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Exercise 12.1 Derrick’s Theorem

We have with φ′i = φi(x/α):
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and for the potential energy
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We need α = 1 to be a local minimum of the energy because this is nothing but the
condition that the soliton should be stable against growing or shrinking.
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which we set to zero to get
(2−D)T = DU

which is in contradiction to T > 0 and U > 0 for D ≥ 2.
We can also argue with the sign of the derivative:
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For D ≥ 2 this is a positive function for all α > 0, from this we conclude that the soliton
spectrum extends down to E = 0 which is approached by spreading out the soliton more
and more. Therefore by taking α → 0 we transform the soliton into the trivial vacuum
ground state. This is in contradiction to the fact that φi was assumed to be a soliton
solution.
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