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Exercise 2.1 Axial Anomaly in Massive QED

As a preliminary, we recall the equations of motion for ¢ and v following from L:
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where @ denotes that the derivative acts on the function to the left of it.
We do now compute the derivatives we will encounter in 9,.J*°. By the equations of
motion (1) we have
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further we can expand the Wilson line for small ¢:
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Now we write down the divergence of the axial current:
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where we have inserted the equations of motion for ¢/ and ¢ (the mass from the @) term
gets a minus sign because we had to anticommute 7°) and the expansion up to the first
order in ¢ for the derivative of the Wilson line. Since the Wilson line is 1 to first order in
0, we will be able to omit it in the following. We organise the expression as follows:
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Now we approximate A(z + §/2) — A(x — §/2) ~ §70, A(x) to arrive at
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Figure 1: The expansion of the fermion propagator in the presence of an external field

_|_

+...

A
A
A

We can see that in addition to the term proportionate to the mass, we have a term
depending on the vector potential A as well. To evaluate this contribution, we recall that
we are actually calculating a vacuum expectation value of the form
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where I' denotes an arbitrary product of Dirac matrices. Therefore we do now evaluate
the propagator in the presence of the external field A up to the first order in the coupling.
The first diagram in figure 1 is the usual Feynman propagator of the noninteracting theory
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To evaluate the limit of the trace for § — 0 we can expand the integrand for large values
of p:
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Evaluating the trace yields Tr(y5y#*~*) = 0. Evaluating the second term in the expansion
(omitting masses from the start in anticipation of the limit § — 0) gives
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executing the Fourier transform on A and shifting p — p+ k
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Next we insert this into the trace:
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Where we have replaced p + k — p inside the trace because the trace will vanish if a
momentum shows up twice. We will approximate (k + p)? ~ k? because we are interested
in the limit of small , separating the two momentum integrals. We have
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We insert both of these to arrive at
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We can insert this result into our result for the mass-independent part of the divergence
of the axial current:
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Exercise 2.2 Fermion Number Nonconservation
1. Let us restate some electrodynamics:
0 —-EFE, —EFE, —FE;
ro_ E 0 —Bs B,
| By Bs 0 =B’
Es —By DB 0

furthermore we need torecall A, = (¢, —A), E = —0,A—V¢, B =rot A. According

to our sign convention €123 = 1 we have therefore

¢ F,F,,=8E-B.



Decomposing the axial vector current according to .J S = ahy(Pr—Pp) = hry*hr—
Yry*pr we can write (assuming J vanishes sufficiently fast for [x| — 0 to have
[d°z6,J" = 0)
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. Since £ does not depend on 9y we have
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We can write this in terms of ¢z and ¥:
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to arrive at the form on the exercise sheet for Ag = 0.
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. We have A = (0, By, A) and we want to solve the Eigenvalue problem (—io®(9; —
ieA;) — E)g = 0. Using the Ansatz on the exercise sheet, we have Oytpr = ikaot)g,
O3 r = 1k3g which we insert into the differential equation to have
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where ¢} denotes the derivative with respect to x, or, written out explicitly
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We solve the second equation for ¢s:
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We insert this into the first line of (2) to arrive at
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We recognize that the differential equation for ¢, is the differential equation for a
harmonic oscillator centered at x; = ko/(eB). We shift the 21 coordinate accordingly
and introduce y; = vVeBx; to bring the equation into the form
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From the condition that the equation should have a square-integrable solution, we
have the condition
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4. If the momenta are quantised according to k; = (2mn;)/L we can translate the
condition that the center of the oscillatory motion be inside the cube of length L:
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since the energy in (3) is independent of ko, each energy level is L?eB/(2m)-fold
degenerate.

5. We consider a shift of the vector potential A — A + (27)/(eL), this changes (3) as
follows:
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from which we can see that due to the degeneracy of the energy states L?eB/(27)
states for which (3) had a real solution before do not correspond to a real solution
anymore.

We can check this result against the Adler-Bell-Jackiw anomaly. We restrict the
time interval to [0, 7], from A(t) = A+ (27)/L t/T we determine
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