Advanced Field Theory Solution 12

Spring 2010 C. Anastasiou T. Gehrmann

Exercise 12.1 Derrick's Theorem

We have with $\phi_i' = \phi_i(\mathbf{x}/\alpha)$:

$$T' = \frac{1}{2} \int d^{D}x \frac{1}{\alpha^{2}} \left(\nabla \phi_{i} \left(\frac{\mathbf{x}}{\alpha} \right) \right)$$
$$= \frac{1}{2} \int d^{D}(x\alpha) \alpha^{D-2} \left(\nabla \phi_{i} \left(\frac{\mathbf{x}}{\alpha} \right) \right)^{2}$$
$$= \alpha^{D-2} T$$

and for the potential energy

$$U' = \int d^D x V \left(\phi_i \left(\frac{\mathbf{x}}{\alpha} \right) \right) = \alpha^D U.$$

We need $\alpha = 1$ to be a local minimum of the energy because this is nothing but the condition that the soliton should be stable against growing or shrinking.

$$\frac{\mathrm{d}}{\mathrm{d}\alpha}E\Big|_{\alpha=1} = (D-2)T + DU$$

which we set to zero to get

$$(2-D)T = DU$$

which is in contradiction to T > 0 and U > 0 for $D \ge 2$. We can also argue with the sign of the derivative:

$$\frac{\mathrm{d}}{\mathrm{d}\alpha}E = (D-2)\alpha^{D-3}T + D\alpha^{D-1}U.$$

For $D \geq 2$ this is a positive function for all $\alpha > 0$, from this we conclude that the soliton spectrum extends down to E = 0 which is approached by spreading out the soliton more and more. Therefore by taking $\alpha \to 0$ we transform the soliton into the trivial vacuum ground state. This is in contradiction to the fact that ϕ_i was assumed to be a soliton solution.