Exercise 7.1 Topological charge

1. We start by writing the contraction of the field strength tensor with its dual in terms of A :

$$
\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\mu \nu}^{a} F_{\rho \sigma}^{a}=\frac{1}{2} \epsilon^{\mu \nu \rho \sigma}\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}-g f^{a b c} A_{\mu}^{b} A_{\nu}^{c}\right)\left(\partial_{\rho} A_{\sigma}^{a}-\partial_{\sigma} A_{\rho}^{a}-g f^{a d e} A_{\rho}^{d} A_{\sigma}^{e}\right) .
$$

We are using the antisymmetry under interchange of any two Lorentz indices:

$$
\begin{aligned}
\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\mu \nu}^{a} F_{\rho \sigma}^{a}= & \frac{1}{2} \epsilon^{\mu \nu \rho \sigma}\left(2 \partial_{\mu} A_{\nu}^{a}-g f^{a b c} A_{\mu}^{b} A_{\nu}^{c}\right)\left(2 \partial_{\rho} A_{\sigma}^{a}-g f^{a d e} A_{\rho}^{d} A_{\sigma}^{e}\right) \\
= & \frac{1}{2} \epsilon^{\mu \nu \rho \sigma}\left[4\left(\partial_{\mu} A_{\nu}^{a}\right)\left(\partial_{\rho} A_{\sigma}^{a}\right)-2 g f^{a d e}\left(\partial_{\mu} A_{\nu}^{a}\right) A_{\rho}^{d} A_{\sigma}^{e}-2 g f^{a b c}\left(\partial_{\rho} A_{\sigma}^{a}\right) A_{\mu}^{b} A_{\nu}^{c}\right. \\
& \left.\quad+g^{2} f^{a b c} f^{a d e} A_{\mu}^{b} A_{\nu}^{c} A_{\rho}^{d} A_{\sigma}^{e}\right] .
\end{aligned}
$$

We rename $d \rightarrow b$ and $e \rightarrow c$ in the second term and interchange ρ with μ and σ with ν in the second. The last term is symmetric under interchange of μ and ρ and is therefore vanishing in the contraction. We have:

$$
\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\mu \nu}^{a} F_{\rho \sigma}^{a}=\epsilon^{\mu \nu \rho \sigma}\left(2\left(\partial_{\mu} A_{\nu}^{a}\right)\left(\partial_{\rho} A_{\sigma}^{a}\right)-2 g f^{a b c}\left(\partial_{\mu} A_{\nu}^{a}\right) A_{\rho}^{b} A_{\sigma}^{c}\right) .
$$

We turn to the total derivative:

$$
\begin{aligned}
& \partial_{\mu} K^{\mu}=\epsilon^{\mu \nu \rho \sigma} \partial_{\mu}\left(A_{\nu}^{a} F_{\rho \sigma}^{a}+\frac{g}{3} f^{a b c} A_{\nu}^{a} A_{\rho}^{b} A_{\sigma}^{c}\right) \\
&=\epsilon^{\mu \nu \rho \sigma}[\left(\partial_{\mu} A_{\nu}^{a}\right)\left(2 \partial_{\rho} A_{\sigma}^{a}-g f^{a b c} A_{\rho}^{b} A_{\sigma}^{c}\right) \\
&+A_{\nu}^{a}\left(2 \partial_{\mu} \partial_{\nu} A_{\sigma}^{a}-g f^{a b c}\left(\partial_{\mu} A_{\rho}^{b}\right) A_{\sigma}^{c}-g f^{a b c} A_{\rho}^{b}\left(\partial_{\mu} A_{\sigma}^{c}\right)\right) \\
&\left.+g f^{a b c}\left(\left(\partial_{\mu} A_{\nu}^{a}\right) A_{\rho}^{b} A_{\sigma}^{c}\right)\right] .
\end{aligned}
$$

On the second line, we use the antisymmetry under interchange of μ and ν to get rid of the second derivative, on the third line we have used the fact that the antisymmetry of $f^{a b c}$ and $\epsilon^{\mu \nu \rho \sigma}$ compensates. We collect the structure constant terms to have

$$
\partial_{\mu} K^{\mu}=\epsilon^{\mu \nu \rho \sigma}\left(2\left(\partial_{\mu} A_{\nu}^{a}\right)\left(\partial_{\rho} A_{\sigma}^{a}\right)-2 g f^{a b c}\left(\partial_{\mu} A_{\nu}^{a}\right) A_{\rho}^{b} A_{\sigma}^{c}\right) .
$$

2. We use

$$
\partial_{\mu}\left(\Lambda \Lambda^{-1}\right)=0=\Lambda \partial_{\mu} \Lambda^{-1}+\left(\partial_{\mu} \Lambda\right) \Lambda^{-1}
$$

to show

$$
\begin{aligned}
{\left[A_{\mu}, A_{\nu}\right] } & =\frac{-1}{g^{2}}\left(\left(\partial_{\mu} \Lambda\right) \Lambda^{-1}\left(\partial_{\nu} \Lambda\right) \Lambda^{-1}-\left(\partial_{\nu} \Lambda\right) \Lambda^{-1}\left(\partial_{\mu} \Lambda\right) \Lambda^{-1}\right) \\
& =\frac{-1}{g^{2}}\left(-\left(\partial_{\mu} \Lambda\right) \Lambda^{-1} \Lambda\left(\partial_{\nu} \Lambda^{-1}\right)+\left(\partial_{\nu} \Lambda\right) \Lambda^{-1} \Lambda\left(\partial_{\nu} \Lambda^{-1}\right)\right) \\
& =\frac{-1}{g^{2}}\left(\left(\partial_{\nu} \Lambda\right)\left(\partial_{\mu} \Lambda^{-1}\right)-\left(\partial_{\mu} \Lambda\right)\left(\partial_{\nu} \Lambda^{-1}\right)\right)
\end{aligned}
$$

and we insert

$$
\begin{aligned}
\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} & =\frac{i}{g}\left(\partial_{\mu}\left(\left(\partial_{\nu} \Lambda\right) \Lambda^{-1}\right)-\partial_{\nu}\left(\left(\partial_{\mu} \Lambda\right) \Lambda^{-1}\right)\right) \\
& =\frac{i}{g}\left(\left(\partial_{\mu} \partial_{\nu} \Lambda\right) \Lambda^{-1}+\left(\partial_{\nu} \Lambda\right)\left(\partial_{\mu} \Lambda^{-1}\right)-\left(\partial_{\nu} \partial_{\mu} \Lambda\right) \Lambda^{-1}-\left(\partial_{\mu} \Lambda\right)\left(\partial_{\nu} \Lambda^{-1}\right)\right) \\
& =\frac{i}{g}\left(\left(\partial_{\nu} \Lambda\right)\left(\partial_{\mu} \Lambda^{-1}\right)-\left(\partial_{\mu} \Lambda\right)\left(\partial_{\nu} \Lambda^{-1}\right)\right)
\end{aligned}
$$

giving us

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+i g\left[A_{\mu}, A_{\nu}\right]=0 .
$$

We insert $F_{\mu \nu}=0$ and $f^{a b c}=-2 i \operatorname{Tr}\left[T^{a}, T^{b}\right] T^{c}$ to arrive at the form on the exercise sheet.
3. We have

$$
\Lambda^{-1}=\frac{\mathbf{x}^{2}-d^{2}}{\mathbf{x}^{2}+d^{2}} \mathbf{1}-i \frac{2 d}{\mathbf{x}^{2}+d^{2}} x_{k} \tau_{k}
$$

and therefore

$$
\begin{aligned}
A_{i} & =\frac{i}{g} \frac{1}{\left(\mathbf{x}^{2}+d^{2}\right)^{3}}\left[x_{i}\left(-4 i d\left(\mathbf{x}^{2}+d^{2}\right) x_{k} \tau_{k}\right)+\tau_{i}\left(2 i d\left(\mathbf{x}^{4}-d^{4}\right)\right)+i \epsilon_{i k r} x_{k} \tau_{r} 4\left(d^{2}\left(\mathbf{x}^{2}+d^{2}\right)\right)\right] \\
& =\frac{-2 d}{g\left(\mathbf{x}^{2}+d^{2}\right)^{2}}\left[\left(\mathbf{x}^{2}-d^{2}\right) \tau_{i}-2\left(x_{j} \tau_{j}\right) x_{i}+2 d \epsilon_{i j k} x_{j} \tau_{k}\right] .
\end{aligned}
$$

4. The calculation of the trace is somewhat tedious, we arrive at

$$
n=\int \mathrm{d}^{3} x \frac{4 d^{3}}{\pi^{2}} \frac{1}{\left(\mathrm{x}^{2}+d^{2}\right)^{3}}=1
$$

Exercise 7.2 Electric dipole moment of the neutron

The two classic papers calculating the relation between $\bar{\theta}$ and the neutron electric dipole moment are [1] and [2], their results are pretty similar. We follow the former ${ }^{1}$.
We start from a Lagrangian with real mass term ($\bar{\theta}:=\theta-\arg \operatorname{det} M=\theta$), we transform away the anomaly term using a chiral rotation in the quark fields:

$$
\begin{aligned}
\psi_{k}(x) & \rightarrow e^{i \alpha_{k} \gamma_{5}} \psi(x) \\
\theta & \rightarrow \theta+2 \sum_{k} \alpha_{k} \\
\bar{\psi}_{k} m_{k} P_{R} \psi_{k}+\text { h.c. } & \rightarrow \bar{\psi}_{k} m_{k} e^{2 i \alpha_{k}} \psi_{k}+\text { h.c. }=\bar{\psi}_{k} \tilde{m}_{k} P_{R} \psi_{k}+\text { h.c.. }
\end{aligned}
$$

where the sum runs over quark flavours and $P_{R}=\left(1+\gamma_{5}\right) / 2$. If we want θ to vanish we have therefore $\arg \operatorname{det} \tilde{M}=-\bar{\theta}\left(M=\operatorname{diag}\left(m_{1}, \ldots, m_{k}\right)\right)$. Assuming $|\bar{\theta}| \ll 1$, we relate

$$
\begin{aligned}
-\bar{\theta} & =\arg \operatorname{det} \tilde{M}=\arg \operatorname{det}(M+i \eta)=\arg \left(\left(m_{u}+i \eta\right)\left(m_{d}+i \eta\right)\left(m_{s}+i \eta\right)\right) \\
& \approx \arg \left(m_{u} m_{d} m_{s}+i \eta\left(m_{u} m_{d}+m_{d} m_{s}+m_{s} m_{u}\right)\right) \\
& \approx \eta\left(\frac{1}{m_{u}}+\frac{1}{m_{d}}+\frac{1}{m_{s}}\right)
\end{aligned}
$$

[^0]and therefore we have
\[

$$
\begin{aligned}
& \tilde{M} \approx M-i \bar{\theta}\left(\frac{1}{m_{u}}+\frac{1}{m_{d}}+\frac{1}{m_{s}}\right)^{-1} \\
& \mathcal{L}_{C P} \approx-\bar{\theta}\left(\frac{1}{m_{u}}+\frac{1}{m_{d}}+\frac{1}{m_{s}}\right)^{-1} i \bar{\psi} \gamma_{5} \psi .
\end{aligned}
$$
\]

We work in time-independent perturbation theory, expanding to first power in $\bar{\theta}$. Due to the $C P$-violating term in the Lagrangian, the neutron acquires an admixture of baryons with spin $1 / 2$ odd under parity:

$$
|n\rangle=|N\rangle+\sum_{N^{*}} \frac{1}{E_{N^{*}}-E_{N}}\left|N^{*}\right\rangle\left\langle N^{*}\right| \int \mathrm{d}^{3} x \mathcal{L}_{C P}|N\rangle .
$$

Therefore we have for the electric dipole moment:

$$
\begin{aligned}
d_{n} & =\langle n| d|n\rangle=2 \sum_{N^{*}} \frac{1}{E_{N^{*}}-E_{N}} \Re\left(\langle N| d\left|N^{*}\right\rangle\left\langle N^{*}\right| \int \mathrm{d}^{3} x \mathcal{L}_{C P}|N\rangle\right) \\
& =-2 \bar{\theta}\left(\frac{1}{m_{u}}+\frac{1}{m_{d}}+\frac{1}{m_{s}}\right)^{-1} \sum_{N^{*}} \frac{1}{E_{N^{*}}-E_{N}} \Re\left(\langle N| d\left|N^{*}\right\rangle\left\langle N^{*}\right| \int \mathrm{d}^{3} x i \bar{\psi} \gamma_{5} \psi|N\rangle\right) .
\end{aligned}
$$

To estimate the order of magnitude (and to circumvent the calculation of the two relevant matrix elements using the MIT bag model in [1]), we restrict the summation to the lowestlying resonance $N(1535)$, and we insert the numerical values from [3]

$$
\begin{gathered}
\frac{1}{\Delta E} \approx \frac{1}{1535 \mathrm{MeV}-940 \mathrm{MeV}} \\
m_{s} \approx 105 \mathrm{MeV}, \quad \frac{m_{s}}{m_{d}} \approx 20, \quad \frac{m_{d}}{m_{u}} \approx 2 \\
\langle N| d\left|N^{*}\right\rangle \approx e \cdot r_{P} \approx e \cdot 0.9 \cdot 10^{-13} \mathrm{~cm}, \quad\left\langle N^{*}\right| \int \mathrm{d}^{3} x i \bar{\psi} \gamma_{5} \psi|N\rangle \approx 1
\end{gathered}
$$

where r_{P} denotes the proton charge radious. This results in $d_{n} \approx 5 \cdot 10^{-16}|\theta| e \mathrm{~cm}$, from $d_{n}<0.3 \cdot 10^{-23} e \mathrm{~cm}$ we have therefore $|\theta| \lesssim 0.6 \cdot 10^{-8}$.

References

[1] Varouzhan Baluni. cp-nonconserving effects in quantum chromodynamics. Phys. Rev. D, 19(7):2227-2230, Apr 1979.
[2] R.J. Crewther, P. Di Vecchia, G. Veneziano, and E. Witten. Chiral estimate of the electric dipole moment of the neutron in quantum chromodynamics. Physics Letters B, 88(1-2):123-127, 1979.
[3] C. Amsler et al. Review of particle physics. Physics Letters B, 667(1-5):1-6, 2008. Review of Particle Physics.

[^0]: ${ }^{1}$ Note that the conventions used for $\bar{\theta}$ in [1] are not the same as the ones used in the lecture. In our notation, it uses

 $$
 \bar{\theta}=\frac{1}{n_{f}} \arg \operatorname{det} \tilde{M}
 $$

 with n_{f} the number of light quark flavours which leads to the above difference in $\mathcal{L}_{C P}$.

