EMH
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Advanced Field Theory Solution 5

Exercise 5.1 Goldberger-Treiman Relation

Starting from our parametrization in terms of three form factors

$$
\begin{equation*}
\langle N| J^{\mu 5 a}(q)|N\rangle=\bar{u}\left(p^{\prime}\right)\left[\gamma^{\mu} \gamma^{5} F_{1}^{5}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m} \gamma^{5} F_{2}^{5}\left(q^{2}\right)+q^{\mu} \gamma^{5} F_{3}^{5}\left(q^{2}\right)\right] \tau^{a} u(p) \tag{1}
\end{equation*}
$$

we insert the current conservation in the form of $q_{\mu} J^{\mu 5 a}(q)$ to have

$$
0=\bar{u}\left(p^{\prime}\right)\left[q \gamma^{5} F_{1}^{5}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu} q_{\mu}}{2 m} \gamma^{5} F_{2}^{5}\left(q^{2}\right)+q^{2} \gamma^{5} F_{3}^{5}\left(q^{2}\right)\right] \tau^{a} u(p)
$$

the $\sigma^{\mu \nu}$ term vanishes because of its antisymmetry, we insert $q=p-p^{\prime}$ and we use the equations of motion $\bar{u}\left(p^{\prime}\right) p^{\prime}=m$ on both sides (we get $-2 m_{N}$ due to the anticommutation of $\not p$ with γ^{5})

$$
0=\bar{u}\left(p^{\prime}\right)\left[-2 m_{N} \gamma^{5} F_{1}^{5}\left(q^{2}\right)+q^{2} \gamma^{5} F_{3}^{5}\left(q^{2}\right)\right] \tau^{a} u(p)
$$

and therefore

$$
F_{1}^{5}(0)=\lim _{q^{2} \rightarrow 0} \frac{q^{2} F_{3}^{5}\left(q^{2}\right)}{2 m_{N}}
$$

As we can see, $F_{1}^{5}(0)$ can only be nonzero if $F_{3}^{5}\left(q^{2}\right)$ has a pole in $q^{2}=0$, corresponding to the exchange of a massless pion. We have for the interaction:

$$
\mathcal{M}=\left(i q^{\mu} f_{\pi}\right)\left(\frac{i}{q^{2}}\right)\left(-2 g_{\pi N N} \bar{u} \gamma^{5} \tau^{a} u\right)
$$

which we compare with (1) to conclude

$$
F_{3}^{5}\left(q^{2}\right) \xrightarrow{q^{2} \rightarrow 0} \frac{2 f_{\pi} g_{\pi N N}}{q^{2}}
$$

and therefore

$$
F_{1}^{5}(0)=\frac{f_{\pi} g_{\pi N N}}{m_{N}}
$$

Exercise 5.2 Gell-Mann-Okubo Mass Formula and Weinberg Ratio of Quark Masses

We expand up to second order in Φ :

$$
U \approx 1+i \frac{\sqrt{2}}{v} \Phi-\frac{2}{v^{2}} \Phi^{2}
$$

which gives us the Lagrangian (inserting $D_{\mu}=\partial_{\mu}$ and $\chi=2 B M$ as well)

$$
\frac{v^{2}}{4} \operatorname{Tr}\left(\frac{2}{v^{2}} \partial_{\mu} \Phi \partial^{\mu} \Phi+2 B M\left(1-i \frac{\sqrt{2}}{v} \Phi-\frac{2}{v^{2}} \Phi^{2}\right)+2 B M\left(1+i \frac{\sqrt{2}}{v} \Phi-\frac{2}{v^{2}} \Phi^{2}\right)\right)
$$

we omit a constant term and have

$$
\mathcal{L}=\frac{1}{2} \operatorname{Tr}\left(\partial_{\mu} \Phi \partial_{\mu} \Phi\right)-\operatorname{Tr}\left(2 B M \Phi^{2}\right) .
$$

We can write this Lagrangian as a sum of Lagrangians for scalar and complex fields plus a pion eta interaction

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{2}\left(\partial_{\mu} \pi^{0}\right)\left(\partial^{\mu} \pi^{0}\right)-\frac{1}{2} m_{\pi^{0}}^{2}\left(\pi^{0}\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \eta_{8}\right)\left(\partial^{\mu} \eta_{8}\right)-\frac{1}{2} m_{\eta_{8}}^{2}\left(\eta_{8}\right)^{2}+\left(\partial_{\mu} \pi^{+}\right)\left(\partial^{\mu} \pi^{-}\right)-m_{\pi^{+}}^{2} \pi^{+} \pi^{-} \\
& +\left(\partial_{\mu} K^{0}\right)\left(\partial^{\mu} \bar{K}^{0}\right)-m_{K^{0}}^{2} K^{0} \bar{K}^{0}+\left(\partial_{\mu} K^{+}\right)\left(\partial^{\mu} K^{-}\right)-m_{K^{+}}^{2} K^{+} K^{-}+\frac{2 B}{\sqrt{3}}\left(m_{d}-m_{u}\right)\left(\pi^{0} \eta_{8}\right)
\end{aligned}
$$

with the mass parameters

$$
\begin{array}{r}
m_{\pi^{0}}^{2}=2 B\left(m_{d}+m_{u}\right), \quad m_{\eta_{8}}^{2}=\frac{2 B}{3}\left(m_{u}+m_{d}+4 m_{s}\right) \\
m_{\pi^{+}}^{2}=2 B\left(m_{u}+m_{d}\right), \quad m_{K^{+}}^{2}=2 B\left(m_{u}+m_{s}\right), \quad m_{K^{0}}^{2}=2 B\left(m_{d}+m_{s}\right)
\end{array}
$$

which obey the Gell-Mann-Okubo relation and the Weinberg ratio of quark masses.

