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Exercise 5.1 Superexercise!

Let us introduce the notion of superspace. Coordinates in superspace are commuting and anti-
commuting numbers, z = (z1,...,2n5)] andn = (11, ...,nnp)" respectively (in supersymmetry
the ordinary space dimensions correspond to bosonic degrees of freedom, the anticommuting ones
to fermionic degrees of freedom). We can define a linear transformation in superspace
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where A and B are commuting matrices (i.e. they have commuting entries), C' and D anticom-

muting (Grassmann entries).

a) Let us define the superdeterminant of a superspace matrix M as
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Starting from this definition show that
det A
det (B— CA~'D)
Hint: perform the shift of the integration variables
z = 2 —A'Dy
A = M _yfcA?
Once you have done so, you'll be able to separate the integral over the ordinary c-numbers

and the integral over the Grassmann variables. Remember that Gaussian integrals in the
two cases are different!

det M =

b) Show that the supertrace defined as
TrM=TrA-TrB
satisfies the cyclicity property
Tr[M; Ms] = Tr[Ma M)
c) Show that
Trin My My = Tr1n My + Trln M,y

Hint: use the Campbell-Baker-Hausdorff formula
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and the cyclicity property you proved at point b).
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and using property c), prove that

eXp(A)eXp(B):exp{A—l—B—i- 4, B] + ( (14, B, B] + %[A, [A,B]]>+...}

d) Writing

Indet M = Trln M

and
det(MlMg) = det(Ml) det(Mg)

e*) Write the Jacobian of a transformation in superspace.



Exercise 5.2 Path integral in gauge theories
Consider the Yang-Mills theory
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where G, is the field strength tensor defined as
GY, = 0, AL — 0, A% + gf ™AL AC
This theory is invariant under gauge transformations
Ay — Al =U(2)AU () + gU(m)BMUT(x)
with A, = A7T* and the T are the generators of the gauge group. U () can be parametrised

as
U(m) _ eigG“(a:)T“

The generating functional for this theory is
Z[J" = Z[0] /DAZ exp [i/d4x (Lym + J“’GAZ)}

Prove that the integration measure is gauge invariant, namely DAj, = DA;?.

Hint: The measure transforms as:

la a 514;7
DA“ = DA# det w .



