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Exercise 3.1 Pseudoscalar Higgs Coupling to Gluons

Note: The numerical prefactor of
〈
|M|2

〉
is incorrect. See for example [1] for the correct

prefactor.
We start by evaluating the trace in
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since the integral is finite, we set d = 4 from the start, we arrive at
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only traces with γ5 and four other gamma matrices are nonvanishing
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expand, terms with two /k vanish
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using antisymmetry under interchange of two adjacent gamma matrices

= 4imfε
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Inserting this into (1) together with Tr(T aT b) = 1/2 δab we have
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We will denote the remaining integral as I(p1,−k2) in the following. The second diagram
is obtained from the first one via p1 → p2, α → β and k → −k, therefore we have the
same contribution as from the first diagram. In total, we have
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Proceeding to the summation over external polarisations and colour indices, we have〈
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〉
=
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In the present case, we can replace
∑
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∗
1)µ(ε1)ν → −gµν as in QED. Using
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We can insert Np = 2, Ng = 8, g2
s = 4παs, p1 · p2 = m2

h/2, yf =
√

2mf/v where v is the
vacuum expectation value of the Higgs. In this form we have
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〉
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We can go from the matrix element (the averaging over initial state spins and colours will
be implicit from now) to the partonic cross section using

dσ̂g g→h =
1
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∫
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from which we get to the integrated partonic cross section, inserting
∫
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2 .

The cross section for p p→ h is given by
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=
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where g denotes the gluon parton distribution function of the proton.
We can execute one of the integrals in the convolution:∫ 1
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Putting it together, we have
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We insert the matrix element into this formula together with I(p1,−p2) = −i
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to have
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.

A detailed derivation for the production of a scalar can be found in Mathias Brucher-
seifers Masters Thesis, it can be found at http://www.itp.phys.ethz.ch/education/

lectures_fs10/AFT_FS_10.
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