Exercise 2.1 Axial Anomaly in Massive QED

As a preliminary, we recall the equations of motion for ψ and $\bar{\psi}$ following from \mathcal{L} :

$$
\begin{equation*}
(i(\not \partial+i e \mathscr{A})-m) \psi=0, \quad \bar{\psi}(i(\overleftarrow{\not \partial}-i e \mathscr{A})+m)=0 \tag{1}
\end{equation*}
$$

where $\overleftarrow{\not \partial}$ denotes that the derivative acts on the function to the left of it.
We do now compute the derivatives we will encounter in $\partial_{\mu} J^{\mu 5}$. By the equations of motion (1) we have

$$
\begin{aligned}
\bar{\psi}\left(x+\frac{\delta}{2}\right) \overleftarrow{\not \partial} & =\bar{\psi}\left(x+\frac{\delta}{2}\right)(+i)\left(e \mathscr{A}\left(x+\frac{\delta}{2}\right)+m\right) \\
\not \partial \psi\left(x-\frac{\delta}{2}\right) & =(-i)\left(e \mathscr{A}\left(x-\frac{\delta}{2}\right)+m\right) \psi\left(x-\frac{\delta}{2}\right)
\end{aligned}
$$

further we can expand the Wilson line for small δ :

$$
\begin{aligned}
\not \partial \exp \left[-i e \int_{x-\delta / 2}^{x+\delta / 2} d z A(z)\right] & =\not \supset\left(1-i e \int_{x-\delta / 2}^{x+\delta / 2} d z A(z)+\mathcal{O}\left(\delta^{2}\right)\right) \\
& \approx(-i e) \not \delta^{\nu} A_{\nu}(x) .
\end{aligned}
$$

Now we write down the divergence of the axial current:

$$
\begin{aligned}
& \partial_{\mu}\left[\underset{\delta \rightarrow 0}{\operatorname{symm} \lim }\left(\bar{\psi}\left(x+\frac{\delta}{2}\right) \gamma^{\mu} \gamma^{5} \exp \left[-i e \int_{x-\delta / 2}^{x+\delta / 2} d z A(z)\right] \psi\left(x-\frac{\delta}{2}\right)\right)\right]=\underset{\delta \rightarrow 0}{\operatorname{symm} \lim } \\
& \bar{\psi}\left(x+\frac{\delta}{2}\right)(+i)\left(e A\left(x+\frac{\delta}{2}\right)+m\right) \exp \left[-i e \int_{x-\delta / 2}^{x+\delta / 2} d z A(z)\right] \gamma^{5} \psi\left(x-\frac{\delta}{2}\right) \\
& +\bar{\psi}\left(x+\frac{\delta}{2}\right)\left(-i e \delta^{\nu} \not \partial A_{\nu}(x)\right) \gamma^{5} \psi\left(x-\frac{\delta}{2}\right) \\
& \quad+\bar{\psi}\left(x+\frac{\delta}{2}\right)(-i)\left(e A\left(x-\frac{\delta}{2}\right)-m\right) \exp \left[-i e \int_{x-\delta / 2}^{x+\delta / 2} d z A(z)\right] \gamma^{5} \psi\left(x-\frac{\delta}{2}\right)
\end{aligned}
$$

where we have inserted the equations of motion for ψ and $\bar{\psi}$ (the mass from the $\not \partial \psi$ term gets a minus sign because we had to anticommute γ^{5}) and the expansion up to the first order in δ for the derivative of the Wilson line. Since the Wilson line is 1 to first order in δ, we will be able to omit it in the following. We organise the expression as follows:

$$
\begin{aligned}
\underset{\delta \rightarrow 0}{\operatorname{symm} \lim } & {\left[\bar{\psi}\left(x+\frac{\delta}{2}\right)\right.} \\
& \left.\left((2 i m)+i e\left(\mathbb{A}\left(x+\frac{\delta}{2}\right)-\mathcal{A}\left(x-\frac{\delta}{2}\right)\right)-i e \delta^{\nu} \not \partial A_{\nu}(x)\right) \gamma^{5} \psi\left(x-\frac{\delta}{2}\right)\right] .
\end{aligned}
$$

Now we approximate $\mathcal{A}(x+\delta / 2)-\mathscr{A}(x-\delta / 2) \approx \delta^{\nu} \partial_{\nu} \mathcal{A}(x)$ to arrive at

$$
\underset{\delta \rightarrow 0}{\operatorname{symm} \lim }\left[\bar{\psi}\left(x+\frac{\delta}{2}\right)\left(2 i m-i e \gamma^{\mu} \delta^{\nu}\left(\partial_{\mu} A_{\nu}(x)-\partial_{\nu} A_{\mu}(x)\right)\right) \gamma^{5} \psi\left(x-\frac{\delta}{2}\right)\right] .
$$

Figure 1: The expansion of the fermion propagator in the presence of an external field

We can see that in addition to the term proportionate to the mass, we have a term depending on the vector potential A as well. To evaluate this contribution, we recall that we are actually calculating a vacuum expectation value of the form

$$
\langle 0| T(\bar{\psi}(y) \Gamma \psi(z))|0\rangle=\operatorname{Tr}(\Gamma\langle 0| T(\psi(z) \bar{\psi}(y))|0\rangle)
$$

where Γ denotes an arbitrary product of Dirac matrices. Therefore we do now evaluate the propagator in the presence of the external field A up to the first order in the coupling. The first diagram in figure 1 is the usual Feynman propagator of the noninteracting theory

$$
D_{F}(-\delta)=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i \not p+m)}{p^{2}-m^{2}} e^{-i p(-\delta)}
$$

To evaluate the limit of the trace for $\delta \rightarrow 0$ we can expand the integrand for large values of p :

$$
\begin{aligned}
D_{F}(-\delta) & \approx \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i p}{p^{2}} e^{-i p(-\delta)} \\
& =\nsupseteq\left(\frac{i}{(2 \pi)^{2}} \frac{1}{\delta^{2}}\right) \\
& =\frac{(-i)}{2 \pi^{2}} \frac{\phi}{\delta^{4}} .
\end{aligned}
$$

Evaluating the trace yields $\operatorname{Tr}\left(\gamma^{5} \gamma^{\mu} \gamma^{\nu}\right)=0$. Evaluating the second term in the expansion (omitting masses from the start in anticipation of the limit $\delta \rightarrow 0$) gives

$$
\begin{aligned}
\int \mathrm{d}^{4} b D_{F}\left(\left(x-\frac{\delta}{2}\right)-b\right) & (-i e \mathcal{A}(b)) D_{F}\left(b-\left(x+\frac{\delta}{2}\right)\right) \\
& =\int \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}} \frac{\mathrm{~d}^{4} p}{(2 \pi)^{4}} \mathrm{~d}^{4} b \frac{i p p}{p^{2}} e^{-i p(x-\delta / 2)-b}(-i e \mathcal{A}(b)) \frac{i k}{k^{2}} e^{-i k(b-x-\delta / 2)}
\end{aligned}
$$

executing the Fourier transform on A and shifting $p \rightarrow p+k$

$$
=\int \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}} \frac{\mathrm{~d}^{4} p}{(2 \pi)^{4}} \frac{i(\not p+\not k)}{(p+k)^{2}}(-i e \mathscr{A}(p)) \frac{i \not k}{k^{2}} e^{-i(x+\delta / 2)} e^{i k \delta} .
$$

Next we insert this into the trace:

$$
\begin{aligned}
& \operatorname{Tr}\left(\gamma^{\mu} \gamma^{5} \psi\left(x-\frac{\delta}{2}\right) \bar{\psi}\left(x+\frac{\delta}{2}\right)\right) \\
& \quad=\operatorname{Tr}\left(\int \frac{\mathrm{d}^{4} p}{\left.(2 \pi)^{4}\right)} \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}} \gamma^{\mu} \gamma^{5} \frac{i(\not p+\not k)}{(p+k)^{2}}(-i e \not A(p)) \frac{i k k}{k^{2}} e^{-i p(x+\delta / 2)} e^{i k \delta}\right) \\
& \quad=e \int \frac{\mathrm{~d}^{4} p}{(2 \pi)^{4}} \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}} \operatorname{Tr}\left(\gamma^{\mu} \gamma^{5} \gamma^{\alpha} \gamma^{\beta} \gamma^{\rho}\right) p_{\alpha} A_{\beta} k_{\rho} \frac{i}{(p+k)^{2} k^{2}} e^{-i p(x+\delta / 2)} e^{i k \delta} .
\end{aligned}
$$

Where we have replaced $p+k \rightarrow p$ inside the trace because the trace will vanish if a momentum shows up twice. We will approximate $(k+p)^{2} \approx k^{2}$ because we are interested in the limit of small δ, separating the two momentum integrals. We have

$$
\begin{aligned}
\epsilon^{\mu \alpha \beta \gamma} \int \frac{\mathrm{d}^{4} p}{(2 \pi)^{4}} p_{\alpha} A_{\beta}(p) e^{-i p(x+\delta / 2)} & =i \epsilon^{\mu \alpha \beta \gamma} \partial_{\alpha} A_{\beta}\left(x+\frac{\delta}{2}\right) \\
& \approx i \epsilon^{\mu \alpha \beta \gamma} \partial_{\alpha} A_{\beta}(x) \\
& =\frac{i}{2} \epsilon^{\mu \alpha \beta \gamma} F_{\alpha \beta}(x)
\end{aligned}
$$

and

$$
\begin{aligned}
\int \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}} \frac{k_{\gamma}}{k^{4}} e^{i p \delta} & =\left(i \frac{-\partial}{\partial \delta_{\gamma}}\right)\left(\frac{-1}{16 \pi^{2}} \log \frac{1}{\delta^{2}}\right) \\
& =\frac{-i}{8 \pi^{2}} \frac{\delta_{\gamma}}{\delta^{2}}
\end{aligned}
$$

We insert both of these to arrive at

$$
\begin{aligned}
& \operatorname{Tr}\left(\gamma^{\mu} \gamma^{5} \psi\left(x-\frac{\delta}{2}\right) \bar{\psi}\left(x+\frac{\delta}{2}\right)\right) \\
& \quad \approx e(-4) \epsilon^{\mu \alpha \beta \rho} \int \frac{\mathrm{d}^{4} p}{(2 \pi)^{4}} p_{\alpha} A_{\beta}(p) e^{-i p(x+\delta / 2)} \int \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}} \frac{k_{\rho}}{k^{4}} e^{i k \delta} \\
& \quad=e 2 \epsilon^{\alpha \beta \mu \rho} F_{\alpha \beta}(x)\left(\frac{-i}{8 \pi^{2}} \frac{\delta_{\rho}}{\delta^{2}}\right) .
\end{aligned}
$$

We can insert this result into our result for the mass-independent part of the divergence of the axial current:

$$
\begin{aligned}
& \operatorname{symm} \lim \left\langle\bar{\psi}\left(x+\frac{\delta}{2}\right)\left(-i e \delta^{\nu}\left(F_{\mu \nu}(x)\right) \gamma^{\mu} \gamma^{5} \bar{\psi}\left(x-\frac{\delta}{2}\right)\right\rangle\right. \\
= & \underset{\delta>0}{\operatorname{symm} \lim }\left(-i e^{2} \delta^{\nu} F_{\mu \nu} 2 \epsilon^{\alpha \beta \mu \rho} F_{\alpha \beta} \frac{-i}{8 \pi^{2}} \frac{\delta_{\rho}}{\delta^{2}}\right)
\end{aligned}
$$

inserting $\frac{\delta_{\mu} \delta_{\nu}}{\delta^{2}} \rightarrow \frac{g_{\mu \nu}}{4}$

$$
=\frac{-e^{2}}{16 \pi^{2}} \epsilon^{\alpha \beta \mu \nu} F_{\mu \nu} F_{\alpha \beta} .
$$

Exercise 2.2 Fermion Number Nonconservation

1. Let us restate some electrodynamics:

$$
F_{\mu \nu}=\left(\begin{array}{cccc}
0 & -E_{1} & -E_{2} & -E_{3} \\
E_{1} & 0 & -B_{3} & B_{2} \\
E_{2} & B_{3} & 0 & -B_{1} \\
E_{3} & -B_{2} & B_{1} & 0
\end{array}\right),
$$

furthermore we need to recall $A_{\mu}=(\phi,-\mathbf{A}), \mathbf{E}=-\partial_{t} \mathbf{A}-\nabla \phi, \mathbf{B}=\operatorname{rot} \mathbf{A}$. According to our sign convention $\epsilon^{0123}=1$ we have therefore

$$
\epsilon^{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma}=8 \mathbf{E} \cdot \mathbf{B}
$$

Decomposing the axial vector current according to $J^{\mu 5}=\bar{\psi} \gamma^{\mu}\left(P_{R}-P_{L}\right) \psi=\bar{\psi}_{R} \gamma^{\mu} \psi_{R}-$ $\bar{\psi}_{L} \gamma^{\mu} \psi_{L}$ we can write (assuming \mathbf{J} vanishes sufficiently fast for $|\mathbf{x}| \rightarrow 0$ to have $\left.\int \mathrm{d}^{3} x \partial_{i} \mathbf{J}^{i}=0\right)$

$$
\int \mathrm{d}^{4} x \partial_{\mu} J^{\mu 5}=\int \mathrm{d}^{4} x\left(\partial_{\mu} J_{R}^{\mu}-\partial_{\mu} J_{L}^{\mu}\right)=\left.N_{R}\right|_{t=-\infty} ^{t=+\infty}-\left.N_{L}\right|_{t=-\infty} ^{t=+\infty}=-\frac{e^{2}}{2 \pi^{2}} \int \mathrm{~d}^{4} x \mathbf{E} \cdot \mathbf{B} .
$$

2. Since \mathcal{L} does not depend on $\partial_{0} \bar{\psi}$ we have

$$
\begin{aligned}
\mathcal{H} & =\frac{\partial \mathcal{L}}{\partial\left(\partial_{0} \psi\right)} \partial^{0} \psi-\mathcal{L} \\
& =i \bar{\psi} \gamma_{0} \partial^{0} \psi-i \bar{\psi}(\not \partial+i e \mathscr{A}) \psi \\
& =i \bar{\psi}\left(\gamma^{i} \partial_{i}+i e \gamma^{i} A_{i}\right) \psi+e \bar{\psi} \gamma^{0} A_{0} \psi \\
& =i \bar{\psi}\left(\gamma^{i} \partial_{i}-i e \gamma^{i} \mathbf{A}_{i}\right) \psi+e \bar{\psi} \gamma^{0} A_{0} \psi .
\end{aligned}
$$

We can write this in terms of ψ_{R} and ψ_{L} :

$$
\begin{aligned}
\bar{\psi} \gamma^{i} \psi & =\left(\psi_{R}^{\dagger} \psi_{L}^{\dagger}\right)\left(\begin{array}{ll}
0 & \mathbf{1} \\
\mathbf{1} & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right)\binom{\psi_{R}}{\psi_{L}} \\
& =\psi_{R}^{\dagger}\left(-\sigma^{i}\right) \psi_{R}+\psi_{L}^{\dagger} \sigma^{i} \psi_{L}
\end{aligned}
$$

to arrive at the form on the exercise sheet for $A_{0}=0$.
3. We have $\mathbf{A}=\left(0, B x_{1}, A\right)$ and we want to solve the Eigenvalue problem $\left(-i \sigma^{i}\left(\partial_{i}-\right.\right.$ $\left.\left.i e \mathbf{A}_{i}\right)-E\right) \psi_{R}=0$. Using the Ansatz on the exercise sheet, we have $\partial_{2} \psi_{R}=i k_{2} \psi_{R}$, $\partial_{3} \psi_{R}=i k_{3} \psi_{R}$ which we insert into the differential equation to have

$$
\left(-i \sigma^{1}\binom{\phi_{1}^{\prime}}{\phi_{2}^{\prime}}+\sigma_{2}\left(k_{2}-e B x_{1}\right)\binom{\phi_{1}}{\phi_{2}}+\sigma^{3}\left(k_{3}-e A\right)\binom{\phi_{1}}{\phi_{2}}-E\binom{\phi_{1}}{\phi_{2}}\right)=0
$$

where ϕ_{1}^{\prime} denotes the derivative with respect to x_{1}, or, written out explicitly

$$
\left(\begin{array}{cc}
\left(k_{3}-e A-E\right) & -i\left(k_{2}-e B x_{1}\right) \tag{2}\\
i\left(k_{2}-e B x_{1}\right) & -k_{3}+e A-E
\end{array}\right)\binom{\phi_{1}}{\phi_{2}}=i\binom{\phi_{1}^{\prime}}{\phi_{2}^{\prime}} .
$$

We solve the second equation for ϕ_{2} :

$$
\phi_{2}=\frac{1}{-k_{3}+e A-E} i\left(\phi_{1}^{\prime}-\left(k_{2}-e B x_{1}\right) \phi_{1}\right)
$$

which we differentiate to have

$$
\phi_{2}^{\prime}=\frac{1}{-k_{3}+e A-E} i\left(\phi_{1}^{\prime \prime}-\left(k_{2}-e B x_{1}\right) \phi_{1}^{\prime}+e B \phi_{1}\right) .
$$

We insert this into the first line of (2) to arrive at

$$
\phi_{1}^{\prime \prime}+\left(E^{2}-\left(k_{3}-e A\right)^{2}-\left(k_{2}-e B x_{1}\right)^{2}+e B\right) \phi_{1}=0 .
$$

We recognize that the differential equation for ϕ_{1} is the differential equation for a harmonic oscillator centered at $x_{1}=k_{2} /(e B)$. We shift the x_{1} coordinate accordingly and introduce $y_{1}=\sqrt{e B} x_{1}$ to bring the equation into the form

$$
\left(-\partial_{y_{1}}^{2}+y_{1}^{2}\right) \phi_{1}=\frac{1}{e B}\left(E^{2}-\left(k_{3}-e A\right)^{2}+e B\right) \phi_{1} .
$$

From the condition that the equation should have a square-integrable solution, we have the condition

$$
\begin{equation*}
E^{2}=\left(k_{3}-e A\right)^{2}+n(2 e B) \quad n \in \mathbb{N}_{0} \tag{3}
\end{equation*}
$$

4. If the momenta are quantised according to $k_{i}=\left(2 \pi n_{i}\right) / L$ we can translate the condition that the center of the oscillatory motion be inside the cube of length L :

$$
0<\frac{k_{2}}{e B}<L \Leftrightarrow 0<\frac{2 \pi n_{2}}{e B L}<L \Leftrightarrow 0<n_{2}<\frac{L^{2} e B}{2 \pi}
$$

since the energy in (3) is independent of k_{2}, each energy level is $L^{2} e B /(2 \pi)$-fold degenerate.
5. We consider a shift of the vector potential $A \rightarrow A+(2 \pi) /(e L)$, this changes (3) as follows:

$$
\begin{aligned}
E^{2} & =\left(\frac{2 \pi n_{3}}{L}-e A\right)^{2}+2 e B n \\
& \rightarrow\left(\frac{2 \pi}{L}\left(n_{3}-1\right)-e A\right)^{2}+2 e B n
\end{aligned}
$$

from which we can see that due to the degeneracy of the energy states $L^{2} e B /(2 \pi)$ states for which (3) had a real solution before do not correspond to a real solution anymore.
We can check this result against the Adler-Bell-Jackiw anomaly. We restrict the time interval to $[0, T]$, from $A(t)=A+(2 \pi) / L t / T$ we determine

$$
\frac{-e^{2}}{2 \pi^{2}} \int_{0}^{L} \mathrm{~d}^{3} \mathbf{x} \int_{0}^{T} \mathrm{~d} t \mathbf{E} \cdot \mathbf{B}=\frac{-e^{2}}{2 \pi^{2}} \int_{0}^{L} \mathrm{~d}^{3} \mathbf{x} \int_{0}^{T} \mathrm{~d} t\left(-\frac{2 \pi}{e L} B \frac{1}{T}\right)=\frac{e B L^{2}}{\pi}
$$

