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Exercise 2.1 Axial Anomaly in Massive QED

As a preliminary, we recall the equations of motion for ψ and ψ̄ following from L:(
i(/∂ + ie /A)−m

)
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(
i(
←−
/∂ − ie /A) +m

)
= 0. (1)

where
←−
/∂ denotes that the derivative acts on the function to the left of it.

We do now compute the derivatives we will encounter in ∂µJ
µ5. By the equations of

motion (1) we have
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further we can expand the Wilson line for small δ:
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Now we write down the divergence of the axial current:
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where we have inserted the equations of motion for ψ and ψ̄ (the mass from the /∂ψ term
gets a minus sign because we had to anticommute γ5) and the expansion up to the first
order in δ for the derivative of the Wilson line. Since the Wilson line is 1 to first order in
δ, we will be able to omit it in the following. We organise the expression as follows:
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Now we approximate /A(x+ δ/2)− /A(x− δ/2) ≈ δν∂ν /A(x) to arrive at
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Figure 1: The expansion of the fermion propagator in the presence of an external field

+ + . . .

We can see that in addition to the term proportionate to the mass, we have a term
depending on the vector potential A as well. To evaluate this contribution, we recall that
we are actually calculating a vacuum expectation value of the form〈

0|T
(
ψ̄(y)Γψ(z)

)
|0
〉

= Tr
(
Γ
〈
0|T

(
ψ(z)ψ̄(y)

)
|0
〉)

where Γ denotes an arbitrary product of Dirac matrices. Therefore we do now evaluate
the propagator in the presence of the external field A up to the first order in the coupling.
The first diagram in figure 1 is the usual Feynman propagator of the noninteracting theory

DF (−δ) =

∫
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To evaluate the limit of the trace for δ → 0 we can expand the integrand for large values
of p:
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Evaluating the trace yields Tr(γ5γµγν) = 0. Evaluating the second term in the expansion
(omitting masses from the start in anticipation of the limit δ → 0) gives∫
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executing the Fourier transform on A and shifting p→ p+ k

=
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Next we insert this into the trace:
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Where we have replaced p + k → p inside the trace because the trace will vanish if a
momentum shows up twice. We will approximate (k+ p)2 ≈ k2 because we are interested
in the limit of small δ, separating the two momentum integrals. We have
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We insert both of these to arrive at
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We can insert this result into our result for the mass-independent part of the divergence
of the axial current:
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δ→0

〈
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4

=
−e2

16π2
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Exercise 2.2 Fermion Number Nonconservation

1. Let us restate some electrodynamics:

Fµν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 ,

furthermore we need to recall Aµ = (φ,−A), E = −∂tA−∇φ, B = rot A. According
to our sign convention ε0123 = 1 we have therefore

εµνρσFµνFρσ = 8 E ·B.
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Decomposing the axial vector current according to Jµ5 = ψ̄γµ(PR−PL)ψ = ψ̄Rγ
µψR−

ψ̄Lγ
µψL we can write (assuming J vanishes sufficiently fast for |x| → 0 to have∫

d3x ∂iJ
i = 0)∫

d4x∂µJ
µ5 =

∫
d4x (∂µJ

µ
R − ∂µJ

µ
L) = NR|t=+∞

t=−∞ − NL|t=+∞
t=−∞ = − e2

2π2

∫
d4xE ·B.

2. Since L does not depend on ∂0ψ̄ we have

H =
∂L

∂(∂0ψ)
∂0ψ − L

= iψ̄γ0∂
0ψ − iψ̄(/∂ + ie /A)ψ

= iψ̄(γi∂i + ieγiAi)ψ + eψ̄γ0A0ψ

= iψ̄(γi∂i − ieγiAi)ψ + eψ̄γ0A0ψ.

We can write this in terms of ψR and ψL:

ψ̄γiψ = (ψ†Rψ
†
L)

(
0 1
1 0

)(
0 σi

−σi 0

)(
ψR
ψL

)
= ψ†R(−σi)ψR + ψ†Lσ

iψL

to arrive at the form on the exercise sheet for A0 = 0.

3. We have A = (0, Bx1, A) and we want to solve the Eigenvalue problem (−iσi(∂i −
ieAi)− E)ψR = 0. Using the Ansatz on the exercise sheet, we have ∂2ψR = ik2ψR,
∂3ψR = ik3ψR which we insert into the differential equation to have(

−iσ1

(
φ′1
φ′2

)
+ σ2(k2 − eBx1)

(
φ1

φ2

)
+ σ3(k3 − eA)

(
φ1

φ2

)
− E

(
φ1

φ2

))
= 0

where φ′1 denotes the derivative with respect to x1, or, written out explicitly(
(k3 − eA− E) −i(k2 − eBx1)
i(k2 − eBx1) −k3 + eA− E

)(
φ1

φ2

)
= i

(
φ′1
φ′2

)
. (2)

We solve the second equation for φ2:

φ2 =
1

−k3 + eA− E
i (φ′1 − (k2 − eBx1)φ1)

which we differentiate to have

φ′2 =
1

−k3 + eA− E
i (φ′′1 − (k2 − eBx1)φ

′
1 + eBφ1) .

We insert this into the first line of (2) to arrive at

φ′′1 +
(
E2 − (k3 − eA)2 − (k2 − eBx1)

2 + eB
)
φ1 = 0.

We recognize that the differential equation for φ1 is the differential equation for a
harmonic oscillator centered at x1 = k2/(eB). We shift the x1 coordinate accordingly
and introduce y1 =

√
eBx1 to bring the equation into the form

(−∂2
y1

+ y2
1)φ1 =

1

eB

(
E2 − (k3 − eA)2 + eB

)
φ1.

From the condition that the equation should have a square-integrable solution, we
have the condition

E2 = (k3 − eA)2 + n(2eB) n ∈ N0. (3)
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4. If the momenta are quantised according to ki = (2πni)/L we can translate the
condition that the center of the oscillatory motion be inside the cube of length L:

0 <
k2

eB
< L⇔ 0 <

2πn2

eBL
< L⇔ 0 < n2 <

L2eB

2π
.

since the energy in (3) is independent of k2, each energy level is L2eB/(2π)-fold
degenerate.

5. We consider a shift of the vector potential A→ A+ (2π)/(eL), this changes (3) as
follows:

E2 =

(
2πn3

L
− eA

)2

+ 2eBn

→
(

2π

L
(n3 − 1)− eA

)2

+ 2eBn

from which we can see that due to the degeneracy of the energy states L2eB/(2π)
states for which (3) had a real solution before do not correspond to a real solution
anymore.
We can check this result against the Adler-Bell-Jackiw anomaly. We restrict the
time interval to [0, T ], from A(t) = A+ (2π)/L t/T we determine

−e2

2π2

∫ L

0

d3x

∫ T

0

dt E ·B =
−e2

2π2

∫ L

0

d3x

∫ T

0

dt

(
−2π

eL
B

1

T

)
=
eBL2

π
.
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