Advanced Field Theory Solution 6

Exercise 6.1 Semileptonic Tau Decay: $\tau^{+} \rightarrow \bar{\nu}_{\tau} \pi^{+}$

We cross $k \rightarrow-k, p \rightarrow-p$, adding an overall (-1) because we have crossed a fermion and a prefactor $1 / 2$ because we are now averaging over the spin of the incoming tau to arrive at

$$
\frac{1}{2} \sum_{\text {spins }}\left|\mathcal{M}_{\ell^{-} \rightarrow \pi^{-} \nu_{\ell}}\right|^{2}=4 G_{F}^{2} f_{\pi}^{2}\left(2(q \cdot p)(k \cdot p)-p^{2}(q \cdot k)\right) .
$$

We determine the scalar products from $k=p+q, k^{2}=m_{\ell}^{2}, p^{2}=m_{\pi}^{2}$ and $q^{2}=0$ as

$$
\begin{equation*}
p \cdot q=\frac{1}{2}\left(m_{\ell}^{2}-m_{\pi}^{2}\right), \quad k \cdot q=\frac{1}{2}\left(m_{\ell}^{2}-m_{\pi}^{2}\right), \quad k \cdot p=\frac{1}{2}\left(m_{\ell}^{2}+m_{\pi}^{2}\right) \tag{1}
\end{equation*}
$$

which we insert to have

$$
\frac{1}{2} \sum_{\text {spins }}|\mathcal{M}|^{2}=2 G_{F}^{2} f_{\pi}^{2} m_{\ell}^{4}\left(1-\frac{m_{\pi}^{2}}{m_{\ell}^{2}}\right)
$$

We combine this with the integrated two-particle phase space

$$
\Pi_{2}=\frac{1}{4 \pi} \frac{1}{2}\left(1-\frac{m_{\pi}^{2}}{m_{\ell}^{2}}\right)
$$

to arrive at

$$
\Gamma=\frac{1}{2 m_{\ell}}\left(\frac{1}{2} \sum_{\text {spins }}|\mathcal{M}|^{2}\right) \Pi_{2}=\frac{1}{8 \pi} G_{F}^{2} f_{\pi}^{2} m_{\ell}^{3}\left(1-\frac{m_{\pi}^{2}}{m_{\ell}^{2}}\right)^{2}
$$

Exercise 6.2 Semileptonic Tau Decay: $\tau^{+} \rightarrow \bar{\nu}_{\tau} \rho^{+}$

In analogy to exercise sheet 4 , the matrix element is the contraction of the hadronic current with the leptonic current

$$
\mathcal{M}=2 G_{F} g_{\rho} \bar{v}(k) \gamma^{\mu} P_{L} v(q) \epsilon_{\mu, \lambda}(p)=2 G_{F} g_{\rho} \bar{v}(k) 申_{\lambda}(p) P_{L} v(q) .
$$

We average over incoming spins and sum over outgoing spins and polarizations:

$$
\left.\frac{1}{2} \sum_{\text {spins, polarisations }}|\mathcal{M}|^{2}=\left.\langle | \mathcal{M}\right|^{2}\right\rangle=2 G_{F}^{2} g_{\rho}^{2} \operatorname{Tr}\left(\left(\not \nless-m_{\ell}\right) \gamma^{\mu} P_{L} \phi \gamma^{\nu}\left(-g_{\mu \nu}+\frac{p_{\mu} p_{\nu}}{m_{\rho}^{2}}\right)\right)
$$

where we have inserted the polarisation sum for the ρ polarisation vectors already. We expand this into

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=2 G_{F}^{2} g_{\rho}^{2}\left(-\operatorname{Tr}\left(\left(\not k-m_{\ell}\right) \gamma^{\mu} P_{L} \phi q \gamma_{\mu}\right)+\frac{1}{m_{\rho}^{2}} \operatorname{Tr}\left(\left(\not k-m_{\ell}\right) \not p P_{L} \phi q p\right)\right) .
$$

We observe that the mass vanishes from the trace because the terms involving it have an odd number of Dirac matrices and that we can insert $P_{L}=1 / 2$ inside the trace because the traces involving γ^{5} vanish because there are no four linearly independent momenta in the process. We have therefore

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=2 G_{F}^{2} g_{\rho}^{2}\left(-\frac{1}{2} \operatorname{Tr}\left(k \gamma^{\mu} q \gamma_{\mu}\right)+\frac{1}{2 m_{\rho}^{2}} \operatorname{Tr}(k \not p \phi q p)\right) .
$$

Now we use the contraction identity $\gamma_{\mu} \gamma_{\alpha} \gamma^{\mu}=-2 \gamma_{\alpha}$ in the first trace and $\not p q=-q p p+2(p \cdot q)$ in the second one to reduce the traces to

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=2 G_{F}^{2} g_{\rho}^{2}\left(\operatorname{Tr}(\not k q)-\frac{p^{2}}{2 m_{\rho}^{2}} \operatorname{Tr}(k \not k q)+\frac{p \cdot q}{m_{\rho}^{2}} \operatorname{Tr}(k \cdot p)\right) .
$$

Now we insert $\operatorname{Tr}\left(\gamma^{\alpha} \gamma^{\beta}\right)=4 g^{\alpha \beta}$ and $p^{2}=m_{\rho}^{2}$ to have

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=2 G_{F}^{2} g_{\rho}^{2}\left(2(k \cdot q)+\frac{4(p \cdot q)(k \cdot p)}{m_{\rho}^{2}}\right) .
$$

We insert equation (1) and expand to arrive at

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=2 G_{F}^{2} g_{\rho}^{2}\left(m_{\ell}^{2}-2 m_{\rho}^{2}+\frac{m_{\ell}^{4}}{m_{\rho}^{2}}\right)=2 G_{F}^{2} g_{\rho}^{2} \frac{m_{\ell}^{4}}{m_{\rho}^{2}}\left(1-\frac{m_{\rho}^{2}}{m_{\ell}^{2}}\right)\left(1+2 \frac{m_{\rho}^{2}}{m_{\ell}^{2}}\right) .
$$

From this we get the partial width

$$
\left.\Gamma=\left.\frac{1}{2 m_{\ell}} \frac{1}{8 \pi}\left(1-\frac{m_{\rho}^{2}}{m_{\ell}^{2}}\right)\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{1}{8 \pi} G_{F}^{2} g_{\rho}^{2} \frac{m_{\ell}^{3}}{m_{\rho}^{2}}\left(1-\frac{m_{\rho}^{2}}{m_{\ell}^{2}}\right)^{2}\left(1+2 \frac{m_{\rho}^{2}}{m_{\ell}^{2}}\right) .
$$

