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Abstract

This masters thesis starts with a complete calculation of the cross section of leading
order gluon fusion. Then we discuss a composite Higgs model with a global SO(5)
symmetry broken at energy scale f and two different fermionic contents. We will then
apply composite Higgs models to leading order gluon fusion and show that the cross
section depends on the fermionic content and the parameter f .
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1 Introduction

With the large hadron collider (LHC), starting operation hopefully this year, we want to
complete the experimental test of the standart model (SM), namely finding the Higgs bo-
son. The LHC will be the first experiment that can probe energies well above electroweak
symmetry breaking (EWSB) scale (∼ 174 GeV) and may thus force the SM to be revisited.
A very likely possibility for a revision of EWSB would be that the Higgs boson is not a fun-
damental scalar, but a composite state of a strongly coupled theory. At lower energy scales
it would the remnant of a broken global symmetry. So far particle physics theories are con-
straint by electroweak precision test (EWPT), which is in extraordinarily good agreement
with the SM. However the compositeness of the Higgs could explain the hierarchy problem1.
A Higgs from a broken global symmetry is quite a general framework and it has been argued
that the different phenomenologies of the various possible models are not very different [7],
[1]. It was also shown in previous articles that these models are best calculable in 5 dimen-
sions [6]. In this article we are therefore going to consider an example with a global SO(5)
symmetry broken at scale f to its custodially symmetric subgroup SO(4). We will only look
at the low energy description of this theory and mainly focus on the Higgs-top system, be-
cause this is expected to cause the best accessible changes compared to SM phenomenology.
Another feature of the model which we have to specify is the fermionic content in SO(5). We
will look at two different possibilities there. The first one has a minimal fermionic content,
where we extend the left handed top-bottom doublet to a five-plet of SO(5) as done in [1].
The second uses a non-minimal fermionic content, where the fermionic composites span the
full representation of SO(5), which mix with the top sector after the global SO(5) breaking
[8].
The hardest test for the composite model to pass is EWPT. It has been shown that the
SO(5) model with minimal fermionic content is not fully compatible with EWPT [1]. With
non-minimal fermionic content however, the model is compatible with EWPT and no fine
tuning is needed [4].
This masters thesis is organized the following way. In section 2 we will show a full calculation
of LO gluon fusion cross section in the SM. Then in section 3 we will discuss the composite
Higgs model with minimal fermionic content and focus especially on the implications on LO
gluon fusion. In section 4 we will do the same thing for non-minimal fermionic content and
in section 5 we will conclude and discuss if these composite models could be tested at the
LHC.

1The hierarchy between the electro weak scale (∼ 102 GeV) and the scale of new physics, which is
believed to be the GUT scale Λ ∼ 1016 GeV is very large. For fermions this is not a problem because the
counterterms in the renormalization go only with the logarithm of the scale Λ. For bosons however, this is
a problem, because the counterterms go with Λ2 and naturally this would mean for the Higgs boson, that
mh ∼ Λ. In the SM however mh ∼ 100 GeV and this is only possible with fine tuning of the parameters.
In the composite Higgs model the Higgs boson consists of elementary fermions, whose mass would not be
blown up by counterterms.
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2 Gluon fusion cross section

2.1 Introduction

The most relevant way for Higgs production at the LHC is gluon fusion, where two colliding
protons radiate of two gluons, which produce a top loop and then the top-antitop pair
couples to a Higgs (see figure 1). In the loop we could also have another quark than the top,
however the Yukawa coupling between the Higgs and two quarks is proportional to the mass
of the quark and the top is by far the heaviest. Thus we will simply neglect other quark
loops.
Gluon fusion in the SM has already been calculated to second order (NNLO) [5]. In this
Master thesis we are only going to look at leading order (LO) gluon fusion. In section 3 and
4 we are going to modify this calculation and we therefore need to understand how it works
in detail. It is remarkable that LO cross section is more than a factor 2 lower than NLO and
NNLO cross section and therefore not useful for precise predictions at the LHC. However in
our further analysis we only need to get a qualitative feeling how gluon fusion changes with
new physics and it would be way out of the scope of this thesis if we would try to look at
the effect of composite models on NLO or even NNLO gluon fusion.

Gb
β →

p2

Ga
α

→
p1

t̄

k − p2

t

k + p1

tk h
←
q

Figure 1: First diagram for LO gluon Fusion.

2.2 Feynman rules

There are two relevant diagrams for gluon fusion (see figures 1 and 2). We will first calculate
the contribution of the first diagram and then show that the second contributes the same.
Starting with figure 1 we can immediately apply Feynman rules. We will use the notation
from [2].
We start at the Yukawa vertex and amputate the gluon propagators. The matrix element
uncontracted with polarizations is

Mαβ
1 =

∫ ∞

∞

ddk

(2π)d

(

− i√
2
ytδ

lj

)(
i(&p1 + &k + mt)

(p1 + k)2 − mt
2

)
(

−igsγ
αT a

ji

)

· (1)

·
(

i(&k + mt)

k2 − mt
2

)
(

−igsγ
βT b

il

)
(

i(&k − &p2 + mt)

(k − p2)2 − mt
2

)

, (2)
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where d is the number of dimensions. We take the trace over closed fermion lines

(
ytg2

s√
2

)

T a
jiT

b
ilδ

lj ·
Tr

[

(&p1 + &k + mt)γ
α(&k + mt)γ

β(&k − &p2 + mt)
]

[(p1 + k)2 − mt
2][k2 − mt

2][(k − p2)2 − mt
2]

. (3)

Now for the generators of SU(3), we use the identity Tr[T aT b] = 1
2δab. The matrix element

has then the form

Mαβ
1 =

(
ytg2

s

2
√

2

)

δab

∫ ∞

∞

ddk

(2π)d

mt · Tr[· · · ]
[(p1 + k)2 − mt

2][k2 − mt
2][(k − p2)2 − mt

2]
. (4)

Expanding the trace and keeping in mind that odd products of γ-matrices vanish, we only
get odd powers of mt inside the trace and can take out a factor mt

Tr[· · · ] = Tr[&p1γ
α &kγβ + &p1γ

αγβ &k
︸ ︷︷ ︸

&p1γ
α
{

γβ, k
}

] − Tr[&p1γ
αγβ &p2] + (5)

+ Tr[&kγα &kγβ + γα &kγβ &k]
︸ ︷︷ ︸

Tr[2&kγα &kγβ]

+Tr[&kγαγβ &k] − (6)

−Tr[&kγαγβ &p2 + γα &kγβ &p2] + mt
2 · Tr[γαγβ]. (7)

Now we use the following identities for γ-matrices:

•
{

γα, γβ
}

= 2gαβ (8)

•
Tr[γµγν ] = 4gµν (9)

•
Tr[γµγνγργσ] = 4(gµνgρσ + gµσgνρ − gµρgνσ) (10)

The final result for the trace is

Tr[· · · ] = 4[2pα
1 kβ − 2kαpβ

2 + gαβ(−p1p2 − k2 + mt
2) − pα

1 pβ
2 + pβ

1pα
2 + 4kαkβ ]. (11)

Looking at figure 2 we see that only the incoming gluons are exchanged. This means we
have to make the following exchanges in the matrix element

• α ↔ β

• p1 ↔ p2

• a ↔ b

The contribution from the second diagram is then

Mαβ
2 ∼

∫ ∞

∞

ddk

(2π)d

4(2pβ
2kα − 2kβpα

1 + gβα(−p2p1 − k2 + mt
2) − pβ

2pα
1 + pα

2 pβ
1 + 4kβkα)

[(p1 + k)2 − mt
2][k2 − mt

2][(k − p2)2 − mt
2]

.

(12)
This integral is the same as the integral for first diagram. If we substitute k (→ −k, the
volume element d4k does not change and we get exactly the same contribution as for the first
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Ga
α

↘
p2

Gb
β ↗

p1

t

k − p2

t̄

k + p1

tk h
←
q

Figure 2: Second diagram for LO gluon Fusion.

diagram. For the whole matrix element we therefore have to take a factor 2. The matrix
element, uncontracted with polarizations then reads

Mαβ = Mαβ
1 + Mαβ

2 =

(

4mt ·
ytg2

s√
2

)

δab

∫ ∞

∞

ddk

(2π)d
fαβ(k), (13)

where

fαβ(k) =
2pα

1 kβ − 2kαpβ
2 + gαβ(−p1p2 − k2 + mt

2) − pα
1 pβ

2 + pβ
1pα

2 + 4kαkβ

[(p1 + k)2 − mt
2][k2 − mt

2][(k − p2)2 − mt
2]

. (14)

2.3 Tensor reduction

We look at the numerator of fαβ(k) and we want to get rid of the Dirac indices in k. We
will apply tensor reduction, this means that we contract the terms in the numerator that
depend on k, i.e.

2pα
1 kβ − 2kαpβ

2 + 4kαkβ . (15)

The most general ansatz for a numerator without Dirac indices in k is

A(k)gαβ + B(k)pα
1 pβ

1 + C(k)pα
1 pβ

2 + D(k)pα
2 pβ

1 + E(k)pα
2 pβ

2 , (16)

where A(k),B(k),C(k),D(k),E(k) are unknown functions of k. To find these, we need to
contract with five different tensors to get five equations. Keep in mind that p1 and p2 are
the momenta of the gluons and since they are massless they satisfy p2

i = m2 = 0.

• Contracting with gαβ gives

2(p1 · k) − 2(p2 · k) + 4k2 = A(k) · d + C(k)(p1 · p2) + D(k)(p1 · p2). (17)

• Contracting with pα
1 pβ

1 gives

−2(p1 · p2)(k · p1) + 4(k · p1)
2 = E(k)(p1 · p2)

2. (18)
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• Contracting with pα
1 pβ

2 gives

4(k · p1)(k · p2) = A(k)(p1 · p2) + D(k)(p1 · p2)
2. (19)

• Contracting with pα
2 pβ

1 gives

2(p1 ·p2)(k ·p1)−2(p1 ·p2)(k ·p2)+4(k ·p1)(k ·p2) = A(k)(p1 ·p2)+C(k)(p1 ·p2)
2. (20)

• Contracting with pα
2 pβ

2 gives

2(p1 · p2)(k · p2) + 4(k · p2)
2 = B(k)(p1 · p2)

2. (21)

Solving this system of equations we get the five unknown parameters and the numerator of
fαβ(k) can then be written without Dirac indices in k

gαβ

[
4

d − 2

(

k2 − 2(k · p1)(k · p2)

(p1 · p2)

)

+ (mt
2 − k2 − (p1 · p2))

]

+

+ pα
1 pβ

1

[
4(k · p2)2

(p1 · p2)2
+

2(k · p2)

(p1 · p2)

]

+

+ pα
1 pβ

2

[
1

d − 2

(

4d
(k · p1)(k · p2)

(p1 · p2)2
+

2k · (p1 − p2 − 2k)

(p1 · p2)

)

− 1

]

+ (22)

+ pα
2 pβ

1

[
4d

d − 2

(
(k · p1)(k · p2)

(p1 · p2)2
− k2

p1 · p2

)

+ 1

]

+

+ pα
2 pβ

2

[
4(k · p1)2

(p1 · p2)2
− 2(k · p1)

(p1 · p2)

]

.

2.4 Ward identity

At some point we have to contract our matrix element with the polarization vectors

ε1,αε2,βMαβ . (23)

The Ward identity says that for massles particles if the polarization εµ is longitudinal,
which means in the same direction as the momentum kµ of the particle, the matrix element
vanishes, i.e

εµMµ(k) = kµMµ(k) = 0. (24)

In our case we have two massless gluons, which are longitudinally polarized. The Ward
identity gives us thus the condition

p1,αp2,β

(

A(k)gαβ + B(k)pα
1 pβ

1 + C(k)pα
1 pβ

2 + D(k)pα
2 pβ

1 + E(k)pα
2 pβ

2

)

= 0. (25)

Note that terms like ε1,αpα
1 = (ε1 · p1) vanish. We get

p1,αp2,β

(

A(k)gαβ + D(k)pα
2 pβ

1

)

= 0 ⇒ A(k) = −D(k)(p1 · p2). (26)

We can now combine the above with Eq. (22) and get

Mαβ =

(

4mt ·
ytg2

s√
2

δab

)

A(mt)

(

gαβ − pα
2 pβ

1

(p1 · p2)

)

, (27)
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where

A(mt) ≡
∫ ∞

∞

ddk

(2π)d

A(k)

[(p1 + k)2 − mt
2][k2 − mt

2][(k − p2)2 − mt
2]

. (28)

Solving the integral in A(mt) is quite a lengthy and technical calculation. It can be found
in appendix A. The result we are going to use for our further calculation is

A(mt) =
i

(4π)2
[1 + (1 + τ)f(τ)], (29)

where

f(τ) =







arcsin2 1√
τ
, τ ≥ 1,

− 1
4

(

log
[

1+
√

1−τ
1−

√
1−τ

]

− iπ
)2

, τ < 1,
(30)

τ = 4

(
mt

mh

)2

. (31)

2.5 Average over polarizations

To get the matrix element we need to average over ingoing polarizations and gluons. This
means we have to contract Eq. (27) with the polarization vectors of the gluons, sum over
all polarizations and divide by the number of polarizations Np and gluons Ng

|M |2 =
∑

pol

∣
∣
∣
∣
ε'
1,α(λ1, p1)ε2,β(λ2, p2)Mαβ 1

NpNg

∣
∣
∣
∣

2

, (32)

where
∑

pol means that we take λ1 = 1, 2 and λ2 = 1, 2. This is a rather lengthy calculation,
but a nice exercise. However the result looks very simple

∑

pol

∣
∣ε'

1,α(λ1, p1)ε2,β(λ2, p2)Mαβ
∣
∣
2

= (d − 2)

(

4mt ·
ytg2

s√
2

δab

)2

|A(mt)|2. (33)

The amplitude is then

|M |2 =
δaa(d − 2)

(NgNp)2

(
4ytg2

smt√
2

)2

· A(mt) · A'(mt), (34)

where yt = mt

v is the Yukawa coupling, with v = 174 GeV. We now insert the following
constants d = 4, Ng = 8, Np = 2 and substitute g2

s = 4παs(µ). Moreover δaa = Tr(I8×8) =
8, because we have 8 different gluons. Putting it all together we have

|M |2 =
1

2

mt
4

v2
(4π)2α2

s(µ)A(mt) · A'(mt). (35)

Using the results from the integration Eq. (29) we get the final and quite simple result for
the matrix element squared

|M |2 =
1

2

(
1

4π

)2 mt
4

v2
α2

s(µ)|1 + (1 − τ)f(τ)|2 (36)
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2.6 Cross section

The infinitesimal cross section for two particles with mass and momentum m1, p1 and m2, p2

and one outgoing particle with mh, q can be easily expressed when knowing the matrix
element [9]

dσ̂gg→h =
1

4
√

(p1 · p2)2 − m2
1m

2
2

(2π)4δ(4)(p1 + p2 − q)|M |2 d3q

(2π)3
1

2q0
(37)

We integrate this to get the gluon gluon to Higgs cross section

σ̂gg→h =

∫

dσ̂gg→h =
π

mh
2
|M |2δ(2p1 · p2 − mh

2). (38)

This is the standart textbook result for LO gluon fusion. It can for example be found in
[10].
But at the LHC we have two colliding protons. The gluons come from the protons and we
want to know how they act. The momentum distribution of partons (in our case gluons)
and hadrons (protons) is described by the parton distribution functions (Pdf). Theoretically
this has not yet been properly understood because of colour confinement at low momentum.
However for high hadron momenta there are good sets of experimental data which we will
use. To get the proton proton to Higgs cross section we have to integrate the cross section
convoluted with the Pdfs for the two protons.

σPP→h =
π

mh
2
|M |2

∫ 1

0
Pdf(x1)Pdf(x2)δ(2p1 · p2 − mh

2)dx1dx2 (39)

Here x1,2 is the Bjoerken scale factor which tells us which fraction of the proton momentum
is carried by the gluons. The relation is pi = Pixi, where pi is the gluon momentum and Pi

is the momentum of the proton.
We want to evaluate the δ-function in the above equation. First we substitute

u ≡ 2p1 · p2 − mh
2 = 2P1x1 · P2x2 − mh

2 (40)

⇒ du

dx2
= 2x1P1 · P2 = Sx1, (41)

where S = (P1 + P2)2 = 2P1 · P2 is the center of mass energy

σPP→h =
π

mh
2
|M |2

∫ 1

0

∫ Sx1−mh

−mh

Pdf(x1)Pdf

(
u + m2

h

Sx1

)

δ(u)dx1du
1

Sx1
. (42)

When evaluating the δ-function, we get a condition for the lower boundary of the x1 inte-
gration. This lower boundary reflects the fact that the Higgs boson can only be produced
when the gluons carry enough energy. It is also necessary because at very low Bjoerken scale
the Pdfs are not well defined anymore. The final result before integrating over the Pdfs is

σPP→h =
π

mh
2
|M |2

∫ 1

mh
2

S

dx1

Sx1
Pdf(x1)Pdf

(
m2

h

Sx1

)

. (43)

2.7 Integration and results

To get the LO proton proton to Higgs cross section we only have to integrate over the Pdfs
and plug in the numbers. The integration was done on a computer using Vegas and the
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data was taken from Cteq[12] and MRST[13]. Because we have only calculated LO gluon
fusion, we only take the leading order data, which is not very much up to date. The numbers
are taken to be mt = 172.4 GeV, v = 174 GeV and S = 140002 GeV2 which is about the
maximum center of mass energy expected to be reached at the LHC. For high energies scales
µ we need to consider the “running” of αs(µ). Analogous to [9] we take

αs(µ) =
α(µ0)

1 − bs

2π log
(

µ0

µ

) , (44)

where α(µ0) has been measured at a particular energy scale µ0 and bs = 11 − 2
3Nf . The

factor Nf is the number of flavours, which we take to be 5 according to heavy top approx-
imation, which is usually performed when calculating gluon fusion. This means bs = 23/3.
The energy scale µ0 = MZ = 91.187 GeV is the same for MRST and Cteq, but they use
different values for α(MZ). So for Cteq we take α(MZ) = 0.1176 and for MRST we take
α(MZ) = 0.130.
In the plot below we have calculated the cross section for various Higgs masses from 100
GeV to 500 GeV. One can see that the cross section with MRST data is a little higher than
for Cteq data. This is probably due to the higher αs(µ0). The cross section decreases with
higher Higgs mass until mh > 2mt, i.e. τ > 1, where we see a little bump.

 0

 5

 10

 15

 20

 25

 30

 35

 100  150  200  250  300  350  400  450  500

si
gm

a 
pb

Higgs mass in GeV

 

MRST data
Cteq data

Figure 3: LO gluon fusion cross section with data from MRST (solid) and Cteq (dashed).
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3 Composite Higgs model with minimal fermionic con-

tent

3.1 General implications for composite Higgs model with global
SO(5) symmetry

We will first look at some general features of an SO(5) composite Higgs model, which are
also valid for the model we are going to discuss in section 4. The low energy description is
a sigma model with global SO(5) symmetry broken spontaneously to SO(4) at energy scale
f . We introduce a scalar five-plet constraint by

φ2 =

(
+φ
φ5

)2

= f2. (45)

The energy scale f should be above the EWSB scale (v = 174 GeV). For the rest of our
discussion we will set f = 500 GeV. The first four components of φ we call +φ. The custodially
symmetric subgroup SO(4) ≡ SU(2)L × SU(2)R ⊂ SO(5) acts on +φ and we can gauge this
to the SM gauge group SU(2)L × U(1). This is very convenient, because we can easily get
the SM gauge bosons W±, Z and γ.

3.2 The kinetic Lagrangian

The kinetic Lagrangian of the field φ is basically the SM kinetic Lagrangian generalized to
5 dimensions

Lkin =
1

2
(Dµφ)†(Dµφ), Dµφ = ∂φ − i(g2W

a
µT a

L − g1BµT 3
R)φ. (46)

The generators TL,R in 5 dimensions are

T a
L,R =





1
2σa 0 0
0 1

2σa 0
0 0 0



 , (47)

where σa are the Pauli Matrices. We set v2 = 1
2

〈

+φ
〉2

, which is totally equivalent to EWSB

in the SM. With Eq. (45) we find φ2 = f2 = +φ2 + φ2
5. After EWSB we insert the vacuum

expectation value (VEV) for φ with a little fluctuation η

φ =









v + η
0
0

v + η
√

f2 − 2(v + η)2









. (48)

With the SM rotations and redefinitions of the fields (see figure 4), the kinetic Lagrangian
can be written as

Lkin =
1

2

[

2(∂µη)2
(

1 +
f2

f2 − 2(v + η)2

)

+ (49)

+
1

2
(g2

1 + g2
2)ZµZµ(v + η)2 + g2

2W
−
µ Wµ+(v + η)2

]

. (50)
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We get the SM masses for the W± and Z-boson, plus we can include a massless photon.
Until here everything is just as in the SM but there is an important change in the Higgs
field.
The scalar field η is not normalized correctly. In order to be a physical field its propagator
needs to have a term normalized like 1

2 (∂µh)2. We have to make the substitution

η → h =
cα√
2
η, cα =

√

1 − 2v2

f2
. (51)

The physical field h is related to the standard model Higgs field by the factor cα. This
redefinition comes from the global SO(5) breaking, namely the fifth component of the five-
plet φ. Notice that we get the SM in the limit of f → ∞, where the strong sector has no
effect at low energy scale.
As already stated in [1] the Higgs coupling to the gauge bosons and to the quarks is going
to be reduced by the factor cα. However for the quarks there is another effect coming from
the rotation of the mass matrix which will be discussed in the following sections.

3.3 Yukawa-Lagrangian for the 3rd quark generation

We are now following [1]. We extend the left-handed top-bottom doublet qL to an SO(5)
vector ΨL, which is the minimal fermionic content.

ΨL = (q, X, L)L; tR, bR, XR, TR, (52)

where qL, XL, XR are SU(2)L-doublets and all the other fields are singlets. The standard
model quarks qL, tR, bR have the usual quantum numbers, while the SO(5) symmetry fixes
the hypercharges for the new quarks. The quantum numbers are shown in figure 5.
The Yukawa Lagrangian consists of an SO(5) symmetric mass term for the top and of two
soft breaking mass terms.

Ltop = λ1Ψ̄LφtR + λ2fT̄LTR + λ3fT̄LtR + mXX̄LXR + h.c. (53)

Our goal is to determine the masses for the quarks, by rotating the mass matrix. And then
find the Higgs couplings to the quarks. We start after EWSB and insert the VEV for φ

〈φ〉 =

〈(
+φ
φ5

)〉

=









v
0
0
v

fcα









(54)

Mass Composition

W±
µ

1
2g2

2v
2

√

1
2 (W 1

µ ∓ iW 2
µ)

Zµ
1
2 (g2

1 + g2
2)v

2 1√
g2
1
+g2

2

(g2W 3
µ + g1Bµ)

Figure 4: Mass and composition of the W and Z-Boson.
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Hypercharge Isospin Charge
X5/3 7/6 1/2 5/3
X2/3 7/6 -1/2 2/3

T 2/3 0 2/3

Figure 5: Quantum numbers for the new quarks.

into the the Yukawa Lagrangian, which then reads

Ltop = λ1

(

tL
bL

)(

v
0

)

tR + λ1

(

X5/3
L

X2/3
L

)
(

0
v

)

tR + (55)

+f(cαλ1 + λ3)T̄LtR + λ2fT̄LTR + mX

(

X5/3
L

X2/3
L

)(

X5/3
R

X2/3
R

)

or in matrix form the Yukawa Lagrangian is

Ltop =









tL
bL

X5/3
L

X2/3
L

TL

















λ1v 0 0 0 0
0 0 0 0 0
0 0 mX 0 0
λ1 0 0 mX 0

f(cαλ1 + λ3) 0 0 0 λ2f

















tR
bR

X5/3
R

X2/3
R

TR









. (56)

3.4 The mass eigenstates

The mass matrix is not diagonal, which means that the states t, X, T are no mass eigenstates.
To get the physical particles with a mass, we need to diagonalize this matrix. This means
that we multiply from the left with a SO(5) matrix L and from the right with another SO(5)
matrix R, so that LMR is diagonal. Notice that the Lagrangian itself does not change, since
Ψ is an SO(5) five-plet and thus we only do a gauge transformation which is a change of
basis

Ltop = Ψ̄LMΨR = Ψ̄LLMRΨR. (57)

Diagonalizing a Matrix is quite hard. We will demonstrate two ways to diagonalize this
mass matrix: analytically in orders of v/f and numerically2.
First we are only considering the analytical way. Looking at the matrix we see that there
are 3 particles with charge 2/3 that can mix: t, X2/3 and T . The other particles have
charge 1/3 and 5/3. They can’t mix with any other particles and therefore already are mass
eigenstates mb = 0 and X5/3 = mX . Therefore we only need to consider a 3 × 3 Matrix
when diagonalizing

M ≡





λ1v 0 0
λ1v mX 0

f(cαλ1 + λ3) 0 λ2f



 . (58)

This means that also the diagonalization matrices L and R are in SO(3). The strategy is
to diagonalize this matrix order by order in ε ≡ v/f . First we apply a pre-rotation to make
the matrix diagonal for v = 0.

TR → cos(χ)TR − sin(χ)tR, tR → cos(χ)tR + sin(χ)TR (59)

2Both ways have been done with MAPLE c©. The numerical digonalization will be discussed in section
3.7
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The condition for the matrix to be diagonal at order ε0 is then that the M3,1 element has
to vanish

M3,1 = f (λ1cα + λ3) cos(χ) − λ2f sin(χ) = 0. (60)

Substituting λ′
1 ≡ (λ1cα + λ3), we get

tan(χ) =
λ′

1

λ2
. (61)

The Lagrangian after the pre-rotation then reads

Ltop = t̄Lv(λ1tR + λT TR) + X̄Lv(λttR + λT TR) + mT T̄LTR + mXX̄LXR, (62)

where we have made the following substitutions

λt = λ1 cos(χ) =
λ1λ2

√

λ′
1
2 + λ2

2
, λT = λ1 sin(χ) =

λ1λ′
1

√

λ′
1
2 + λ2

2
, (63)

mT =
√

λ′
1
2 + λ2

2f.

The matrix M can then be written as a part diagonal to order ε0 plus and a part of order ε

M =





0 0 0
0 mX 0
0 0 mT





︸ ︷︷ ︸

≡M0

+ε





λtf 0 λT f
λtf 0 λT f
0 0 0





︸ ︷︷ ︸

≡M1

. (64)

Now we can start with an iterative diagonalization procedure, where we expand the rotation
matrices L and R also in orders of ε

L = L0 + εL1 + ε2L2 + ε3L3 + O(ε4), R = R0 + εR1 + ε2R2 + ε3R3 + O(ε4) (65)

diagonalize to every order and so find the rotation matrices. The unitarity of the rotation
matrices gives us the following conditions

1 = L†L = 1 + ε(L1 + L†
1) + ε2(L2 + L†

1L1 + L†
2) + O(ε3) (66)

⇒ L1 + L†
1 = 0, L2 + L†

1L1 + L†
2 = 0 (67)

Note that we have set L0 = 0 because we start with a matrix that is already diagonal at
lowest order. The unitarity condition for R is of course exactly the same.
There is a nice trick to avoid having two different rotation matrices at the same time. Assume
LMR = D, where D is diagonal then (LMR)(LMR)† = LMM †L† = DD† is still diagonal.
This means finding our rotation matrix L is equivalent to a standart diagonalization of a
symmetric matrix3, MM † in our case 4.
From Eq. (67) we see that L1 is antisymmetric, this means it has 3 degrees of freedom. The
order one term is a symmetric 3 × 3 matrix Le1

LMM †L† = M0M
†
0 + ε (L1M0M

†
0 + M1M

†
0 + M0M

†
1 + M0M

†
0L†

1)
︸ ︷︷ ︸

≡Le1

+O(ε2), (68)

3A symmetric matrix A can be written in the form A = QDQT , where Q is orthogonal and D is diagonal.
Furthermore the elements of D are the eigenvalues of A and the columns of Q are the eigenvectors of A.

4For the right rotation we get a very similar condition (LMR)†(LMR) = R†M†MR = D†D, which
reduces the problem to the rotation of the symmetric matrix M†M
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where we set the off-diagonal terms to zero, which gives us three equations and thus fully
determines L1. The same can be done for R1 which gives us the mass matrix diagonal to
order ε. This can now be repeated order by order since the unitarity condition gives us
always three parameters for every Ln and the matrices we want to make diagonal are always
symmetric5. The full calculation can be found in appendix B. The final result diagonal to
order three gives us the masses

m′
t = λtv

(

1 − 1

2
ε2L − 1

2
ε2R

)

, (69)

m′
X = mX

(

1 +
ε2R
2

+
1

2

(λT v)2

m2
X + m2

T

)

, (70)

m′
T = mT

(

1 +
ε2L
2

− 1

2

(λT v)2

m2
X − m2

T

)

, (71)

where we have defined εR ≡ λtv
mX

and εL ≡ λT v
mT

. The mixing of the quarks, up to order one
in εR and εL, are

t̄′L 4 t̄L − εLT̄L, tR′ 4 tR − εRXR

¯X2/3
′
L 4 X̄2/3

L − εL
m2

T

m2
T − m2

X

T̄L, X2/3
R

′
4 X2/3

R + εRtR − εL
mT mX

m2
T − m2

X

TR

T̄ ′
L 4 T̄L + εLt̄L + εL

m2
T

m2
T − m2

X

X̄L, TR
′ 4 TR + εL

mT mX

m2
T − m2

X

XR

(72)

This means that the top quark we see in accelerator experiments is actually a composite state
of other quarks. The measured top mass is then the composite top mass, i.e. m′

t 4 172.4
GeV. At high enough energies, above m′

X and m′
T it should also be possible to produce the

two other quarks. We will discuss later on at what scales these masses are.

3.5 The Higgs couplings

Now that we have diagonalized the matrix, we will investigate how the Higgs couplings
change. The procedure is pretty straight forward. We start with the initial Lagrangian (53)
and insert the VEV of φ plus we add some fluctuation η as in Eq. (48) and get

L′
top = λ1

(

tL
bL

)(

v + η
0

)

tR + λ1

(

X5/3
L

X2/3
L

)
(

0
v + η

)

tR + λ2fT̄LTR +

+ f

(

λ1

√

1 − 2(v + η)2

f2
+ λ3

)

T̄LtR + mX

(

X5/3
L

X2/3
L

)(

X5/3
R

X2/3
R

)

(73)

In order to get the couplings we need to expand the squareroot around η = 0
√

1 − 2(v + η)2

f2
= cα − 2v

f2cα
η + O(η2). (74)

Here we only look at terms in η of order one6. We can now split up the Lagrangian into
a mass-part that is exactly the same as Ltop in Eq. (56) and an interaction part which

5There are matrices with additional symmetries where this algorithm does not work in its easiest form,
luckily the matrix in this model is well behaving.

6Terms with η2, i.e. vertices with two Higgs particles will be highly suppressed and not measurable at
the LHC.

16



contains all the interactions with the Higgs particle.

Ltop
′ = Ltop + LHiggs + O(η2), (75)

where

LHiggs = λ1 t̄LηtR + λ1X̄
2/3
L ηtR − λ1

(
v

f

2

cα
T̄LηtR

)

(76)

However the particles in this Lagrangian are not physical. To get physical particles we have
to rotate this Langrangian into the mass eigenbasis. We first apply the pre-rotation (59),
which gives us

LHiggs =





t̄L
X̄2/3

L
T̄L









λtη 0 λT η
λtη 0 λT η

v
f

2
cα

λtη 0 v
f

2
cα

λT η





︸ ︷︷ ︸

≡H





tR
X2/3

R
TR



 . (77)

To get the couplings of the physical particles to the Higgs we need to apply the left and
right rotations found in (72) and make the substitution (51) in order to get the physical
Higgs. The analytical results are quite messy. In the next chapter we will therefore only
investigate the top to Higgs coupling analytically and look at the other couplings later on
when we plug in the numbers.

3.6 Changes in the gluon fusion cross section

We can now look at new contributions to gluon fusion. With this model we get couplings
between two different quarks and the Higgs boson (flavour changing neutral current), which
were not possible in the SM. However these couplings won’t play a role in gluon fusion
because the initial gluons can still only couple to a quark-antiquark pair and therefore the
Higgs boson will also be produced by a quark-antiquark pair. This means that only the
diagonal entries in the rotated matrix LHR are relevant for gluon fusion. We call them
(Ct, CX , CT ) ≡ diag(LHR). This means that there are now three changes in the gluon
fusion cross section compared to the SM:

• Factor cα with respect to the SM Higgs.

• The top quark is a composite of other quarks and the Yukawa coupling is therefore no
longer proportional to the top mass.

• There are two new quark loops entering gluon fusion.

We now want to implement these changes in the calculation of section 2. The standard
model Yukawa coupling was proportional to the mass of the top quark over the VEV of the
Higgs, mt

′

v . The analytical expression for top to Higgs coupling in LHR is

Ct = λt

(

1 − 3

2
ε2R − 3

2
ε2L + 2

v

f
εL + O(ε3L, ε3R, (v/f)2)

)

. (78)

Comparing this to the SM coupling with the the top mass from Eq. (69), we get

mt
′

v
− Ct =

ε2R
2

+
ε2L
2

− 2
v

f
εL + O(ε3L, ε3R, (v/f)2). (79)
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So assuming that εR, εL and v/f are small this correction is not very substantial. It is not
very hard to adapt the above changes. We apply them before averaging over the polariza-
tions. Starting from Eq. (27), we need to sum over all three quarks and change yq (→ Cqcα,
where q = t, X, T . Keep in mind that A(mq) depends on the mass of the quark

Mαβ = 4
∑

q=t,X,T

Cqcα√
2

g2
smqδ

ab

(

gαβ − pα
2 pβ

1

(p1 · p2)

)

A(mq) (80)

The final result for the modified matrix element, analogous to Eq. (34) now reads

|M |2 =
(4π)2

2
α2

s(µ)c2
α

∣
∣
∣
∣
∣
∣

∑

q=t,X,T

CqmqA(mq)

∣
∣
∣
∣
∣
∣

2

. (81)

3.7 Gluon fusion cross section in composite Higgs model with min-
imal fermionic content

In this section we want to calculate the proton proton to Higgs cross section in the composite
Higgs model discussed above. As stated in [1] the model with minimal fermionic content
does not pass EWPT and is thus not realistic. Anyway we will plug in some numbers to get
a qualitative feeling what effect the global SO(5) symmetry has on the gluon fusion cross
section. In section 4.5 we will calculate the cross section of a composite Higgs model, which
is compatible with EWPT. We can then compare the results for both models.
For our further discussion we set f = 500 GeV, v = 174 GeV and mtop = 172.4 GeV. Now
there are four undetermined parameters left λT , λt, mX and mT . We will use the result of
the analytical diagonalization, Eq. (69) and set m′

t = 172.4 GeV to fix λt. It is not a priori
clear that the analytical result for the top mass is a good approximation, to check this, we
will only look at parameters that give mtop = 172.4±3 GeV 7. The analytical result however
is quite good and for most input parameters the top mass is within the 3 GeV range.
For the diagonalization and the data output we used a program generated with Maple c©.
In appendix C is a similar program used to calculate the cross section for the more realistic
model of section 4. Here we will describe in words what the program does

1. Define all variables and the matrix M . The parameters mX , mT and λT are varied
using for-loops.

2. To fix λt we use Eq. (69) and set m′
t = 172.4 GeV.

3. Find the eigenvectors of MMT and MT M . The eigenvectors are the rotation matrices
L and R respectively. Note that the eigenvalues of both matrices MMT and MT M
are the same and must also be ordered in the same way.

4. Calculate the Higgs couplings, i.e. the diagonal entries of LHR and plug everything
into Eq. (99).

5. The integration over the Pdfs of section 2.7 does not change at all. Multiplying π
m2

h

|M |2

with the result of the integration (see Eq. (43)), using Cteq data and mh = 120 GeV
we get the total proton proton to Higgs cross section.

7The top mass has so far not been measured very accurately, a 3 GeV uncertainty is about what recent
measurements yielded [11].
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For the first analysis, we will vary one parameter, leave the others fixed and then look how
the cross section changes. We want the masses of the physical quarks m′

X and m′
T to be

above the scale f but not higher than the cutoff of the theory, which is 2πf 4 3 TeV [1].
Looking at Eq. (70) and (71), we see the parameters mX and mT are very similar to the
physical masses m′

X and m′
T . It is therefore appropriate to consider the values mX and mT

between 500 GeV and 3000 GeV. For the coupling constant λT we took values between 0.2
and 2.5.
In the first plot (figure 6) we varied one of the input parameters mX and mT from 500 GeV
to 3000 GeV, while leaving the other fixed at 1000 GeV. The value for λT was fixed at 1.
We see that the cross section changes only very little between 14.52 pb and 14.68 pb, i.e. it
is almost insensitive to the input parameters mX and mT .

 14.52

 14.54

 14.56

 14.58

 14.6

 14.62

 14.64

 14.66

 14.68

 14.7

 500  1000  1500  2000  2500  3000

si
gm

a 
PP

 to
 H

ig
gs

 in
 p

b

Mass in GeV

m_T
m_X

Figure 6: The effect of the input parameters mX (dashed) and mT (solid) on the cross
section is negligible.
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For the second plot (figure 7) we varied λT from 0.2 to 2.5, whereas the input parameters
were fixed at mX = 1000 GeV and mT = 1000 GeV. We see that the change in the cross
section (σ = 14.57 pb to 14.65 pb) is even less as in the first plot.

 14.52

 14.54

 14.56

 14.58

 14.6

 14.62

 14.64

 14.66

 14.68

 14.7

 0  0.5  1  1.5  2  2.5

si
gm

a 
PP

 to
 H

ig
gs

 in
 p

b

lambda_T

Figure 7: The effect of λT on the cross section is also negligible.

For the second analysis, we do a full parameter scan. We fix λt with the top mass and vary
all the other parameters together: λT ∈ [0.2, 4.0], mX ∈ [500, 3000] and mT ∈ [500, 3000].
Just an in the first analysis the cross section stays in a very small region, between 14.45 pb
and 14.70 pb.
This insensibility of the cross section with respect to the various parameters was already
predictable from Eq. (78). There we saw that the top to Higgs coupling is very similar to
the SM Yukawa coupling. Moreover the other quarks contribute only very little to the cross
section independently of the input parameters. This means that the only effect that is left
to change the gluon fusion cross section with respect to the SM is the factor c2

α. Indeed
σSM · c2

α = 14.58 pb, which is exactly the mean value of our interval 14.45 pb to 14.70 pb.
This is a remarkable result because the effect of the new fermionic sector on the cross section
is totally negligible. In [1] only the c2

α-effect was mentioned. After the discussion for the
model with minimal fermionic content this is totally sufficient. The deeper reason for this
will be analyzed in section 5, after having discussed the model with non-minimal fermionic
content.
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4 A more realistic model

4.1 Non-minimal fermionic sector

This approach is analogous to [8]. Again we use a composite Higgs model with global SO(5)
symmetry as in section 3.1. But instead of extending the top sector to an SO(5) five-plet
(see section 3.3), we introduce a complete five-plet of fermionic composites, which span full
representations of SO(5)

ΨR,L = (Q, X, T )R,L, (82)

where Q and X are doublets and T is a singlet. The quatum numbers are shown in figure
8.

hypercharge Isospin Charge
Qu 1/6 1/2 2/3
Qb 1/6 -1/2 1/3

X5/3 7/6 1/2 5/3
Xu 7/6 -1/2 2/3
T 2/3 0 2/3

Figure 8: Quantum numbers of the new quarks.

The top sector is thus not a priori included in SO(5), but couples to these new quarks via
the interaction Lagrangian

−Lint = λqif q̄LQi
R + λtfT̄LtR + h.c.. (83)

The new sector has an SO(5) invariant mass Lagrangian, which looks like

−LBSM = mΨΨ̄iΨi +
µij

f
(Ψ̄i

Lφ)(φT Ψj
R). (84)

Since we have only changed the fermionic content, the kinetic Lagrangian stays the same as
in section 3.2. As before, the global SO(5) symmetry is broken to SO(4). This means we
insert the VEV for φ before EWSB, in the Lagrangian. The VEV is identical to Eq. (54)
with v = 0, i.e. 〈φ〉 = (0, 0, 0, 0, f). The Lagrangian for the charge 2/3 particles then reads

L =







tL
Qu

L
Xu

L
TL













0 λT
q f 0 0

0 mΨ 0 0
0 0 mΨ 0

λtf 0 0 mΨ + fµ













tR
Qu

R
Xu

R
TR







. (85)

We see that this Lagrangian is not diagonal. To get the masses of the particles we need to
perform the following rotations

qL → cosΘLqL + sin ΘLQL, QL → − sin ΘLqL + cosΘLQL, (86)

tR → cosΘRtR + sin ΘRTR, TR → − sinΘRtR + cosΘRTR, (87)

where tan ΘR = λtf
mT

and tan ΘL =
λT

q f

mΨ
. Notice that in Eq. (86) we rotate the whole dou-

blet, which is possible because both doublets have the same quantum numbers. Before
EWSB the diagonal mass matrix then reads diag(0, mΨ

cL
, mΨ, mT

cR
), where we have denoted

sL,R ≡ sinΘL,R, cL,R ≡ cosΘL,R and mT ≡ mΨ + fµ. This means that the new quarks
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have non-degenerate mass before EWSB and that the top remains massless.
After EWSB we insert the VEV for φ, analogous to Eq. (54)

〈φ〉Ψj
R = vQu

R + vXu
R + fcαTR (88)

Ψ̄i
L 〈φ〉 = Q̄u

Lv + X̄u
Lv + T̄Lfcα. (89)

Before performing the pre-rotation Eq. (86), the Lagrangian is

L =







tL
Qu

L
Xu

L
TL














0 λT
q f 0 0

0 mΨ + s2

α

2 fµ s2

α

2 fµ cαvµ

0 s2

α

2 fµ mΨ + s2

α

2 fµ cαvµ
λtf cαvµ cαvµ mΨ + c2

αfµ














tR
Qu

R
Xu

R
TR







+ h.c.. (90)

After the pre-rotation Eq. (86) the Lagrangian is diagonal to zeroth order in ε ≡ v
f and

reads

L =







tL
Qu

L
Xu

L
TL














sLsRcαvµ −sL
s2

α

2 fµ −sL
s2

α

2 fµ −sLcRcαvµ

−sRcLcαvµ mΨ

cL
+ cL

s2

α

2 fµ cL
s2

α

2 fµ cLcRcαvµ

−sRcαvµ s2

α

2 fµ mΨ + s2

α

2 fµ cRcαvµ
sRcαvµ cαvµ cαvµ mT

cR
− cRs2

αfµ








︸ ︷︷ ︸

≡M







tR
Qu

R
Xu

R
TR







.

(91)
Here one can already get a first impression about the masses of the Quarks. The diagonal
elements of this matrix are exactly the same as of the matrix diagonalized to first order8.
The top mass is mt 4 sLsRcαvµ. To get a large top mass (172 GeV) we need µsLsR ∼ 1.
This means also that the top needs a substantial mixing with either the Q or the T quark.

4.2 The mass eigenstates

Now we can diagonalize using exactly the same methods as in section 3.4. Again we can
split up the matrix of the Lagrangian into a diagonal part and a non-diagonal part of order
ε

M ≡







0 0 0 0
0 mΨ

cL
0 0

0 0 mΨ 0
0 0 0 mT

cR







︸ ︷︷ ︸

≡M0

+ε







sLsRcαfµ −sLvµ −sLvµ −sLcRcαfµ
−sRcLcαfµ cLvµ cLvµ cLcRcαfµ
−sRcαfµ vµ vµ cRcαfµ

2sRvµ cαfµ cαfµ −2cRvµ







︸ ︷︷ ︸

≡M1

.

(92)
The only difference to the other model is that now we have a 4 × 4 - matrix. This means
that for each of our left and right rotation matrices Li, Ri we get six free parameters but
we also get six equations and thus the algorithm should work as before.
The analytical calculation has been made with the Maple c© program of appendix B gener-
alized to 4 dimensions. The results for the masses of the quarks up to terms of order O(ε2)
are already quite messy. The simplest is the top mass, which reads

m′
t = εsRsLcαfµ

(

1 + εµ

[
2fc2

R

mT
− v

mΨ
(1 + c2

L)

])

. (93)

8The matrix diagonalized to first order is Me1 ≡ M0 + ε(L1M0 + M0R1 + M1). One can see that M0R1

and L1M0 do not have any diagonal entries and therefore the diagonal entries of M are exactly the same as
for Me1.
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4.3 Higgs couplings

To get the interactions between the quarks and the Higgs we can proceed exactly as in
section 3. We insert the VEV with a small fluctuation η as in Eq. (48) into the mass
Lagrangian Eq. (84) and get LBSM = mΨΨ̄iΨi + Lc, where

Lc =
µ

f





Qu
L

Xu
L

TL



 ·





(v + η)2 (v + η)2 Y
(v + η)2 (v + η)2 Y

Y Y f2 − 2(v + η)2









Qu
R

Xu
R

TR



 (94)

and Y ≡ (v + η)
√

f2 − 2(v + η)2. To get the couplings we need to expand around η

(v + η)
√

f2 − 2(v + η)2 = (v + η)

(

cαf − 2v

cαf
η + O(η2)

)

= vfcα + η

(

fcα − 2v2

fcα

)

︸ ︷︷ ︸

≡ρ

+O(η2). (95)

Again we get the normal Lagrangian (90) plus the Higgs interaction Lagrangian

L′ = L + LHiggs, (96)

where

LHiggs = η ·
(

µ

f

)
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Xu
L

TL









2v 2v ρ
2v 2v ρ
ρ ρ −4v









Qu
R

Xu
R

TR



 . (97)

As before have to rotate to get physical states. First we include the top quark in the Higgs
interaction Lagrangian above to get a 4× 4 - matrix. Then we apply the pre-rotations (86)
and (87) to get

H ≡ µ

f







sRsLρ −2vsL −2vsL −sLcRρ
−sRcLρ 2vcL 2vcL cRcLρ
−sRρ 2v 2v cRρ
4vsR ρ ρ −4vcR







. (98)

The first diagonal entry of H is the Higgs to top coupling to order ε, i.e. µsRsLcα + O(ε2).
Comparing this to the top mass of order ε, Eq. (91), we see that the coupling is exactly mt

v
as in section 3 and in the SM.
We could now apply the rotations found when diagonalizing in section 4.2. However, this
time we are not going to look at the analytical results because they are too messy. We will
instead apply a fully numerical diagonalization and thus find first the Higgs couplings and
then the new gluon fusion cross section.

4.4 Gluon fusion cross section in composite Higgs model with non-
minimal fermionic content

When discussing the changes in the gluon fusion cross section, we get exactly the same
results as in section 3.6. The only thing that does change is that we have one more quark
entering the loop. We can apply this directly to Eq. (81) and get

|M |2 =
(4π)2

2
α2

s(µ)c2
α

∣
∣
∣
∣
∣
∣

∑

q=t,Q,X,T

CqmqA(mq)

∣
∣
∣
∣
∣
∣

2

. (99)
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In [8] composite Higgs model with non-minimal fermionic content has been shown to pass
EWPT for certain data. Here we will apply the data points which passed EWPT, to gluon
fusion and see how it changes. As before we take v = 174 GeV, f = 500 GeV and mtop =
174.2 GeV. There are four parameters left µ, sL, sR and mψ and one of them is constraint
by the top mass. The datapoints are given as a vector containing sL, sR and mT /mψ.
Together with the top mass they fully determine our model.

Phases in ΨL and ΨR: There is a gauge transformation which we have not yet used,
which is a phase in the five-plet Ψ. We will need this phase, because the value we get for µ
is negative and therefore the first diagonal entry in the mass matrix, M1,1, is also negative.
However, the diagonalized M1,1 value is the top mass, which must of course be positive. We
will thus apply a rotation L′ in L′LMR = D such that D is a diagonal matrix with positive
entries. Looking at Eq. (91) we see that for µ < 0 and sL, sR > 0, M1,1 and M4,4 are
negative. We can thus set L′ = diag(−1, 1, 1,−1) to make all the masses positive at first
order.

As in section 3.7 the diagonalization procedure was done totally numerically with Maple c©.
The full program can be found in appendix C. It is very similar to the previous program
but there are some changes. For completeness we put here a description of it.

1. Read in the data, define all variables and the matrix M . The only undetermined
parameter is mψ.

2. Find the eigenvalues of MMT and set the smallest eigenvalue equal to mt. This gives
us mψ and therefore the whole mass spectrum of the quarks.

3. Find the eigenvectors of MMT and MT M which are the rotation matrices L and R
respectively. Note that the eigenvalues of both matrices MMT and MT M are the
same and also must be ordered in the same way.

4. Check that LMR is diagonal and that its entries are the masses of the quarks. Here
we use the freedom of a phase in Ψ to make all the diagonal entries of LMR positive.

5. Calculate the Higgs couplings, i.e. the diagonal entries of LHR and plug everthing
into Eq. (99).

6. The integration over the Pdfs of section 2.7 does not change at all. Multiplying π
m2

h

|M |2

with the result of the integration (see Eq. (43)), using Cteq data and mh = 120 GeV
we get the total proton proton to Higgs cross section.

4.5 Discussion of the results

We analyzed 194 datapoints, i.e. vectors [sL, sR, mT

mψ
] and calculated the proton proton to

Higgs cross section. The first thing to notice is that the cross section for all datapoints is
contained in a small interval between 6.3 pb and 6.8 pb, which corresponds to ∼ 0.34σSM .
We see that in this model the cross section is about a factor 2 smaller as for the model in
the section 3.7. There we saw that the Higgs to top coupling did not change substantially
with respect to the SM and that all the other quarks had only minor contribution. Now the
case is totally different. We see in figure 9 that the Higgs to top coupling varies a lot (−0.15
to 0.75), whereas in the previous model as well as in the SM it was ∼ 1. This means that
the other quarks must have a non-negligible contribution to the cross section.
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Figure 9: Higgs to top coupling versus cross section.

In the second diagram (figure 10) we analyze the data a little differently. We set the
couplings of all but one quark to zero and calculate the contribution to the cross section of
each quark separately. In the diagram we plot on the x-axis the mass of the quarks on the
y-axis the cross section relative to the SM. We see that the Q and T quarks contribute only
very little and the X quark contributes most of the cross section. The remarkable thing is
that in spite of the large range of cross section the top and the X quark contribute alone,
they always add up to a very small range of values (0.325σSM to 0.355σSM). Notice that
the contribution to the cross section of a single quark is always positive. In figure 10 the X
quark alone sometimes has a cross section that is much higher than the total cross section
due to all quarks, so there must be a suppression coming from other quarks in order to get
the total cross section of figure 9.
Another information containt in this diagram is the masses of the new quarks. We see that
the X-quark is usually the lightest with a mass of 350 GeV to 600 GeV9. The T-quark has a
mass of about 600 to 2000 GeV and the Q-quark has a mass of 3000 to 10000 GeV. The mass
of the X-quark is low enough for the LHC to detect it. The T-quark will be only detectable
if its mass is near the mass of the X-quark. The Q-quark is too heavy to be detected and
masses of 10000 GeV are not good for the theory to be perturbative.

9Here we ignore outliers.
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Figure 10: Contribution to the cross section of each quark type alone.

5 Conclusion

In the above discussion and from other sources of analyses [8], we saw that the composite
Higgs model definitely is an appropriate candidate for an extension of the SM. First it can be
made to agree fully with EWPT, and second it does solve the hierarchy problem. Moreover
the compositeness of the top quark is able to explain why its mass is so much higher than
the mass of the other SM quarks. We saw that with the global SO(5) symmetry approach
and the specifying of the fermionic content, we could indeed derive the implications to LO
gluon fusion, and calculate the proton proton to Higgs cross section. The result depended
on the fermionic content of the model. In the first case (with minimal fermionic content),
the change in the cross section was determined exclusively by the energy scale f , and was a
factor c2

α lower as in the SM. The reason for this was that the new quarks only had a minor
effect on the cross section and that the Higgs to top coupling was very similar to the SM.
With non-minimal fermionic content, and EWPT compatible data, we got a different result.
The cross section was approximately three times lower as in the SM. Here the mixing of
the quarks played a larger role and the top and X-quark contributed substantially to the
cross section. In contrast to the other model it difficult to trace the source of this high
supression. However, there has been a very elegant analysis, predicting a gluon fusion cross
section of ∼ 0.35σSM for five fermions and f = 500 GeV [14]. Moreover it predicts that
for five fermions and f = 1000 GeV we get 0.82σSM . Indeed setting f = 1000 GeV in the
program in appendix C we get a cross section between 0.78σSM and 0.82σSM , which is still
in total agreement with EWPT.
The big question now is if this model could be tested at the LHC. The error for the gluon
fusion cross section measurement at the LHC is ∼ 10% [5]. So testing the model by measuring
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the gluon fusion cross section will depend on the fermionic content and the energy scale f ,
but even for ∼ 0.8σSM , it should be possible. Anyhow it will be much more difficult to
detect the Higgs particle, if the cross section is suppressed by a factor of 0.3. However, the
cross section for the Higgs production via vector boson fusion (VBF) can be measured with
a precission of ∼ 5%, whereas the reduction in the SO(5) model is also ∼ c2

α ∼ 0.75 [1]. The
VBF cross section could therefore be a fruitable testing ground for composite Higgs models.
Another property which could be measured at the LHC is the new Quarks. In section 4.5
we saw that the X-quark is the lightest of the new quarks with a mass of 350 GeV to 600
GeV. New particles around this mass should be detectable, however, it will not be easy to
determine what this new particles are. There are also flavour changing neutral currents in
composite Higgs model, which were not present in the SM.
We should after all keep in mind that there is a large variety of different composite Higgs
models, with different global symmetries and that it is not a priori clear that they will all
lead to a similar phenomenology. It will therefore not be possible to disprove all composite
Higgs models at once, if certain predictions cannot be experimentally verified. On the other
hand it will not be easy to verify a particular model, even when there is experimental data
in favour of it, because there are just too many possibilities such as fermionic content.
Even if this thesis only covered LO gluon fusion for two very specific models it can maybe
help to get a feeling what composite Higgs phenomenology, especially gluon fusion looks
like. Furthermore, I hope that this masters thesis showed that even for beyond standard
models it is possible to calculate predictions for observables under certain assumptions.
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A Calculation for the gluon fusion

In this section we are going to compute the integral A(mt) from Eq. (28).

A.1 Master integrals

First we want express our integral with master integrals. We have eliminated all Dirac
indices of k, now we need to make the numerators of A(mt) independent of k. We have 6
different types of numerators: k2, k · p1, k · p2, (k · p1)(k · p2), (k · p1)2 and (k · p2)2. For each
of these we have to use a different method.

• k2

k2 + mt
2 − mt

2

[2(p1 · k) + k2 − mt
2][k2 − mt

2][k2 − 2(k · p2) − mt
2]

=
mt

2

[2(p1 · k) + k2 − mt
2][k2 − mt

2][k2 − 2(k · p2) − mt
2]

+ (100)

+
1

[2(p1 · k) + k2 − mt
2][k2 − 2(k · p2) − mt

2]
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• k · p1

k · p1 + 1
2 (k2 − k2 + mt

2 − mt
2)

[2(p1 · k) + k2 − mt
2][k2 − mt

2][k2 − 2(k · p2) − mt
2]

=
1
2

[k2 − mt
2][k2 − 2(k · p2) − mt

2]
− (101)

−
1
2

[2(p1 · k) + k2 − mt
2][k2 − 2(k · p2) − mt

2]

• k · p2

k · p2 + 1
2 (k2 − k2 + mt

2 − mt
2)

[2(p1 · k) + k2 − mt
2][k2 − mt

2][k2 − 2(k · p2) − mt
2]

=
− 1

2

[k2 + 2(k · p1) − mt
2][k2 − mt

2]
+ (102)

+
1
2

[2(p1 · k) + k2 − mt
2][k2 − 2(k · p2) − mt

2]

• (k · p1)(k · p2) Here we use the results of the k · p1 case.

1

2

∫ ∞

∞
ddk

p2 · k
[k2 − mt

2][(k − p2)2 − mt
2]

︸ ︷︷ ︸

≡I1

+

+
1

2

∫ ∞

∞
ddk

−p2 · k
[(k + p1)2 − mt

2][(k − p2)2 − mt
2]

︸ ︷︷ ︸

≡I2

=
1

2
(I1 + I2) (103)

For I1 substitute k (→ k + p2

2

I1 =

∫ ∞

∞
ddk

p2 · k
[(k + p2

2 )2 − mt
2][(k − p2

2 )2 − mt
2]

︸ ︷︷ ︸

≡0

+ p2
2

︸︷︷︸

0

(· · · ) = 0. (104)

The first term in the sum vanishes because it is an odd function. For I2 we substitute
k (→ k − p1

2 + p2

2

I2 =

∫ ∞

∞
ddk

−p2 · k
[(k + p1

2 + p2

2 )2 − mt
2][(k − p1

2 − p2

2 )2 − mt
2)]

︸ ︷︷ ︸

≡0

+

+
1

2

∫ ∞

∞
ddk

p1 · p2

[(k + p1

2 + p2

2 )2 − mt
2][(k − p1

2 − p2

2 )2 − mt
2]

(105)

⇒ 1

2
(I1 + I2) =

1

4

∫ ∞

∞
ddk

p1 · p2

[(k + p1

2 + p2

2 )2 − mt
2][(k − p1

2 − p2

2 )2 − mt
2]

. (106)
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• (k · p1)2 Again we use the Results of k ·p1. With a very similar procedure as above
we get

1

4

∫ ∞

∞
ddk

p1 · p2

[(k + p1

2 )2 − mt
2][(k − p2

2 )2 − mt
2]

−

− 1

4

∫ ∞

∞
ddk

p1 · p2

[(k + p1

2 + p2

2 )2 − mt
2][(k − p1

2 − p2

2 )2 − mt
2]

. (107)

• (k · p2)2 This case is analogous to before and we get exactly the same result as for

(k · p1)2.

All integrals can now be brought to two basic forms, which we call “the master integrals for
LO gluon fusion”

J(a) ≡
∫

ddk

(2π)d

1

[k2 − mt
2][(k + a)2 − mt

2]
(108)

and

I(a, b) ≡
∫

ddk

(2π)d

1

[k2 − mt
2][(k + a)2 − mt

2][(k + b)2 − mt
2]

, a, b ∈ R. (109)

We can now express A(mt) with these master integrals

A(mt) = I(p1,−p2)

(
4

d − 2
mt

2 − p1 · p2

)

︸ ︷︷ ︸

≡AI

+ J(p1 + p2)
4 − d

d − 2
︸ ︷︷ ︸

≡AJ

(110)

A.2 Feynman parameter and dimensional regularization

To solve the two master integrals J(a) and I(a, b) we need Feynman-parameters. These can
be found in [3] on page 190.

The integral J(a): We have two factors in the denominator, so we use the following
Feynman parameter

1

P · Q =

∫ 1

0
dxdy

δ(x + y − 1)

(xP + yQ)2
=

∫ 1

0
dx

1

(xP + (1 − x)Q)2
. (111)

In the last step we have evaluated the δ-function. Applied to J(a) this is

J(a) =

∫
ddk

(2π)d

∫ 1

0
dx

1

[(1 − x)(k2 − mt
2) + x((k + a)2 − mt

2)]2
. (112)

If we make the substitution k (→ k − ax, we get

J(a) =

∫ 1

0
dx

∫
ddk

(2π)d

1

[k2 + a2x(1 − x) − mt
2]2

. (113)

Now we can apply the following formula found in [3], page 250

∫
ddk

(2π)d

1

(k2 − ∆)n
=

(−1)niΓ(n − d
2 )

(4π)
d
2 Γ(n)

(
1

∆

)n− d
2

, (114)
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where Γ is the Gamma-function, defined by
∫∞
0 xy−1e−xdx. Especially Γ(n + 1) = n! for

n ∈ N 0. This gives us

J(a) =

∫ 1

0
dx

iΓ(2 − d
2 )

(4π)
d
2 Γ(2)
︸︷︷︸

=1

(−xa2 + m2 + a2x2)
d
2
−n. (115)

The next step is to use dimensional regularization, i.e. we substitute d = 4−2ε, where ε > 0

J(a) =

∫ 1

0
dx

iΓ(ε)

(4π)2−ε
(m2 + a2x2 − xa2)−ε. (116)

Finally we can use the approximation Γ(ε) = 1
ε − γ + O(ε), where γ ∼ 0.5772 is the Euler-

Mascheroni constant. Using

x−ε

ε
=

e−ε ln x

ε
4 1 − ε lnx

ε
=

1

ε
− lnx, (117)

we get the final result, expanded in powers of ε

J(a) =
1

ε

i

(4π)2
− iγ

(4π)2
−
∫ 1

0
dx

iγ

(4π)2
ln[m2 + a2x2 − xa2]. (118)

We now insert J(a) into Eq.(110). Looking at the second term in the sum, AJ with d = 4−2ε,
we get

AJ = J(p1 + p2)
4 − d

d − 2
4 i

(4π)2

[

1 − ε

(

1 +

∫ 1

0
dx ln[mt

2 + x(p1 + p2)
2(x − 1)]

)]

4 i

(4π)2
+ O(ε). (119)

We see that it is absolutely necessary to keep the number of dimensions open. At the end
we can take the limes ε → 0 and thus get that the contribution from AJ is simply 1.

The integral I(a, b): Here we have three factors in the denominator, so we use the Feyn-
man parameter

1

P · Q · R =

∫ 1

0
dxdydz

2δ(x + y + z − 1)

(Px + Qy + Rz)3
= (120)

=

∫ 1

0
dxdy

2

(Px + Qy + R(1 − x − y))3
, (121)

to get

I(a, b) = 2

∫ 1

0
dxdy

∫
ddk

(2π)d

1

[x((k + a)2 − mt
2) + y((k + b)2 − mt

2) + (1 − x − y)(k2 − mt
2)]3

.

(122)
As before we want to bring the denominator of the integrand to the form (k2 − ∆)n. We
substitute k (→ k − ax − by and get

I(a, b) = 2

∫ 1

0
dxdy

∫
ddk

(2π)d

1

[a2x(x − 1) + b2y(y − 1) + 2abxy + mt
2]3

. (123)
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As before we apply (114) with d = 4, which gives us

2

∫ 1

0
dxdy

−i

=1
︷︸︸︷

Γ(1)

(4π)
d
2 Γ(3)
︸︷︷︸

=2

1

a2x(x − 1) + b2y(y − 1) + 2abxy + mt
2
. (124)

A.3 Expressing AJ with dilogarithms

We insert our result for I(a, b) into Eq. (110) and look at the first term in the sum, AI

AI = (2mt
2 − p1 · p2)I(p1,−p2) (125)

=
−i

(4π)2

∫ 1

0
dxdy

2mt
2 − p1 · p2

p2
1

︸︷︷︸

=0

x(x − 1) + p2
2

︸︷︷︸

=0

y(y − 1) − 2(p1 · p2)xy + mt
2

In the denominator of the integrand we add a small imaginary part

AI =
i

(4π)2
2mt

2 − p1 · p2

2(p1 · p2)

∫ 1

0
dy

∫ 1−y

0
dx

(

1

xy − mt
2

2(p1·p2)
+ iε

)

︸ ︷︷ ︸

≡Int

(126)

For an on-shell Higgs boson we have that q2 = mh
2 and as we can see in the Feynman graph

(figure 1) q = p1 + p2. Therefore 2(p1 · p2)2 = mh
2. We substitute R ≡ ( mt

mh
)2. Eq. (110)

now reads

A(mt) =
i

(4π)2

[(

2R − 1

2

)

Int + 1

]

. (127)

Polylogarithms: So for our relevant quantity A, the only thing that is left to calculate is
Int. First we want to express this in terms of dilogarithms. The polylogarithm is a function
Lis(z), for all complex numbers s and |z| < 1, defined by

Lis(z) =
∞
∑

k=1

zk

ks
. (128)

We can see directly that the polylogarithm for s = 1 is Li1(z) = − log(1 − z). Another way
is to define the polylogarithms recursively

Lis+1(z) =

∫ z

0
dt

Lis(t)

t
. (129)

The dilogarithm is the polylogarithm for s = 2. Using the above we can see quite easily
that the dilogarithm can be written as

Li2(z) =

∫ z

0
dt
− log(1 − t)

t
. (130)

With this knowledge we can go on

Int =

∫ 1

0

dy

y

∫ 1−y

0

1

x − R
y + iε

dx =

∫ 1

0

dy

y
log

(
1

R
(y2 − y + R + iε)

)

. (131)
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We factorize

(y2 − y + R + iε) =







y − 1

2
+

√

1

4
− R

︸ ︷︷ ︸

≡Λ1

+iε













y − 1

2
−
√

1

4
− R

︸ ︷︷ ︸

≡Λ2

−iε







. (132)

Now we need to do a case study.

Case a) For R > 1
4 ⇒

√

1
4 − R is imaginary. So we don’t need the iε. Now we can use

log(ab) = log a + log b if sgn(6a) = − sgn(6b).

Int =

∫ 1

0

dy

y

[

log

(
1√
R

(y − Λ1)

)

+ log

(
1√
R

(y − Λ2)

)]

(133)

=

∫ 1

0

dy

y







log

(
Λ1√
R

)

+ log

(
Λ2√
R

)

︸ ︷︷ ︸

=0

+ log

(
y

Λ1
− 1

)

+ log

(
y

Λ2
− 1

)







.

Using the dilogarithms above we can write this as

Int = −Li2

(
Λ2

R

)

− Li2

(
Λ1

R

)

, (134)

where we have used that 1
Λ1

= Λ2

R and 1
Λ2

= Λ1

R .

Case b) For R < 1
4 ⇒

√

1
4 − R is real. We need to keep the iε. So we have

Int =

∫ 1

0

dy

y
log

(
1

R
(y − Λ1 + iε)(y − Λ2 − iε)

)

(135)

= −
{

Li2

(
Λ1

R
+ iε

)

+ Li2

(
Λ2

R
− iε

)}

. (136)

Claim: a)

f(τ) = arcsin2

(
1√
τ

)

=
1

2

{

Li2

(
Λ1

R

)

Li2

(
Λ2

R

)}

, τ ≥ 1, (137)

where τ ≡ 4R.

Proof: a) The following formulas are useful:

1.
arcsinx = −i log

(

ix +
√

1 − x2
)

(138)

2.

−1

2
log2(x) = Li2(1 − x) + Li2

(

1 − 1

x

)

(139)
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3.

Li2(x) = −
∫ 1

0

dy

y
log(1 − x · y) (140)

With these the proof is straightforward.

2f(τ) = 2 arcsin2

(
1√
τ

)

(141)

= −1

2
log2





(

i√
τ

+

√

1 − 1

τ

)2


 (142)

= Li2

[

1 −
(

i +
√

τ − 1√
τ

)2
]

+ Li2

[

1 −
( √

τ

i +
√

τ − 1

)2
]

(143)

= Li2

[

2

(
1 − i

√
τ − 1

τ

)]

+ Li2

[

2

(
1 + i

√
τ − 1

τ

)2
]

(144)

=
1

2

{

Li2

[

1

R

(

−1

2
−
√

1

4

)]

+ Li2

[

1

R

(

−1

2
+

√

1

4

)]}

(145)

Claim: b)

1

2

{

Li2

(
Λ1

R
+ iε

)

+ Li2

(
Λ2

R
− iε

)}

= −1

4

(

log

[
1 +

√
1 − τ

1 −
√

1 − τ

]

− iπ

)2

(146)

Proof: b) Using Eq. (139) with

x =
τ − 2 − 2

√
1 − τ

τ
− iε, (147)

we get

{

Li2

(
Λ1

R
+ iε

)

+ Li2

(
Λ2

R
− iε

)}

= −1

2

(

log

[
τ − 2 − 2

√
1 − τ

τ
− iε

])2

= −1

2

(

log

∣
∣
∣
∣

τ − 2 − 2
√

1 − τ

τ

∣
∣
∣
∣
− iπ

)2

= −1

2

(

log

[
1 +

√
1 − τ

1 −
√

1 − τ

]

− iπ

)2

(148)

Putting everything together the final result is

A =
1

(4π)4
|1 + (1 − τ)f(τ)| , (149)

f(τ) =







arcsin2 1√
τ
, τ ≥ 1,

− 1
4

(

log
[

1+
√

1−τ
1−

√
1−τ

]

− iπ
)2

, τ < 1,
(150)

τ = 4

(
mt

mh

)2

(151)
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B Diagonalization with Maple

The input for the diagonalization of the mass matrix from Eq. (64) with Maple is shown
below. The expansion of LMR in terms of ε has been done manually. There would be a
more elegant way if we would collect all the ε and then let Maple automatically spot terms
of every order. Lines that were too long have been broken, indicated by a backslash \.

M_0:=Matrix([[0,0,0],[0,m_x,0],[0,0,m_T]]);
M_1:=Matrix([[lambda_t*f,0,lambda_T*f],[lambda_t*f,0,lambda_T*f]\
,[0,0,0]]);
L_1:=Matrix([[0,l_11,l_12],[-l_11,0,l_13],[-l_12,-l_13,0]]);

with(LinearAlgebra):
ML1:=simplify(M_0.Transpose(M_0)+e*(L_1.M_0.Transpose(M_0)+M_1.T\
ranspose(M_0)+M_0.Transpose(M_1)+Transpose(M_0).(M_0).Transpose(\
L_1)));

l_11:=simplify(solve(ML1[1,2]=0,l_11));
l_12:=simplify(solve(ML1[1,3]=0,l_12));
l_13:=simplify(solve(ML1[2,3]=0,l_13));

R_1:=Matrix([[0,r_11,r_12],[-r_11,0,r_13],[-r_12,-r_13,0]]);
MR1:=simplify(Transpose(M_0).M_0+e*(Transpose(R_1).Transpose(M_0)\
.M_0+Transpose(M_1).(M_0)+Transpose(M_0).M_1+Transpose(M_0).(M_0)\
.(R_1)));

r_11:=simplify(solve(MR1[1,2]=0,r_11));
r_12:=simplify(solve(MR1[1,3]=0,r_12));
r_13:=simplify(solve(MR1[2,3]=0,r_13));

Me1:=simplify(M_0+e*(L_1.M_0+M_1+M_0.R_1));

L2:=-L_1.Transpose(L_1);

L_2:=1/2*Matrix([[L2[1,1], 0, 0], [0, L2[2,2], 0], [0, 0, L2[3,3]\
]])+Matrix([[0,L2[1,2]+l_21,L2[1,3]+l_22],[-l_21,0,L2[2,3]+l_23],\
[-l_22,-l_23,0]]);

simplify(L_2+Transpose(L_2)+L_1.Transpose(L_1));
ML2:=simplify(simplify(ML1)+e^2*(L_2.M_0.Transpose(M_0)+L_1.M_1.T\
ranspose(M_0)+L_1.M_0.Transpose(M_1)+L_1.M_0.Transpose(M_0).Trans\
pose(L_1)+M_1.Transpose(M_1)+M_1.Transpose(M_0).Transpose(L_1)+M_\
0.Transpose(M_0).Transpose(L_2)+M_0.Transpose(M_1).Transpose(L_1)\
));

l_21:=simplify(solve(ML2[1,2]=0,l_21));
l_22:=simplify(solve(ML2[1,3]=0,l_22));
l_23:=simplify(solve(ML2[2,3]=0,l_23));

R2:=-R_1.Transpose(R_1);
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R_2:=1/2*Matrix([[R2[1,1], 0, 0], [0, R2[2,2], 0], [0, 0, R2[3,3]\
]])+Matrix([[0,R2[1,2]+r_21,R2[1,3]+r_22],[-r_21,0,R2[2,3]+r_23],\
[-r_22,-r_23,0]]);

R_2+Transpose(R_2)+R_1.Transpose(R_1);
MR2:=simplify(simplify(MR1)+e^2*(Transpose(R_2).Transpose(M_0).M_\
0+Transpose(R_1).Transpose(M_1).M_0+Transpose(R_1).Transpose(M_0)\
.M_1+Transpose(R_1).Transpose(M_0).M_0.R_1+Transpose(M_1).M_1+Tra\
nspose(M_1).M_0.R_1+Transpose(M_0).M_1.R_1+Transpose(M_0).M_0.R_2\
));

r_21:=simplify(solve(MR2[1,2]=0,r_21));
r_22:=simplify(solve(MR2[1,3]=0,r_22));
r_23:=simplify(solve(MR2[2,3]=0,r_23));

Me2:=simplify(Me1+e^2*(L_2.M_0+L_1.M_1+L_1.M_0.R_1+M_1.R_1+M_0.R_\
2));

L3:=simplify(-Transpose(L_2).(L_1)-Transpose(L_1).(L_2));

L_3:=1/2*Matrix([[L3[1,1], 0, 0], [0, L3[2,2], 0], [0, 0, L3[3,3]\
]])+Matrix([[0,L3[1,2]+l_31,L3[1,3]+l_32],[-l_31,0,L3[2,3]+l_33],\
[-l_32,-l_33,0]]);

simplify(L_3+Transpose(L_3)+Transpose(L_2).(L_1)+Transpose(L_1).(\
L_2));
ML3:=simplify((L_3.M_0.Transpose(M_0)+L_2.M_1.Transpose(M_0)+L_2.\
M_0.Transpose(M_1)+L_2.M_0.Transpose(M_0).Transpose(L_1)+L_1.M_1.\
Transpose(M_1)+L_1.M_1.Transpose(M_0).Transpose(L_1)+L_1.M_0.Tran\
spose(M_1).Transpose(L_1)+L_1.M_0.Transpose(M_0).Transpose(L_2)+M\
_0.Transpose(M_0).Transpose(L_3)+M_1.Transpose(M_1).Transpose(L_1\
)+M_0.Transpose(M_1).Transpose(L_2)+M_1.Transpose(M_0).Transpose(\
L_2)));

l_31:=simplify(solve(ML3[1,2]=0,l_31));
l_32:=simplify(solve(ML3[1,3]=0,l_32));
l_33:=simplify(solve(ML3[2,3]=0,l_33));

R3:=-Transpose(R_2).R_1-Transpose(R_1).R_2;

R_3:=1/2*Matrix([[R3[1,1], 0, 0], [0, R3[2,2], 0], [0, 0, R3[3,3]\
]])+Matrix([[0,R3[1,2]+r_31,R3[1,3]+r_32],[-r_31,0,R3[2,3]+r_33],\
[-r_32,-r_33,0]]);

R_3+Transpose(R_3)+Transpose(R_2).R_1+Transpose(R_1).R_2;
MR3:=simplify(Transpose(R_3).Transpose(M_0).M_0+Transpose(R_2).Tr\
anspose(M_1).M_0+Transpose(R_2).Transpose(M_0).M_1+Transpose(R_2)\
.Transpose(M_0).M_0.R_1+Transpose(R_1).Transpose(M_1).M_1+Transpo\
se(R_1).Transpose(M_1).M_0.R_1+Transpose(R_1).Transpose(M_0).M_1.\
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R_1+Transpose(R_1).Transpose(M_0).M_0.R_2+Transpose(M_0).M_0.R_3+\
Transpose(M_1).M_1.R_1+Transpose(M_0).M_1.R_2+Transpose(M_1).M_0.\
R_2);

r_31:=simplify(solve(MR3[1,2]=0,r_31));
r_32:=simplify(solve(MR3[1,3]=0,r_32));
r_33:=simplify(solve(MR3[2,3]=0,r_33));

Me3:=simplify(Me2+e^3*(M_0.R_3+L_1.M_0.R_2+L_1.M_1.R_1+L_2.M_0.R_\
1+L_2.M_1+L_3.M_0+M_1.R_2));
Le3:=simplify(Matrix([[1,0,0],[0,1,0],[0,0,1]])+e*L_1+e^2*L_2+e^3\
*L_3);
Re3:=simplify(Matrix([[1,0,0],[0,1,0],[0,0,1]])+e*R_1+e^2*R_2+e^3\
*R_3);

C Program for the gluon fusion cross section with 4

fermion composite Higgs model

This is the program described in section 4.4. At the beginning of the file there is a list with
the various parameters, which is not included in order to save trees. At the end there is the
’fprintf’ command which generates a file with all chosen data in it. For the plots in section
4.5 we also put the matrix elements of L and R in the output file.

Datalist:=[[.,.,.],...]:
f := 500;
v := 174;
c[alpha] := evalf(sqrt(f^2-2*v^2)/f);
e := v/f;
mh:=120;
conv:=3.894*10^8;
sigmasm:= 19.24933;
sig:=sigmasm*c[alpha]^2;
integ:=0.02770763;
alphas:=evalf(0.1176/(1-23/(6*Pi)*0.1176*log(91.187/mh)));
con:=evalf(c[alpha]^2*alphas^2*(1/mh)^2/(32*Pi));

for n from 1 to 194 do
N := n;
b := true;
Ra := Datalist[N, 3];
s[L] := Datalist[N, 1];
s[R] := Datalist[N, 2];
c[R] := sqrt(1-s[R]^2);
c[L] := sqrt(1-s[L]^2);
m[T] := m[psi]*Ra;
mu := (Ra-1)*m[psi]/f;
M0 := Matrix([[0, 0, 0, 0], [0, m[psi]/c[L], 0, 0], [0, 0, m[psi\
], 0], [0, 0, 0, m[T]/c[R]]]);
M1 := Matrix([[s[R]*s[L]*c[alpha]*f*mu, -s[L]*v*mu, -s[L]*v*mu, \
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-s[L]*c[R]*c[alpha]*f*mu], [-s[R]*c[L]*c[alpha]*f*mu, c[L]*v*mu,\
c[L]*v*mu, c[L]*c[R]*c[alpha]*f*mu], [-s[R]*c[alpha]*f*mu, v*mu\

, v*mu, c[R]*c[alpha]*f*mu], [2*s[R]*v*mu, c[alpha]*f*mu, c[alph\
a]*f*mu, -2*c[R]*v*mu]]);
M := M0+e*M1;
MMT := evalf(M.Transpose(M))/m[psi]^2;
JJ := evalf(Eigenvalues(MMT));
KK := sort([Re(sqrt(JJ[1])), Re(sqrt(JJ[2])), Re(sqrt(JJ[3])), R\
e(sqrt(JJ[4]))]);
m[psi] := solve(KK[1]*mpsi = 172.4, mpsi);
mt := KK[1]*m[psi];
mX := KK[2]*m[psi];
mT := KK[3]*m[psi];
mQ := KK[4]*m[psi];
LL := Matrix([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0\
, 0]]);
if Re(sqrt(JJ[1]))*m[psi] = mt then LL[1, 1] := 1; LL[2, 1] := 0;
LL[3, 1] := 0; LL[4, 1] := 0 elif Re(sqrt(JJ[1]))*m[psi] = mQ t\

hen LL[1, 1] := 0; LL[2, 1] := 1; LL[3, 1] := 0; LL[4, 1] := 0 e\
lif Re(sqrt(JJ[1]))*m[psi] = mX then LL[1, 1] := 0; LL[2, 1] := \
0; LL[3, 1] := 1; LL[4, 1] := 0 else LL[1, 1] := 0; LL[2, 1] := \
0; LL[3, 1] := 0; LL[4, 1] := 1 end if;
if Re(sqrt(JJ[2]))*m[psi] = mt then LL[1, 2] := 1; LL[2, 2] := 0\
; LL[3, 2] := 0; LL[4, 2] := 0 elif Re(sqrt(JJ[2]))*m[psi] = mQ \
then LL[1, 2] := 0; LL[2, 2] := 1; LL[3, 2] := 0; LL[4, 2] := 0 \
elif Re(sqrt(JJ[2]))*m[psi] = mX then LL[1, 2] := 0; LL[2, 2] :=\
0; LL[3, 2] := 1; LL[4, 2] := 0 else LL[1, 2] := 0; LL[2, 2] :=\
0; LL[3, 2] := 0; LL[4, 2] := 1 end if;

if Re(sqrt(JJ[3]))*m[psi] = mt then LL[1, 3] := 1; LL[2, 3] := 0\
; LL[3, 3] := 0; LL[4, 3] := 0 elif Re(sqrt(JJ[3]))*m[psi] = mQ \
then LL[1, 3] := 0; LL[2, 3] := 1; LL[3, 3] := 0; LL[4, 3] := 0 \
elif Re(sqrt(JJ[3]))*m[psi] = mX then LL[1, 3] := 0; LL[2, 3] :=\
0; LL[3, 3] := 1; LL[4, 3] := 0 else LL[1, 3] := 0; LL[2, 3] :=\
0; LL[3, 3] := 0; LL[4, 3] := 1 end if;

if Re(sqrt(JJ[4]))*m[psi] = mt then LL[1, 4] := 1; LL[2, 4] := 0\
; LL[3, 4] := 0; LL[4, 4] := 0 elif Re(sqrt(JJ[4]))*m[psi] = mQ \
then LL[1, 4] := 0; LL[2, 4] := 1; LL[3, 4] := 0; LL[4, 4] := 0 \
elif Re(sqrt(JJ[4]))*m[psi] = mX then LL[1, 4] := 0; LL[2, 4] :=\
0; LL[3, 4] := 1; LL[4, 4] := 0 else LL[1, 4] := 0; LL[2, 4] :=\
0; LL[3, 4] := 0; LL[4, 4] := 1 end if;

MTM := evalf(Transpose(M).M)/m[psi]^2;
PP := evalf(Eigenvalues(MTM));
QQ := sort([Re(sqrt(PP[1])), Re(sqrt(PP[2])), Re(sqrt(PP[3])), R\
e(sqrt(PP[4]))]);
mt := QQ[1]*m[psi];
mX := QQ[2]*m[psi];
mT := QQ[3]*m[psi];
mQ := QQ[4]*m[psi];
RR := Matrix([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0\
, 0]]);
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if Re(sqrt(PP[1]))*m[psi] = mt then RR[1, 1] := 1; RR[2, 1] := 0;
RR[3, 1] := 0; RR[4, 1] := 0 elif Re(sqrt(PP[1]))*m[psi] = mQ \

then RR[1, 1] := 0; RR[2, 1] := 1; RR[3, 1] := 0; RR[4, 1] := 0 \
elif Re(sqrt(PP[1]))*m[psi] = mX then RR[1, 1] := 0; RR[2, 1] :=\
0; RR[3, 1] := 1; RR[4, 1] := 0 else RR[1, 1] := 0; RR[2, 1] :=\
0; RR[3, 1] := 0; RR[4, 1] := 1 end if;

if Re(sqrt(PP[2]))*m[psi] = mt then RR[1, 2] := 1; RR[2, 2] := 0\
; RR[3, 2] := 0; RR[4, 2] := 0 elif Re(sqrt(PP[2]))*m[psi] = mQ \
then RR[1, 2] := 0; RR[2, 2] := 1; RR[3, 2] := 0; RR[4, 2] := 0 \
elif Re(sqrt(PP[2]))*m[psi] = mX then RR[1, 2] := 0; RR[2, 2] :=\
0; RR[3, 2] := 1; RR[4, 2] := 0 else RR[1, 2] := 0; RR[2, 2] :=\
0; RR[3, 2] := 0; RR[4, 2] := 1 end if;
if Re(sqrt(PP[3]))*m[psi] = mt then RR[1, 3] := 1; RR[2, 3] := \

0; RR[3, 3] := 0; RR[4, 3] := 0 elif Re(sqrt(PP[3]))*m[psi] = mQ\
then RR[1, 3] := 0; RR[2, 3] := 1; RR[3, 3] := 0; RR[4, 3] := 0\
elif Re(sqrt(PP[3]))*m[psi] = mX then RR[1, 3] := 0; RR[2, 3] :\

= 0; RR[3, 3] := 1; RR[4, 3] := 0 else RR[1, 3] := 0; RR[2, 3] :\
= 0; RR[3, 3] := 0; RR[4, 3] := 1 end if;
if Re(sqrt(PP[4]))*m[psi] = mt then RR[1, 4] := 1; RR[2, 4] := 0\
; RR[3, 4] := 0; RR[4, 4] := 0 elif Re(sqrt(PP[4]))*m[psi] = mQ \
then RR[1, 4] := 0; RR[2, 4] := 1; RR[3, 4] := 0; RR[4, 4] := 0 \
elif Re(sqrt(PP[4]))*m[psi] = mX then RR[1, 4] := 0; RR[2, 4] :=\
0; RR[3, 4] := 1; RR[4, 4] := 0 else RR[1, 4] := 0; RR[2, 4] :=\
0; RR[3, 4] := 0; RR[4, 4] := 1 end if;

E[L], V[L] := evalf(Eigenvectors(MMT)); E[R], V[R] := evalf(Eige\
nvectors(MTM)); U[L] := V[L].Transpose(LL); U[R] := V[R].Transpo\
se(RR); U[L].LL.Matrix([[JJ[1], 0, 0, 0], [0, JJ[2], 0, 0], [0, \
0, JJ[3], 0], [0, 0, 0, JJ[4]]]).Transpose(LL).Transpose(U[L])-M\
MT;
U[R].RR.Matrix([[KK[1], 0, 0, 0], [0, KK[2], 0, 0], [0, 0, KK[3]\
, 0], [0, 0, 0, KK[4]]]).Transpose(RR).Transpose(U[R])-MTM;
prerot := Matrix([[-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0,\
0, 0, -1]]);

Diag := Transpose(U[L]).M.U[R];
if Diag[1, 1] < 0 then lp1 := -1 else lp1 := 1 end if;
if Diag[2, 2] < 0 then lp2 := -1 else lp2 := 1 end if;
if Diag[3, 3] < 0 then lp3 := -1 else lp3 := 1 end if;
if Diag[4, 4] < 0 then lp4 := -1 else lp4 := 1 end if;
Lp := Matrix([[lp1, 0, 0, 0], [0, lp2, 0, 0], [0, 0, lp3, 0], [0\
, 0, 0, lp4]]);
UL := Lp.Transpose(U[L]);
diag := UL.M.U[R];
if diag[1, 1]-mt > .1 then b := false end if;
if diag[2, 2]-mQ > .1 then b := false end if;
if diag[3, 3]-mX > .1 then b := false end if;
if diag[4, 4]-mT > .1 then b := false end if;
b;

rho := c[alpha]*f-2*v^2/(f*c[alpha]);
H := Matrix(4, 4, {(1, 1) = mu*s[R]*s[L]*rho/f, (1, 2) = -2*s[L]\
*v*mu/f, (1, 3) = -2*s[L]*v*mu/f, (1, 4) = -mu*s[L]*c[R]*rho/f, \
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(2, 1) = -mu*s[R]*c[L]*rho/f, (2, 2) = 2*c[L]*v*mu/f, (2, 3) = 2\
*c[L]*v*mu/f, (2, 4) = mu*c[R]*c[L]*rho/f, (3, 1) = -mu*s[R]*rho\
/f, (3, 2) = 2*v*mu/f, (3, 3) = 2*v*mu/f, (3, 4) = mu*c[R]*rho/f\
, (4, 1) = 4*s[R]*v*mu/f, (4, 2) = mu*rho/f, (4, 3) = mu*rho/f, \
(4, 4) = -4*c[R]*v*mu/f});
C := UL.H.U[R];
for j to 4 do
mass := [mt, mQ, mX, mT];
tau := 4*(mass[j]/mh)^2; if tau < 1 then ftau := -(1/4)*(log((1+\
sqrt(1-tau))/(1-sqrt(1-tau)))-i*Pi)^2 else ftau := arcsin(1/sqrt\
(tau))^2 end if; ta[j] := tau;
fta[j] := ftau;
end do;
sigma := con*conv*integ*((Re(C[1, 1])*mt*(1+(1-ta[1])*fta[1])+Re\
(C[2, 2])*mQ*(1+(1-ta[2])*fta[2])+Re(C[3, 3])*mX*(1+(1-ta[3])*ft\
a[3])+Re(C[4, 4])*mT*(1+(1-ta[4])*fta[4]))^2+(Re(C[1, 1])*mt*(1-\
ta[1])*Im(fta[1])+Re(C[2, 2])*mQ*(1-ta[2])*Im(fta[2])+Re(C[3, 3]\
)*mX*(1-ta[3])*Im(fta[3])+Re(C[4, 4])*mT*(1-ta[4])*Im(fta[4]))^2);
fd := fopen("stuff", APPEND);
fprintf(fd, "%d %e %e %e %e %e %e %e %e %e %e %e %e %e\n", N, s[\
L], s[R], Ra, mt, mQ, mX, mT, Re(C[1, 1]), Re(C[2, 2]), Re(C[3, \
3]), Re(C[4, 4]), sigma, sigma/sigmasm);
fclose(fd);
unassign(’m[psi]’)
end do:
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