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The derivation follows [VW84a] closely which references [VW84b] for the positivity of the
fermion determinant. The conventions for QCD in Minkowski space follow [Wei95].
We proceed by the following strategy: Let L be the Lagrangian density of the theory
under consideration, X is a hermitian, parity-odd operator (below we will take it to be
εµνρσF

µνF ρσ. We consider the theories described by the Lagrangians Lλ = L + λX with
λ a real parameter. We have for the ground state energy

E0(λ) = E0(0) + λ

∫
d3x 〈X〉+O

(
λ2
)

where 〈X〉 denotes a vacuum expectation value of X in the theory with λ = 0. If 〈X〉 is
nonzero, then there are at least two vacua related by parity, one with vacuum expectation
value 〈X〉, one with vacuum expectation value −〈X〉. Therefore there is a vacuum state
with E0(λ) < E0(0) regardless of the sign of λ if 〈X〉 6= 0. We will show below that
E0(λ 6= 0) > E0(0) which implies by the argument above that X does not acquire a
vacuum expectation value in the original theory with λ = 0.
We fix conventions as follows: we consider the QCD Lagrangian

L =
−1

4
TrFµνF

µν − ψ̄( /D +M)ψ + λFµνF̃
µν , /D = γµ∂µ + igAµ

with positive definite mass matrixM . Furthermore we have the metric ηµν = diag(−1,+1,+1,+1),
the gamma matrices satisfy γ†0 = −γ0, γ

†
k = γk, we fix iγ0 = γ4 = γ4.

From the effective action we have

e−iTV3E0 =

∫
DφeiS[φ]

where T · V3 is the spacetime volume, φ is used to denote all the fields of the theory and
S[φ] =

∫
d4xL(φ) denotes the action.

We take T to mean (∆x)0, therefore we do the analytic continuation onto the negative
imaginary x0-axis:

x0 = −ix4 = −ix4

x0 = ix4 = ix4

d4x = dx0d3x = −id4xE

∂0 = −i∂4 = −i∂4

A0 = −iA4 = −iA4

in the analytic continuation of the Lagrangian we have

FµνF
µν → FE

µνF
E
µν

because F0kF
0k → (iFE

4k)(−iFE
4k). For the fermion part we have

ψ̄(γµDµ +M)ψ → ψ̄(γµDµ +M)ψ

because γ0D0 = (−iγ4)(iD4), ψ̄ denotes ψ†iγ0 = ψ†γ4 throughout. For the parity-odd
term we have

FµνF̃
µν → ±iFE

µνF̃
E
µν

1



because the sum εµνρσFµνFρσ contains exactly one term with an index 0 which gets mul-
tiplied with i. The sign depends on the convention adopted for ε1234, it is irrelevant for
our purposes.
Put together the analytic continuation of the ground state formula is

e−V4E0 =

∫
DAµDψDψ̄ exp

{∫ (
−1

4
TrFE

µνF
E
µν − ψ̄(Dµγµ +M)ψ + iλFE

µνF̃
E
µν

)
d4xE

}
.

where V4 denotes the volume of Euclidean space. We can integrate out the fermions
according to∫

DψDψ̄ exp

(
−
∫

d4xEψ̄Bψ

)
=

∫
DψDψ̄ exp

(
−i
∫

d4xψ̄Bψ

)
= detB

giving us

e−V4E0 =

∫
DAµ det (Dµγµ +M) exp

{∫ (
−1

4
TrFE

µνF
E
µν + iλFE

µνF̃
E
µν

)
d4xE

}
.

Because of γ†k = γk, /D
†

= − /D, therefore i /D is a self-adjoint operator. Because QCD
is a vector-like theory which does not distinguish between left-handed and right-handed
particles, the eigenvalues of i /D are paired in the following way:

i /Dψ = αψ ⇒ i /D(γ5ψ) = −iγ5 /Dψ = −α(γ5ψ)

with α a real number. Therefore we have

det( /D +M) =
∏
α

(M − iα) =
∏
α>0

(M + iα)(M − iα)

where we have omitted zero eigenvalues of /D which contribute factors of M which we
have assumed to be positive definite. Therefore det(Dµγµ + M) is a positive function of
the gauge field A.
From this we see that since FE

µνF̃
E
µν ≥ 0, a value λ 6= 0 does only add a phase to the

exponential which can only make the integral over the field configurations smaller.

e−V4Eλ=0
0 > e−V4E

λ6=0
0

from which we conclude that FµνF̃µν cannot get a vacuum expectation value. Therefore
if, as in the axion theory, the coefficient λ is effectively dynamical, QCD will choose a
vacuum with λ = 0.
The same reasoning applies to any parity-odd term, any parity-odd term will involve an
odd power of terms which involve exactly one F0i and which do therefore give rise to
phases when continued to euclidean space.
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