvalue z.

d) To a given state $|\psi\rangle \in \mathcal{H} := L^2(q, dq)$ we associate a wave function

$$\psi(\bar{z}) := \langle z | \psi \rangle. \tag{10}$$

Evaluate $(a\psi)(\bar{z})$ and $(a^{\dagger}\psi)(\bar{z})$ to find a Schrödinger representation of a and a^{\dagger} .