Advanced Field Theory
 Assignment 2

Exercise 2.1 Axial Anomaly in massive QED

Consider massive QED in 4 dimensions:

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+i \bar{\psi} \not D \psi-m \bar{\psi} \psi
$$

with $D_{\mu}=\partial_{\mu}+i e A_{\mu}$. Compute the divergence of the axial current, i.e. $\partial_{\mu} J^{\mu 5}$, with

$$
J^{\mu 5}=\bar{\psi} \gamma^{\mu} \gamma^{5} \psi .
$$

To get a nonvanishing result even for vanishing mass, you have to define the axial current as

$$
\underset{\delta \rightarrow 0}{\operatorname{symm} \lim }\left(\bar{\psi}\left(x+\frac{\delta}{2}\right) \gamma^{\mu} \gamma^{5} \exp \left[-i e \int_{x-\delta / 2}^{x+\delta / 2} d z A(z)\right] \psi\left(x-\frac{\delta}{2}\right)\right)
$$

where the symmetric limit means that the limiting procedure does not favor any direction, means

$$
\underset{\delta \rightarrow 0}{\operatorname{symm}} \lim \left(\frac{\delta^{\mu}}{\delta^{2}}\right)=0, \quad \underset{\delta \rightarrow 0}{\operatorname{symm}} \lim \left(\frac{\delta^{\mu} \delta^{\nu}}{\delta^{2}}\right)=\frac{g^{\mu \nu}}{4} .
$$

Exercise 2.2 Fermion number nonconservation

1. In massless QED, the divergence of the axial current is given by the Adler-BellJackiw anomaly:

$$
\partial_{\mu} J^{\mu 5}=-\frac{e^{2}}{16 \pi^{2}} \epsilon^{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma}
$$

Using this relation, show that:

$$
\Delta N_{R}-\Delta N_{L}=-\frac{e^{2}}{2 \pi^{2}} \int \mathrm{~d}^{4} x \mathbf{E} \cdot \mathbf{B}
$$

where N_{R} and N_{L} are the numbers of right- and left-handed fermions, \mathbf{E} and \mathbf{B} are the electric and magnetic fields respectively.
2. Show that the Hamiltonian for massless fermions, assuming $A_{0}=0$, is

$$
H=\int \mathrm{d}^{3} x\left[\psi_{R}^{\dagger}(-i \sigma \cdot \mathbf{D}) \psi_{R}-\psi_{L}^{\dagger}(-i \sigma \cdot \mathbf{D}) \psi_{L}\right]
$$

where $\mathbf{D}=\nabla-i e \mathbf{A}$.
Here you have to use a chiral basis for the gamma matrices,

$$
\gamma^{\mu}=\left(\begin{array}{cc}
0 & \sigma^{\mu} \\
\bar{\sigma}^{\mu} & 0
\end{array}\right), \quad \gamma^{5}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right),
$$

with $\sigma^{\mu}=(1, \sigma), \bar{\sigma}^{\mu}=(1,-\sigma)$ and σ^{i} the Pauli matrices

$$
\sigma^{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

3. Consider a background field given by $A^{\mu}=\left(0,0, B x^{1}, A\right)$, where B is constant and A is constant in space and varying adiabatically in time. In order to diagonalise the Hamiltonian of 2 , one has to solve the eigenvalue equation $-i \sigma \cdot \mathbf{D} \psi_{R}=E \psi_{R}$, which can be achieved by writing:

$$
\psi_{R}=\binom{\phi_{1}\left(x^{1}\right)}{\phi_{2}\left(x^{1}\right)} e^{i\left(k_{2} x^{2}+k_{3} x^{3}\right)}
$$

Derive the differential equations for ϕ_{1} and ϕ_{2}, show that they obey the equation of a simple harmonic oscillator and use this observation to find the single-particle spectrum of the Hamiltonian.
4. Now let's assume that the system is set up in a cubic box of length L, with periodic boundary conditions. Then the momenta will be quantised:

$$
k_{i}=\frac{2 \pi n_{i}}{L} \quad n_{i} \in \mathbb{Z}
$$

Show that the condition that the center of the oscillation is inside the box leads to the condition

$$
k_{2}<e B L
$$

so that each energy level has a degeneracy of

$$
\frac{e L^{2} B}{2 \pi}
$$

5. Finally consider changing the background A adiabatically by an amount

$$
\Delta A^{1}=\frac{2 \pi}{e L}
$$

Show that the vacuum loses right-handed fermions.
Similarly, compute the eigenvalues for the left-handed fermions and show that under the same change ΔA^{1} the vacuum gains the same number of left-handed fermions. Show that these numbers agree with the global nonconservation law of part 1.

