Exercise 5.1 Superexercise!

Let us introduce the notion of superspace. Coordinates in superspace are commuting and anticommuting numbers, $z=\left(z_{1}, \ldots, z_{N_{B}}\right)^{T}$ and $\eta=\left(\eta_{1}, \ldots, \eta_{N_{F}}\right)^{T}$ respectively (in supersymmetry the ordinary space dimensions correspond to bosonic degrees of freedom, the anticommuting ones to fermionic degrees of freedom). We can define a linear transformation in superspace

$$
\binom{z^{\prime}}{\eta^{\prime}}=\left(\begin{array}{ll}
A & D \\
C & B
\end{array}\right)\binom{z}{\eta}=M\binom{z}{\eta}
$$

where A and B are commuting matrices (i.e. they have commuting entries), C and D anticommuting (Grassmann entries).
a) Let us define the superdeterminant of a superspace matrix M as

$$
(\operatorname{det} M)^{-1}=\int \prod_{\substack{i=1, \ldots, N_{B} \\ j=1, \ldots, N_{F}}} \frac{\mathrm{~d} z_{i}^{*} \mathrm{~d} z_{i}}{2 \pi} \mathrm{~d} \eta_{j}^{*} \mathrm{~d} \eta_{j} \exp \left[-z^{\dagger} A z-z^{\dagger} D \eta-\eta^{\dagger} C z-\eta^{\dagger} B \eta\right]
$$

Starting from this definition show that

$$
\operatorname{det} M=\frac{\operatorname{det} A}{\operatorname{det}\left(B-C A^{-1} D\right)}
$$

Hint: perform the shift of the integration variables

$$
\begin{aligned}
z & =z^{\prime}-A^{-1} D \eta \\
z^{\dagger} & =z^{\dagger \prime}-\eta^{\dagger} C A^{-1}
\end{aligned}
$$

Once you have done so, you'll be able to separate the integral over the ordinary c-numbers and the integral over the Grassmann variables. Remember that Gaussian integrals in the two cases are different!
b) Show that the supertrace defined as

$$
\operatorname{Tr} M=\operatorname{Tr} A-\operatorname{Tr} B
$$

satisfies the cyclicity property

$$
\operatorname{Tr}\left[M_{1} M_{2}\right]=\operatorname{Tr}\left[M_{2} M_{1}\right]
$$

c) Show that

$$
\operatorname{Tr} \ln M_{1} M_{2}=\operatorname{Tr} \ln M_{1}+\operatorname{Tr} \ln M_{2}
$$

Hint: use the Campbell-Baker-Hausdorff formula

$$
\exp (A) \exp (B)=\exp \left\{A+B+\frac{1}{2!}[A, B]+\frac{1}{3!}\left(\frac{1}{2}[[A, B], B]+\frac{1}{2}[A,[A, B]]\right)+\ldots\right\}
$$

and the cyclicity property you proved at point b).
d) Writing

$$
M=\left(\begin{array}{cc}
A & 0 \\
C & 1
\end{array}\right)\left(\begin{array}{cc}
1 & A^{-1} D \\
0 & B-C A^{-1} D
\end{array}\right)
$$

and using property c), prove that

$$
\ln \operatorname{det} M=\operatorname{Tr} \ln M
$$

and

$$
\operatorname{det}\left(M_{1} M_{2}\right)=\operatorname{det}\left(M_{1}\right) \operatorname{det}\left(M_{2}\right)
$$

$\left.e^{*}\right)$ Write the Jacobian of a transformation in superspace.

Exercise 5.2 Path integral in gauge theories

Consider the Yang-Mills theory

$$
\mathcal{L}_{Y M}=-\frac{1}{4} G_{\mu \nu}^{a} G^{\mu \nu, a}
$$

where $G_{\mu \nu}^{a}$ is the field strength tensor defined as

$$
G_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g f^{a b c} A_{\mu}^{b} A_{\nu}^{c}
$$

This theory is invariant under gauge transformations

$$
A_{\mu} \rightarrow A_{\mu}^{\prime}=U(x) A_{\mu} U^{\dagger}(x)+\frac{i}{g} U(x) \partial_{\mu} U^{\dagger}(x)
$$

with $A_{\mu} \equiv A_{\mu}^{a} T^{a}$ and the T^{a} are the generators of the gauge group. $U(x)$ can be parametrised as

$$
U(x)=e^{i g \theta^{a}(x) T^{a}}
$$

The generating functional for this theory is

$$
Z\left[J^{\mu, a}\right]=Z[0] \int \mathcal{D} A_{\mu}^{a} \exp \left[i \int d^{4} x\left(\mathcal{L}_{Y M}+J^{\mu, a} A_{\mu}^{a}\right)\right]
$$

Prove that the integration measure is gauge invariant, namely $\mathcal{D} A_{\mu}^{a}=\mathcal{D} A_{\mu}^{\prime a}$.

Hint: The measure transforms as:

$$
\mathcal{D} A_{\mu}^{\prime a}=\mathcal{D} A_{\mu}^{a} \operatorname{det}\left(\frac{\delta A_{\mu}^{\prime a}}{\delta A_{\mu}^{b}}\right) .
$$

