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Exercise 4.1 Perturbative expansion of the four-point function
within the λφ4 theory

Consider a real scalar field φ of mass m with a φ4 self-interaction proportional to λ � 1
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According to the lecture, the generating functional is defined as

Z[J ] =
exp

[
i
∫

d4x LI

(
i δ
δJ(x)

)]
Z0[J ]

exp
[
i
∫

d4x LI

(
i δ
δJ(x)

)]
Z0[J ]

∣∣∣
J=0

where Z0[J ] is the generating functional for the free field
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accounts for replacing φ(x) in the interaction Lagrangian by the functional

derivative, in this case
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a) Compute to order λ the four-point function
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and draw the corresponding diagrams.

b) Compute to order λ the connected four-point function
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where

W [J ] = −i log Z[J ] (1)

and verify that the corresponding diagrams are indeed connected.

c) [optional] Compute the connected four-point function to order λ2.



Exercise 4.2 Grassmann numbers

Let {ci} be Grassmann numbers, i.e. cicj = −cjci.
Show that {
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where ∂
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is the left-derivative, namely
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Hint: show that any function f of ci, cj and other variables represented by α can be expanded
as

f(ci, cj , α) = f1(α) + cif2(α) + cjf3(α) + cicjf4(α)

and apply the anticommutators above on this function.

Exercise 4.3 Gaussian integrals with fermions

Using the definition of Grassmann integration∫
dc 1 = 0

∫
dc c = 1

show that for two N -dimensional vectors x = (x1, . . . , xN )T and y = (y1, . . . , yN )T of Grassmann
variables, and for a N ×N matrix A of ‘normal’ (commuting) numbers, one has∫

dx1 . . . dxNdy1 . . . dyN e−xT Ay = detA


