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Exercise 5.1 Goldberger-Treiman Relation

Starting from our parametrization in terms of three form factors
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we insert the current conservation in the form of ¢,.J***(q) to have
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the o"” term vanishes because of its antisymmetry, we insert ¢ = p — p’ and we use the
equations of motion u(p')p’ = m on both sides (we get —2my due to the anticommutation
of p with 4°)
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As we can see, F?(0) can only be nonzero if Fj(q?) has a pole in ¢* = 0, corresponding
to the exchange of a massless pion. We have for the interaction:
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which we compare with (1) to conclude
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Exercise 5.2 Gell-Mann—Okubo Mass Formula and Weinberg Ratio of Quark
Masses

We expand up to second order in ®:
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which gives us the Lagrangian (inserting D, = 0, and x = 2BM as well)
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we omit a constant term and have

L= %Tr (0,90,®) — Tr (2BM ) .



We can write this Lagrangian as a sum of Lagrangians for scalar and complex fields plus
a pion eta interaction
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with the mass parameters
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m2, = 2B(mg + m,), mgs =3 (my +mq + 4m)
2

m2y = 2B(m, +mg), Myt =2B(m, +my), mio=2B(mg+m,)

which obey the Gell-Mann—-Okubo relation and the Weinberg ratio of quark masses.



