Exercise 4.1 Perturbative expansion of the four-point function within the $\lambda \phi^{4}$ theory

Consider a real scalar field ϕ of mass m with a ϕ^{4} self-interaction proportional to $\lambda \ll 1$

$$
\begin{aligned}
\mathcal{L} & =\mathcal{L}_{0}+\mathcal{L}_{I} \\
\mathcal{L}_{0} & =\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2}\left(m^{2}-i \epsilon\right) \phi^{2} \\
\mathcal{L}_{I} & =-\frac{1}{4!} \lambda \phi^{4}
\end{aligned}
$$

According to the lecture, the generating functional is defined as

$$
Z[J]=\frac{\exp \left[i \int d^{4} x \mathcal{L}_{I}\left(i \frac{\delta}{\delta J(x)}\right)\right] Z_{0}[J]}{\left.\exp \left[i \int d^{4} x \mathcal{L}_{I}\left(i \frac{\delta}{\delta J(x)}\right)\right] Z_{0}[J]\right|_{J=0}}
$$

where $Z_{0}[J]$ is the generating functional for the free field

$$
Z_{0}[J]=Z_{0}[0] \exp \left[-\frac{1}{2} \int d^{4} x d^{4} y J(x) D_{F}(x-y) J(y)\right]
$$

and $\mathcal{L}_{I}\left(i \frac{\delta}{\delta J(x)}\right)$ accounts for replacing $\phi(x)$ in the interaction Lagrangian by the functional derivative, in this case

$$
\mathcal{L}_{I}\left(i \frac{\delta}{\delta J(x)}\right)=-\frac{\lambda}{4!} \frac{\delta^{4}}{\delta J(x)^{4}}
$$

a) Compute to order λ the four-point function

$$
\langle 0| T \phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)|0\rangle=\left.\frac{1}{i^{4}} \frac{\delta}{\delta J\left(x_{1}\right)} \frac{\delta}{\delta J\left(x_{2}\right)} \frac{\delta}{\delta J\left(x_{3}\right)} \frac{\delta}{\delta J\left(x_{4}\right)} Z[J]\right|_{J=0}
$$

and draw the corresponding diagrams.
b) Compute to order λ the connected four-point function

$$
\langle 0| T \phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)|0\rangle_{\text {connected }}=\left.\frac{i}{i^{4}} \frac{\delta}{\delta J\left(x_{1}\right)} \frac{\delta}{\delta J\left(x_{2}\right)} \frac{\delta}{\delta J\left(x_{3}\right)} \frac{\delta}{\delta J\left(x_{4}\right)} W[J]\right|_{J=0}
$$

where

$$
\begin{equation*}
W[J]=-i \log Z[J] \tag{1}
\end{equation*}
$$

and verify that the corresponding diagrams are indeed connected.
c) [optional] Compute the connected four-point function to order λ^{2}.

Exercise 4.2 Grassmann numbers

Let $\left\{c_{i}\right\}$ be Grassmann numbers, i.e. $c_{i} c_{j}=-c_{j} c_{i}$.
Show that

$$
\left\{c_{i}, \frac{\partial}{\partial c_{j}}\right\}=\delta_{i j} \quad \text { and } \quad\left\{\frac{\partial}{\partial c_{i}}, \frac{\partial}{\partial c_{j}}\right\}=0
$$

where $\frac{\partial}{\partial c_{i}}$ is the left-derivative, namely

$$
\frac{\partial}{\partial c_{i}}\left(c_{i} c_{j}\right)=c_{j} \quad \text { but } \quad \frac{\partial}{\partial c_{i}}\left(c_{j} c_{i}\right)=\frac{\partial}{\partial c_{i}}\left(-c_{i} c_{j}\right)=-c_{j} \quad(\text { for } i \neq j)
$$

Hint: show that any function f of c_{i}, c_{j} and other variables represented by α can be expanded as

$$
f\left(c_{i}, c_{j}, \alpha\right)=f_{1}(\alpha)+c_{i} f_{2}(\alpha)+c_{j} f_{3}(\alpha)+c_{i} c_{j} f_{4}(\alpha)
$$

and apply the anticommutators above on this function.

Exercise 4.3 Gaussian integrals with fermions

Using the definition of Grassmann integration

$$
\int d c 1=0 \quad \int d c c=1
$$

show that for two N-dimensional vectors $x=\left(x_{1}, \ldots, x_{N}\right)^{T}$ and $y=\left(y_{1}, \ldots, y_{N}\right)^{T}$ of Grassmann variables, and for a $N \times N$ matrix A of 'normal' (commuting) numbers, one has

$$
\int d x_{1} \ldots d x_{N} d y_{1} \ldots d y_{N} e^{-x^{T} A y}=\operatorname{det} A
$$

