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Exercise 7.1 Topological charge

1. We start by writing the contraction of the field strength tensor with its dual in
terms of A:
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We are using the antisymmetry under interchange of any two Lorentz indices:
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We rename d → b and e → c in the second term and interchange ρ with µ and σ
with ν in the second. The last term is symmetric under interchange of µ and ρ and
is therefore vanishing in the contraction. We have:
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We turn to the total derivative:
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On the second line, we use the antisymmetry under interchange of µ and ν to
get rid of the second derivative, on the third line we have used the fact that the
antisymmetry of fabc and εµνρσ compensates. We collect the structure constant
terms to have
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2. We use
∂µ(ΛΛ−1) = 0 = Λ∂µΛ−1 + (∂µΛ)Λ−1

to show
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and we insert

∂µAν − ∂νAµ =
i

g

(
∂µ
(
(∂νΛ)Λ−1

)
− ∂ν

(
(∂µΛ)Λ−1

))
=
i

g

(
(∂µ∂νΛ)Λ−1 + (∂νΛ)(∂µΛ−1)− (∂ν∂µΛ)Λ−1 − (∂µΛ)(∂νΛ

−1)
)

=
i

g

(
(∂νΛ)(∂µΛ−1)− (∂µΛ)(∂νΛ

−1)
)

giving us
Fµν = ∂µAν − ∂νAµ + ig [Aµ, Aν ] = 0.
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T c to arrive at the form on the exercise

sheet.
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4. The calculation of the trace is somewhat tedious, we arrive at
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Exercise 7.2 Electric dipole moment of the neutron

The two classic papers calculating the relation between θ̄ and the neutron electric dipole
moment are [1] and [2], their results are pretty similar. We follow the former1.
We start from a Lagrangian with real mass term (θ̄ := θ − arg detM = θ), we transform
away the anomaly term using a chiral rotation in the quark fields:

ψk(x)→ eiαkγ5ψ(x)

θ → θ + 2
∑
k

αk

ψ̄kmkPRψk + h.c.→ ψ̄kmke
2iαkψk + h.c. = ψ̄km̃kPRψk + h.c..

where the sum runs over quark flavours and PR = (1 + γ5)/2. If we want θ to vanish we
have therefore arg det M̃ = −θ̄ (M = diag(m1, . . . ,mk)). Assuming

∣∣θ̄∣∣� 1, we relate

−θ̄ = arg det M̃ = arg det(M + iη) = arg ((mu + iη)(md + iη)(ms + iη))
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1Note that the conventions used for θ̄ in [1] are not the same as the ones used in the lecture. In our

notation, it uses

θ̄ =
1
nf

arg det M̃

with nf the number of light quark flavours which leads to the above difference in LCP .
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and therefore we have
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We work in time-independent perturbation theory, expanding to first power in θ̄. Due to
the CP -violating term in the Lagrangian, the neutron acquires an admixture of baryons
with spin 1/2 odd under parity:
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Therefore we have for the electric dipole moment:
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To estimate the order of magnitude (and to circumvent the calculation of the two relevant
matrix elements using the MIT bag model in [1]), we restrict the summation to the lowest-
lying resonance N(1535), and we insert the numerical values from [3]

1

∆E
≈ 1

1535 MeV− 940 MeV

ms ≈ 105MeV,
ms

md

≈ 20,
md

mu

≈ 2

〈N |d|N∗〉 ≈ e · rP ≈ e · 0.9 · 10−13cm,

〈
N∗
∣∣∣∣∫ d3x iψ̄γ5ψ

∣∣∣∣N〉 ≈ 1

where rP denotes the proton charge radious. This results in dn ≈ 5 · 10−16 |θ| e cm, from
dn < 0.3 · 10−23e cm we have therefore |θ| / 0.6 · 10−8.
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