EMH
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Advanced Field Theory Solution 13

Spring 2010
C. Anastasiou
T. Gehrmann

Exercise 13.1 The Partition Function in $\lambda \phi^{4}$ Theory

The exercise below consists of parts of chapters 1 and 3 of [Kap89].

1. Our starting point is the action

$$
S=-\frac{1}{2} \int_{0}^{\beta} \mathrm{d} \tau \int \mathrm{~d}^{3} x\left[\left(\frac{\partial \phi}{\partial \tau}\right)^{2}+(\nabla \phi)^{2}+m^{2} \phi^{2}\right]
$$

which we rewrite by partial integration, the boundary terms vanish because ϕ is assumed to be periodic in τ and vanishing at spatial infinity, this gives us the form

$$
S=-\frac{1}{2} \int \mathrm{~d} \tau \int \mathrm{~d}^{3} x \phi\left[-\partial_{\tau}^{2}-\Delta+m^{2}\right] \phi .
$$

We expand the field in Fourier modes according to

$$
\phi(\mathbf{x}, \tau)=\left(\frac{\beta}{V}\right)^{\frac{1}{2}} \sum_{n=-\infty}^{\infty} \sum_{\mathbf{p}} e^{i\left(\mathbf{p x}+\omega_{n} \tau\right)} \phi_{n}(\mathbf{p}) .
$$

The integration over \mathbf{x} and τ results in $V \delta\left(\mathbf{p}+\mathbf{p}^{\prime}\right)$ and $\beta \delta\left(\omega_{n}+\omega_{m}\right)$ respectively. We remark that the reality condition $\phi=\phi^{*}$ means $\phi_{-n}(-\mathbf{p})=\phi_{n}(\mathbf{p})^{*}$. We have rewritten the action in the form

$$
S=-\frac{1}{2} \beta^{2} \sum_{n} \sum_{\mathbf{p}}\left[\omega_{n}^{2}+\mathbf{p}^{2}+m^{2}\right]\left|\phi_{n}(\mathbf{p})\right|^{2} .
$$

We insert the action back into the partition function, ignoring prefactors of Z because these are irrelevant for thermodynamics:

$$
Z \propto \int \mathcal{D} \phi \prod_{n} \prod_{\mathbf{p}} \exp \left[-\frac{1}{2} \beta^{2}\left(\omega_{n}^{2}+\mathbf{p}^{2}+m^{2}\right)\left|\phi_{n}(\mathbf{p})\right|^{2}\right] .
$$

We do the integration over field configurations, the phases of the $\phi_{n}(\mathbf{p})$ do give rise to an overall factor, for the integrations over the absolute values $\left|\phi_{n}(\mathbf{p})\right|$ we insert $\int \exp \left(-1 / 2 a x^{2}\right) \mathrm{d} x \propto 1 / \sqrt{a}:$

$$
Z \propto \prod_{n} \prod_{\mathbf{p}}\left[\beta^{2}\left(\omega_{n}^{2}+\mathbf{p}^{2}+m^{2}\right)\right]^{-\frac{1}{2}}
$$

Of course, this is nothing else but the well-known functional determinant:

$$
Z \propto\left(\operatorname{det}\left[-\partial_{\tau}^{2}-\Delta+m^{2}\right]\right)^{-\frac{1}{2}}
$$

We evaluate further the β-dependence, starting from

$$
\ln Z=-\frac{1}{2} \sum_{n} \sum_{\mathbf{p}} \ln \left[\beta^{2}\left(\omega_{n}^{2}+\mathbf{p}^{2}+m^{2}\right)\right] .
$$

We rewrite this in a form which enables us to do the summation over n. We abbreviate $\omega^{2}=\mathbf{p}^{2}+m^{2}$ and insert

$$
\ln \left[(2 \pi n)^{2}+(\beta \omega)^{2}\right]=\int_{1}^{(\beta \omega)^{2}} \frac{\mathrm{~d}\left(x^{2}\right)}{(2 \pi n)^{2}+x^{2}}+c
$$

into the partition function, omitting the constant:

$$
\begin{aligned}
\ln Z & =-\frac{1}{2} \sum_{n} \sum_{\mathbf{p}} \int_{1}^{(\beta \omega)^{2}} \frac{\mathrm{~d}\left(x^{2}\right)}{(2 \pi n)^{2}+x^{2}} \\
& =-\frac{1}{2} \sum_{\mathbf{p}} \int_{1}^{(\beta \omega)^{2}} \frac{1}{2} \frac{\operatorname{coth}(x / 2)}{x} \mathrm{~d}\left(x^{2}\right) \\
& =-\frac{1}{2} \sum_{\mathbf{p}} \int_{1}^{\beta \omega} \operatorname{coth}(x / 2) \mathrm{d} x \\
& =-\sum_{\mathbf{p}} \ln \sinh (\beta \omega / 2)
\end{aligned}
$$

where we have inserted $\sum_{n=-\infty}^{\infty} 1 /\left(n^{2}+x^{2}\right)=\pi / a \operatorname{coth}(\pi a)^{1}$ and $\int \operatorname{coth}(x) \mathrm{d} x=$ $\ln \sinh (x)$ and we have omitted the β-independent lower integration boundary.
We continue by taking the continuum limit of the Fourier transform $\sum_{\mathbf{p}} \rightarrow V /(2 \pi)^{3} \int \mathrm{~d}^{3} p$ and we insert $\ln \sinh (x)=1 / 2+x / 2+\ln (1-\exp (-2 x))$:

$$
\ln Z=V \int \frac{\mathrm{~d}^{3} p}{(2 \pi)^{3}}\left[-\frac{1}{2}-\frac{\beta \omega}{2}-\ln \left(1-e^{-\beta \omega}\right)\right] .
$$

The constant inside the square bracket is omitted because it is β-independent, the term proportionate to β is the (highly UV-divergent) zero-point energy which we need to subtract anyway because we want $P=0$ in the limit $\beta \rightarrow \infty$. We consider the massless limit $\omega=|\mathbf{p}|$ to arrive at

$$
\begin{aligned}
\ln Z & =V \int \frac{\mathrm{~d}^{3} p}{(2 \pi)^{3}}(4 \pi)(-1) \int \mathrm{d} \omega \omega^{2} \ln \left(1-e^{-\beta \omega}\right) \\
& =V \frac{\pi^{2}}{90 \beta^{3}}
\end{aligned}
$$

from which we have $P=\beta^{-1} \partial_{V} \ln Z=\beta^{-4} \pi^{2} / 90$.

[^0]we get the result inserted above. To check $|\operatorname{coth}(R \exp i \phi)| \leq c$ we insert
$$
\left|\operatorname{coth}\left(R e^{i \phi}\right)\right|^{2}=\left|\frac{e^{R(\cos \phi+i \sin \phi)}+e^{-R(\cos \phi+i \sin \phi)}}{e^{R(\cos \phi+i \sin \phi)}-e^{-R(\cos \phi+i \sin \phi)}}\right|^{2}=\frac{1+\frac{\cos (2 R \sin \phi)}{\cosh (2 R \cos (\phi))}}{1-\frac{\cos (2 R \sin \phi)}{\cosh (2 R \cos (\phi))}}
$$

Although the function $\cos (2 R \sin (\phi)) / \cosh (2 R \cos (\phi))$ is equal to one at $\phi=\pi / 2+n_{1} \pi, R=n_{2} \pi$, we can choose the sequence of radii R_{n} such that $\cos \left(2 R_{n} \sin (\phi)\right) / \cosh \left(2 R_{n} \cos (\phi)\right) \leq c^{\prime}<1$ for all n.

Figure 1: The two-loop vacuum bubble diagram of $\lambda \phi^{4}$ theory. Its symmetry factor is 3 .
2. We condense the notation first, \sum_{n} is used for the sum over n and $\mathbf{p}, \exp \left(i \omega_{n} \tau\right)$ should be understood as $\exp \left(i \omega_{n} \tau+i \mathbf{p} \mathbf{x}\right)$ in consequence. Inserting the Fourier transforms we have therefore

$$
\ln Z_{1}=\frac{-\lambda \sum_{n_{1}, \ldots, n_{4}} \frac{\beta^{2}}{V^{2}} \int \mathrm{~d} \tau \int \mathrm{~d}^{3} x \int \prod_{k} \mathrm{~d} \phi_{k} e^{-\frac{1}{2} \beta^{2} A_{k}\left|\phi_{k}\right|^{2}}\left(\prod_{i=1}^{4} \phi_{n_{i}}\right) e^{i\left(\omega_{n_{1}}+\cdots+\omega_{n_{4}}\right) \tau}}{\prod_{k} \mathrm{~d} \phi_{k} e^{-\frac{1}{2} \beta^{2} A_{k}\left|\phi_{k}\right|^{2}}} .
$$

with $A_{k}=\omega_{k}^{2}+\mathbf{p}^{2}+m^{2}$. The integral over ϕ_{k} vanishes by antisymmetry under $\phi_{k} \rightarrow-\phi_{k}$ unless the term is of the form $\phi_{r_{1}} \phi_{-r_{1}} \phi_{r_{2}} \phi_{-r_{2}}=\left|\phi_{r_{1}}\right|^{2}\left|\phi_{r_{2}}\right|^{2}$. In the four-fold sum every term $\left|\phi_{r_{1}}\right|^{4}$ shows up once, every term $\left|\phi_{r_{1}}\right|^{2}\left|\phi_{r_{2}}\right|^{2}$ with $r_{1} \neq r_{2}$ shows up three times ($r_{1}=-r_{2}, r_{1}=-r_{3}, r_{1}=-r_{4}$). We insert

$$
\begin{aligned}
& \int \mathrm{d} x \exp ^{-\frac{1}{2} a x^{2}} \mathrm{~d} x=\sqrt{2 \pi} a^{-\frac{1}{2}} \\
& \int \mathrm{~d} x \exp ^{-\frac{1}{2} a x^{2}} x^{2} \mathrm{~d} x=\sqrt{2 \pi} a^{-\frac{3}{2}} \\
& \int \mathrm{~d} x \exp ^{-\frac{1}{2} a x^{2}} x^{4} \mathrm{~d} x=3 \sqrt{2 \pi} a^{-\frac{5}{2}}
\end{aligned}
$$

for every $\mathrm{d} \phi_{m}$. All the terms $\sqrt{2 \pi} a^{-1 / 2}$ in the numerator are cancelled by equal terms in the denominator. We are left with a double sum

$$
\ln Z_{1}=-3 \lambda \sum_{r_{1}, \mathbf{p}_{1}, r_{2}, \mathbf{p}_{2}} \frac{\beta^{2}}{V^{2}}\left(\beta^{2}\left[\omega_{r_{1}}^{2}+\mathbf{p}_{1}^{2}+m^{2}\right]\right)^{-1}\left(\beta^{2}\left[\omega_{r_{2}}^{2}+\mathbf{p}_{2}^{2}+m^{2}\right]\right)^{-1} \beta V
$$

where the trailing βV arises from $\int \mathrm{d}^{3} x \mathrm{~d} \tau \delta(\mathbf{x}) \delta(\tau)$ and we have written the combinatorial factor 3 explicitly. We take the continuum limit of the Fourier transform as above:

$$
\begin{equation*}
\ln Z_{1}=-3 \lambda \beta V\left[\beta^{-1} \sum_{n} \int \frac{\mathrm{~d}^{3} p}{(2 \pi)^{3}} \frac{1}{\omega_{n}^{2}+\mathbf{p}^{2}+m^{2}}\right]^{2} \tag{1}
\end{equation*}
$$

We recognise the expression above as the two-loop integral in figure 1 with $\left(\omega_{n}^{2}+\right.$ $\left.\mathbf{p}^{2}+m^{2}\right)^{-1}$ as the propagator associated with an internal line.
3. We evaluate $\ln Z_{1}$ for $m=0$, we have therefore $\omega=|\mathbf{p}|$. First we do the sum in the propagator:

$$
\sum_{n} \frac{1}{\omega_{n}^{2}+\omega^{2}}=\frac{1}{2 \omega} \operatorname{coth}\left(\frac{\beta \omega}{2}\right)
$$

We evaluate the integral over Fourier modes with a cutoff:

$$
\begin{aligned}
\int_{|\mathbf{p}| \leq \Lambda} \frac{\mathrm{d}^{3} p}{(2 \pi)^{3}} \frac{1}{2 \omega} \operatorname{coth}\left(\frac{\beta \omega}{2}\right) & =\frac{1}{4 \pi^{2}} \int_{0}^{\Lambda} \omega \operatorname{coth}\left(\frac{\beta \omega}{2}\right) \\
& =\frac{1}{4 \pi^{2}}\left[\frac{\pi^{2}}{3 \beta^{2}}+\frac{\Lambda^{2}}{2}+\frac{2 \Lambda \ln \left(1-e^{-\beta \Lambda}\right)}{\beta}-\frac{2 \operatorname{Li}_{2}\left(e^{-\beta \Lambda}\right)}{\beta^{2}}\right]
\end{aligned}
$$

The second term in the expression above is β-independent and is therefore omitted, the other two Λ-dependent terms vanish in the limit $\Lambda \rightarrow \infty$. If we insert this back into (1), we arrive at

$$
P_{1}=\beta^{-1} \partial_{V} \ln Z_{1}=-3 \lambda\left(\frac{1}{12 \beta^{2}}\right)^{2}=-\frac{\lambda}{48} \beta^{-4}
$$

References

[Kap89] Joseph I. Kapusta. Finite-temperature field theory. Cambridge University Press, 1989.

[^0]: ${ }^{1}$ We use the residue theorem for this, the function $\pi i \operatorname{coth}(\pi i x)$ has residue one for $x \in \mathbb{Z}$. Therefore for $i a \notin \mathbb{Z}$ the function $\pi i \operatorname{coth}(\pi i x) /[(x+i a)(x-i a)]$ has residue $1 /\left(x^{2}+a^{2}\right)$ for $x \in \mathbb{Z}$. We consider the integration along the contour $C: z(\phi)=R \exp (i \phi)$ which vanishes as $R \rightarrow \infty$. From
 $0=\lim _{R \rightarrow \infty} \int_{C} \pi i \operatorname{coth}(\pi i z) /[(z+i a)(z-i a)] \mathrm{d} z=\sum_{n=-\infty}^{\infty} \frac{1}{a^{2}+n^{2}}+\pi i \operatorname{coth}(-\pi a) \frac{1}{2 i a}+\pi i \operatorname{coth}(\pi a) \frac{1}{-2 i a}$

