Advanced Field Theory Solution 3

Exercise 3.1 Pseudoscalar Higgs Coupling to Gluons

Note: The numerical prefactor of $\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle$ is incorrect. See for example [1] for the correct prefactor.
We start by evaluating the trace in

$$
\begin{align*}
\mathcal{M}_{1}^{\alpha \beta}= & \int \frac{\mathrm{d}^{d} k}{(2 \pi)^{d}}\left(\frac{-i}{\sqrt{2}} y_{f} \delta_{l j}\right)\left(-i g_{s} T_{j i}^{a}\right)\left(-i g_{s} T_{i l}^{b}\right) \\
& \cdot \operatorname{Tr}\left(\frac{\left(\gamma^{5}\right)(i)\left(\not p_{1}+\not k+m_{f}\right) \gamma^{\alpha}(i)\left(\not k+m_{f}\right) \gamma^{\beta}(i)\left(\not k-\not p_{2}+m_{f}\right)}{\left(\left(p_{1}+k\right)^{2}-m_{f}^{2}\right)\left(k^{2}-m_{f}^{2}\right)\left(\left(k-p_{2}\right)^{2}-m_{f}^{2}\right)}\right) \tag{1}
\end{align*}
$$

since the integral is finite, we set $d=4$ from the start, we arrive at
$\operatorname{Tr}\left(\gamma^{5}\left(\left(\not \not k+\not p_{1}+m\right) \gamma^{\alpha}\left(\not k+m_{f}\right) \gamma^{\beta}\left(\not k-\not p_{2}+m\right)\right)\right)$
only traces with γ^{5} and four other gamma matrices are nonvanishing

$$
=m_{f} \operatorname{Tr}\left(\gamma^{5}\left(\left(\not k+\not p_{1}\right) \gamma^{\alpha} \not k \gamma^{\beta}+\left(\not k+\not p_{1}\right) \gamma^{\alpha} \gamma^{\beta}\left(\not k-\not p_{2}\right)+\gamma^{\alpha} k \gamma^{\beta}\left(\not k-\not p_{2}\right)\right)\right)
$$

expand, terms with two $\nless k$ vanish

$$
=m_{f} \operatorname{Tr}\left(\gamma^{5}\left(\not p_{1} \gamma^{\alpha} \not k \gamma^{\beta}+\not p_{1} \gamma^{\alpha} \gamma^{\beta} \not k-\not p_{1} \gamma^{\alpha} \gamma^{\beta} \not p_{2}-\not k \gamma^{\alpha} \gamma^{\beta} \not p_{2}-\gamma^{\alpha} \not k \gamma^{\beta} \not p_{2}\right)\right)
$$

using antisymmetry under interchange of two adjacent gamma matrices

$$
=4 i m_{f} \epsilon^{\mu \nu \alpha \beta}\left(p_{1}\right)_{\mu}\left(p_{2}\right)_{\nu} .
$$

Inserting this into (1) together with $\operatorname{Tr}\left(T^{a} T^{b}\right)=1 / 2 \delta^{a b}$ we have
$\mathcal{M}_{1}^{\alpha \beta}=\frac{y_{f} g_{s}^{2}}{\sqrt{2}} \frac{\delta^{a b}}{2}\left(4 i m_{f}\right) \epsilon^{\mu \nu \alpha \beta}\left(p_{1}\right)_{\mu}\left(p_{2}\right)_{\nu} \int \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}} \frac{1}{\left[\left(p_{1}+k\right)^{2}-m_{f}^{2}\right]\left[k^{2}-m_{f}^{2}\right]\left[\left(k-p_{2}\right)^{2}-m_{f}^{2}\right]}$.
We will denote the remaining integral as $I\left(p_{1},-k_{2}\right)$ in the following. The second diagram is obtained from the first one via $p_{1} \rightarrow p_{2}, \alpha \rightarrow \beta$ and $k \rightarrow-k$, therefore we have the same contribution as from the first diagram. In total, we have

$$
\mathcal{M}_{1+2}^{\alpha \beta}=\frac{1}{\sqrt{2}} y_{f} g_{s}^{2} \delta^{a b}\left(4 i m_{f}\right) \epsilon^{\mu \nu \alpha \beta}\left(p_{1}\right)_{\mu}\left(p_{2}\right)_{\nu} I\left(p_{1},-k_{2}\right) .
$$

Proceeding to the summation over external polarisations and colour indices, we have

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{1}{N_{p}^{2} N_{g}^{2}} \sum_{\text {polarisations }}\left(\epsilon_{1}^{*}\right)_{\nu}\left(\epsilon_{1}\right)_{\mu}\left(\epsilon_{2}^{*}\right)_{\rho}\left(\epsilon_{2}^{*}\right)_{\sigma}\left(\mathcal{M}_{1+2}\right)^{\nu \rho}\left(\mathcal{M}_{1+2}^{*}\right)^{\mu \sigma} .
$$

In the present case, we can replace $\sum_{\text {polarisations }}\left(\epsilon_{1}^{*}\right)_{\mu}\left(\epsilon_{1}\right)_{\nu} \rightarrow-g_{\mu \nu}$ as in QED. Using $\epsilon^{\alpha \beta \delta \xi} \epsilon_{\mu \nu \delta \xi} p_{1}^{\alpha} p_{2}^{\beta} p_{1}^{\mu} p_{2}^{\nu}=2\left(p_{1} \cdot p_{2}\right)^{2}$ (due to $\left.p_{i}^{2}=0\right)$ and $\delta^{a a}=N_{g}$ we have

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{1}{N_{p}^{2} N_{g}} 8 y_{f}^{2} g_{s}^{4} m_{f}^{2} 2\left(p_{1} \cdot p_{2}\right)^{2}\left|I\left(p_{1},-p_{2}\right)\right|^{2}
$$

We can insert $N_{p}=2, N_{g}=8, g_{s}^{2}=4 \pi \alpha_{s}, p_{1} \cdot p_{2}=m_{h}^{2} / 2, y_{f}=\sqrt{2} m_{f} / v$ where v is the vacuum expectation value of the Higgs. In this form we have

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{1}{4} \frac{m_{f}^{4}}{v^{2}}\left(4 \pi \alpha_{s}\right)^{2} m_{h}^{4}\left|I\left(p_{1},-p_{2}\right)\right|^{2} .
$$

We can go from the matrix element (the averaging over initial state spins and colours will be implicit from now) to the partonic cross section using

$$
\mathrm{d} \hat{\sigma}_{g g \rightarrow h}=\frac{1}{2 s_{g g}}|\mathcal{M}|^{2}(2 \pi)^{4} \delta^{(4)}\left(p_{g_{1}}+p_{g_{2}}-p_{h}\right) \int \frac{\mathrm{d}^{3} p_{h}}{\left.(2 \pi)^{3}\right)} \frac{1}{2 E_{h}}
$$

from which we get to the integrated partonic cross section, inserting $\left.\int \mathrm{d}^{3} p \frac{1}{2 E}\right|_{\mathbf{p}^{2}+E^{2}=m^{2}}=$ $\int \mathrm{d}^{4} p \delta\left(p^{2}-m^{2}\right)$:

$$
\hat{\sigma}_{g g \rightarrow h}=\frac{\pi}{m_{h}^{2}} \delta\left(s_{g g}-m_{h}^{2}\right)|\mathcal{M}|^{2} .
$$

The cross section for $p p \rightarrow h$ is given by

$$
\begin{aligned}
\sigma_{p p \rightarrow h} & =\int \mathrm{d} x_{1} \mathrm{~d} x_{2} g\left(x_{1}\right) g\left(x_{2}\right) \hat{\sigma}_{g g \rightarrow h} \\
& =\int \mathrm{d} x_{1} \mathrm{~d} x_{2} g\left(x_{1}\right) g\left(x_{2}\right) \frac{\pi}{m_{h}^{2}} \delta\left(s_{g g}-m_{h}^{2}\right)|\mathcal{M}|^{2}
\end{aligned}
$$

where g denotes the gluon parton distribution function of the proton.
We can execute one of the integrals in the convolution:

$$
\int_{0}^{1} \mathrm{~d} x_{1} \mathrm{~d} x_{2} g\left(x_{1}\right) g\left(x_{2}\right) \delta\left(s_{g g}-m_{h}^{2}\right)=\frac{1}{s} \int_{\frac{m_{h}^{2}}{s}}^{1} \mathrm{~d} x_{1} g\left(x_{1}\right) g\left(\frac{m_{h}^{2}}{s} \frac{1}{x_{1}}\right) .
$$

Putting it together, we have

$$
\sigma_{p p \rightarrow h}=\frac{\pi}{m_{h}^{2}}|\mathcal{M}|^{2} \frac{1}{s} \int_{\frac{m_{h}^{2}}{s}}^{1} \mathrm{~d} x_{1} g\left(x_{1}\right) g\left(\frac{m_{h}^{2}}{s} \frac{1}{x_{1}}\right) .
$$

We insert the matrix element into this formula together with $I\left(p_{1},-p_{2}\right)=\frac{-i}{(4 \pi)^{2}} \frac{1}{m_{h}^{2}} \frac{1}{2} f(\tau)$ to have

$$
\sigma_{p p \rightarrow h}=\frac{1}{16} \frac{1}{16 \pi} \frac{m_{f}^{4}}{v^{2} m_{h}^{2}} \alpha_{s}^{2}|f(\tau)|^{2}\left(\frac{1}{s} \int_{\frac{m_{h}^{2}}{s}}^{1} \mathrm{~d} x_{1} g\left(x_{1}\right) g\left(\frac{m_{h}^{2}}{s} \frac{1}{x_{1}}\right)\right) .
$$

A detailed derivation for the production of a scalar can be found in Mathias Brucherseifers Masters Thesis, it can be found at http://www.itp.phys.ethz.ch/education/ lectures_fs10/AFT_FS_10.

References

[1] M. Spira, A. Djouadi, D. Graudenz and P. M. Zerwas, Phys. Lett. B 318 (1993) 347.

