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Exercise 13.1 The Partition Function in λφ4 Theory

The exercise below consists of parts of chapters 1 and 3 of [Kap89].

1. Our starting point is the action

S = −1

2

∫ β

0

dτ

∫
d3x

[(
∂φ

∂τ

)2

+ (∇φ)2 +m2φ2

]

which we rewrite by partial integration, the boundary terms vanish because φ is
assumed to be periodic in τ and vanishing at spatial infinity, this gives us the form

S = −1

2

∫
dτ

∫
d3xφ

[
−∂2

τ −∆ +m2
]
φ.

We expand the field in Fourier modes according to

φ(x, τ) =

(
β

V

) 1
2
∞∑

n=−∞

∑
p

ei(px+ωnτ)φn(p).

The integration over x and τ results in V δ(p + p′) and βδ(ωn + ωm) respectively.
We remark that the reality condition φ = φ∗ means φ−n(−p) = φn(p)∗. We have
rewritten the action in the form

S = −1

2
β2
∑
n

∑
p

[
ω2
n + p2 +m2

]
|φn(p)|2 .

We insert the action back into the partition function, ignoring prefactors of Z be-
cause these are irrelevant for thermodynamics:

Z ∝
∫
Dφ
∏
n

∏
p

exp

[
−1

2
β2
(
ω2
n + p2 +m2

)
|φn(p)|2

]
.

We do the integration over field configurations, the phases of the φn(p) do give rise
to an overall factor, for the integrations over the absolute values |φn(p)| we insert∫

exp(−1/2 a x2)dx ∝ 1/
√
a:

Z ∝
∏
n

∏
p

[
β2
(
ω2
n + p2 +m2

)]− 1
2 .

Of course, this is nothing else but the well-known functional determinant:

Z ∝
(
det
[
−∂2

τ −∆ +m2
])− 1

2 .

We evaluate further the β-dependence, starting from

lnZ = −1

2

∑
n

∑
p

ln
[
β2
(
ω2
n + p2 +m2

)]
.
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We rewrite this in a form which enables us to do the summation over n. We
abbreviate ω2 = p2 +m2 and insert

ln
[
(2πn)2 + (βω)2

]
=

∫ (βω)2

1

d(x2)

(2πn)2 + x2
+ c

into the partition function, omitting the constant:

lnZ = −1

2

∑
n

∑
p

∫ (βω)2

1

d(x2)

(2πn)2 + x2

= −1

2

∑
p

∫ (βω)2

1

1

2

coth(x/2)

x
d (x2)

= −1

2

∑
p

∫ βω

1

coth(x/2)dx

= −
∑
p

ln sinh(βω/2)

where we have inserted
∑∞

n=−∞ 1/(n2 + x2) = π/a coth(πa)1 and
∫

coth(x)dx =
ln sinh(x) and we have omitted the β-independent lower integration boundary.

We continue by taking the continuum limit of the Fourier transform
∑

p → V/(2π)3
∫

d3p
and we insert ln sinh(x) = 1/2 + x/2 + ln(1− exp(−2x)):

lnZ = V

∫
d3p

(2π)3

[
−1

2
− βω

2
− ln

(
1− e−βω

)]
.

The constant inside the square bracket is omitted because it is β-independent, the
term proportionate to β is the (highly UV-divergent) zero-point energy which we
need to subtract anyway because we want P = 0 in the limit β →∞. We consider
the massless limit ω = |p| to arrive at

lnZ = V

∫
d3p

(2π)3
(4π)(−1)

∫
dωω2 ln

(
1− e−βω

)
= V

π2

90β3

from which we have P = β−1∂V lnZ = β−4π2/90.

1We use the residue theorem for this, the function πi coth(πix) has residue one for x ∈ Z. Therefore for
ia /∈ Z the function πi coth(πix)/[(x+ ia)(x− ia)] has residue 1/(x2 + a2) for x ∈ Z. We consider the
integration along the contour C : z(φ) = R exp(iφ) which vanishes as R→∞. From

0 = lim
R→∞

∫
C

πi coth(πiz)/[(z+ ia)(z− ia)]dz =
∞∑

n=−∞

1
a2 + n2

+ πi coth(−πa) 1
2ia

+ πi coth(πa)
1
−2ia

we get the result inserted above. To check |coth (R exp iφ)| ≤ c we insert

∣∣coth (Reiφ)
∣∣2 =

∣∣∣∣eR(cosφ+i sinφ) + e−R(cosφ+i sinφ)

eR(cosφ+i sinφ) − e−R(cosφ+i sinφ)

∣∣∣∣2 =
1 + cos(2R sinφ)

cosh(2R cos(φ))

1− cos(2R sinφ)
cosh(2R cos(φ))

.

Although the function cos(2R sin(φ))/ cosh(2R cos(φ)) is equal to one at φ = π/2 + n1π,R = n2π, we
can choose the sequence of radii Rn such that cos(2Rn sin(φ))/ cosh(2Rn cos(φ)) ≤ c′ < 1 for all n.
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p1, ωr1
p2, ωr2

Figure 1: The two-loop vacuum bubble diagram of λφ4 theory. Its symmetry factor is 3.

2. We condense the notation first,
∑

n is used for the sum over n and p, exp(iωnτ)
should be understood as exp(iωnτ + ipx) in consequence. Inserting the Fourier
transforms we have therefore

lnZ1 =
−λ
∑

n1,...,n4

β2

V 2

∫
dτ
∫

d3x
∫ ∏

k dφke
− 1

2
β2Ak|φk|2

(∏4
i=1 φni

)
ei(ωn1+···+ωn4 )τ∏

k dφke
− 1

2
β2Ak|φk|2

.

with Ak = ω2
k + p2 + m2. The integral over φk vanishes by antisymmetry under

φk → −φk unless the term is of the form φr1φ−r1φr2φ−r2 = |φr1|
2 |φr2 |

2. In the
four-fold sum every term |φr1|

4 shows up once, every term |φr1|
2 |φr2|

2 with r1 6= r2

shows up three times (r1 = −r2, r1 = −r3 , r1 = −r4). We insert∫
dx exp−

1
2
ax2

dx =
√

2πa−
1
2 ,∫

dx exp−
1
2
ax2

x2dx =
√

2πa−
3
2 ,∫

dx exp−
1
2
ax2

x4dx = 3
√

2πa−
5
2

for every dφm. All the terms
√

2πa−1/2 in the numerator are cancelled by equal
terms in the denominator. We are left with a double sum

lnZ1 = −3λ
∑

r1,p1,r2,p2

β2

V 2

(
β2
[
ω2
r1

+ p2
1 +m2

])−1 (
β2
[
ω2
r2

+ p2
2 +m2

])−1
βV

where the trailing βV arises from
∫

d3xdτδ(x)δ(τ) and we have written the combi-
natorial factor 3 explicitly. We take the continuum limit of the Fourier transform
as above:

lnZ1 = −3λβV

[
β−1

∑
n

∫
d3p

(2π)3

1

ω2
n + p2 +m2

]2

. (1)

We recognise the expression above as the two-loop integral in figure 1 with (ω2
n +

p2 +m2)−1 as the propagator associated with an internal line.

3. We evaluate lnZ1 for m = 0, we have therefore ω = |p|. First we do the sum in the
propagator: ∑

n

1

ω2
n + ω2

=
1

2ω
coth

(
βω

2

)
.

We evaluate the integral over Fourier modes with a cutoff:∫
|p|≤Λ

d3p

(2π)3

1

2ω
coth

(
βω

2

)
=

1

4π2

∫ Λ

0

ω coth

(
βω

2

)
=

1

4π2

[
π2

3β2
+

Λ2

2
+

2Λ ln
(
1− e−βΛ

)
β

−
2 Li2

(
e−βΛ

)
β2

]
.
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The second term in the expression above is β-independent and is therefore omitted,
the other two Λ-dependent terms vanish in the limit Λ→∞. If we insert this back
into (1), we arrive at

P1 = β−1∂V lnZ1 = −3λ

(
1

12β2

)2

= − λ

48
β−4.
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