Advanced Field Theory
 Assignment 5

Exercise 5.1 Goldberger-Treiman relation

(Peskin-Schroeder pages 671 and 672)
The matrix element of the axial isospin current in the nucleon can be written in terms of form factors as

$$
\langle N| J^{\mu 5 a}(q)|N\rangle=\bar{u}\left(p^{\prime}\right)\left[\gamma^{\mu} \gamma^{5} F_{1}^{5}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m} \gamma^{5} F_{2}^{5}\left(q^{2}\right)+q^{\mu} \gamma^{5} F_{3}^{5}\left(q^{2}\right)\right] \tau^{a} u(p)
$$

with $q=p-p^{\prime}$ and $\tau^{a}=\sigma^{a} / 2$.
Working in the limit of vanishing quark masses and assuming conservation of the axial vector current, show that

$$
g_{A}=: F_{1}^{5}(0)=\lim _{q^{2} \rightarrow 0} \frac{q^{2}}{2 m_{N}} F_{3}^{5}\left(q^{2}\right)
$$

where m_{N} is the mass of the nucleon. The low-energy pion-nucleon interaction is conventionally parametrised by the Lagrangian

$$
\mathcal{L}_{\text {int }}=2 i g_{\pi N N} \pi^{a} \bar{N} \gamma^{5} \tau^{a} N .
$$

Calculate the diagram in figure 1 using $\langle 0| J^{\mu 5 a}\left|\pi^{b}(p)\right\rangle=-i p^{\mu} f_{\pi} \delta^{a b} e^{-i p \cdot x}$ as in the preceding exercise to show the Goldberger-Treiman relation:

$$
g_{A}=\frac{f_{\pi}}{m_{N}} g_{\pi N N}
$$

Figure 1: Scattering of an axial vector current on a nucleon via pion exchange.

Exercise 5.2 Gell-Mann-Okubo Mass Formula and Weinberg Ratio of Quark Masses

Start from the Lagrangian of chiral perturbation theory at order p^{2} as stated in the lecture:

$$
\mathcal{L}_{\mathrm{CHPT}, p^{2}}=\frac{v^{2}}{4} \operatorname{Tr}\left(D_{\mu} U D^{\mu} U^{\dagger}+\chi U^{\dagger}+\chi^{\dagger} U\right)
$$

$$
U=\exp (i \sqrt{2} \Phi / v), \quad \Phi=\left(\begin{array}{ccc}
\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta_{8}}{\sqrt{6}} & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta_{8}}{\sqrt{6}} & K^{0} \\
K^{-} & K^{0} & -2 \frac{\eta_{8}}{\sqrt{6}}
\end{array}\right) .
$$

Calculate the masses of the particles by inserting $D_{\mu}=\partial_{\mu}, \chi=2 B \operatorname{diag}\left(m_{u}, m_{d}, m_{s}\right)$ and expanding the Lagrangian up to the second order in Φ. Verify the Gell-Mann-Okubo mass formula

$$
4 m_{K}^{2}-3 m_{\eta}^{2}-m_{\pi}^{2}=0
$$

and the Weinberg ratio of quark masses

$$
\frac{2 m_{K}^{2}-m_{\pi}^{2}}{m_{\pi}^{2}}=\frac{2 m_{s}}{m_{d}+m_{u}}
$$

where $m_{\pi}^{2}=1 / 3\left(m_{\pi^{+}}^{2}+m_{\pi^{-}}^{2}+m_{\pi^{0}}^{2}\right), m_{K}^{2}=1 / 4\left(m_{K^{0}}^{2}+m_{K^{0}}^{2}+m_{K^{-}}^{2}+m_{K^{+}}^{2}\right)$.

