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Exercise 13.1 The Partition Function in \¢* Theory
The exercise below consists of parts of chapters 1 and 3 of [Kap89].

1. Our starting point is the action

1 [? oo\’
S:—§/O dT/dS:E [(a_f) +(V¢)2+m2¢2]

which we rewrite by partial integration, the boundary terms vanish because ¢ is
assumed to be periodic in 7 and vanishing at spatial infinity, this gives us the form

S:—%/dT/deqﬁ[—af—A—l—mz] ¢.

We expand the field in Fourier modes according to

s =(2) T T,

n=—oo Pp

The integration over x and 7 results in V(p + p’) and [5(w, + wy,) respectively.
We remark that the reality condition ¢ = ¢* means ¢_,(—p) = ¢,(p)*. We have
rewritten the action in the form

5= —%BZZ (w2 + p? +m?2] [6,(p)[ .

We insert the action back into the partition function, ignoring prefactors of Z be-
cause these are irrelevant for thermodynamics:

7 /D¢HHexp [—%ﬁ? (v + % +m?) [ou(p)[*

We do the integration over field configurations, the phases of the ¢, (p) do give rise
to an overall factor, for the integrations over the absolute values |¢,(p)| we insert

[exp(—1/2az?)dz x 1/ /a:
zoc [TTL 15 (w2 +p2+m?)] 7

Of course, this is nothing else but the well-known functional determinant:

N |=

Z o (det [-02 — A +m?])

We evaluate further the $-dependence, starting from

InZ = —%Zgln [62 (u)TQL—FpQ—I—mQ)] .
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We rewrite this in a form which enables us to do the summation over n. We
abbreviate w? = p? + m? and insert

(Buw)? 2
In [(2mn)* + (Bw)?] = /1 (dL +c

2mn)? 4 x2

into the partition function, omitting the constant:
1 B q(a?)
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where we have inserted > °° _ 1/(n® + 2?) = 7w/acoth(ra)! and [ coth(z)dzr =
Insinh(z) and we have omitted the -independent lower integration boundary.

We continue by taking the continuum limit of the Fourier transform Zp — V/(2n)? [ d*p
and we insert Insinh(z) = 1/2 + /2 4 In(1 — exp(—2z)):

InZ = v/ (gj:;g {—1 e - 6_’8”)] .

The constant inside the square bracket is omitted because it is S-independent, the
term proportionate to 3 is the (highly UV-divergent) zero-point energy which we
need to subtract anyway because we want P = 0 in the limit § — co. We consider
the massless limit w = |p| to arrive at

InZ = V/%(élw)(—l)/dwﬁ In(1—e ™)
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from which we have P = 370y In Z = 3=*x2/90.

'We use the residue theorem for this, the function 7i coth(miz) has residue one for z € Z. Therefore for
ia ¢ 7 the function i coth(miz)/[(z + ia)(z — ia)] has residue 1/(z% + a?) for z € Z. We consider the
integration along the contour C' : z(¢) = Rexp(i¢) which vanishes as R — oo. From

oo

1
0= Rli_r)nOC ; micoth(miz)/[(z +ia)(z —ia)ldz = Z prp_ + i coth(—wa)% + mi coth(ma)

n=—oo
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we get the result inserted above. To check |coth (Rexpid)| < ¢ we insert

2 cos(2R sin ¢)
_ L+ cosh(2R cos(¢))
- 1— cos(2Rsin ¢)

cosh(2R cos(¢))

eR(cos ¢+isin @) + efR(cos ¢+isin @)

igy |2 —
|C0th (Re )| - eR(cos p+ising) _ o—R(cos ¢p+isin ¢)

Although the function cos(2R sin(¢))/ cosh(2R cos(¢)) is equal to one at ¢ = 7/2 +nym, R = nam, we
can choose the sequence of radii R, such that cos(2R,, sin(¢))/ cosh(2R,, cos(¢)) < ¢ < 1 for all n.
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Figure 1: The two-loop vacuum bubble diagram of A¢* theory. Its symmetry factor is 3.

2. We condense the notation first, ) is used for the sum over n and p, exp(iw,7)
should be understood as exp(iw,T + ipx) in consequence. Inserting the Fourier
transforms we have therefore

A V2 defd3$fde¢ke 38° Axlowl® (H | Bn,) €i@ntten)
Hk d¢ke*§52Ak|¢k| :

with Ay = w? + p? + m? The integral over ¢, vanishes by antisymmetry under
¢r — —¢r unless the term is of the form ¢, ¢, D0, = \¢T1\2 ]@2]2. In the
four-fold sum every term |¢,. |* shows up once, every term |b,, |” |¢y,|* With 71 # 7,
shows up three times (r; = —ry, r1 = —rs , r1 = —r4). We insert

/dx e}x:p_%‘””2 dr =V 27ra_%,
/dx exp_%‘”:2 22dr = v 27?@‘3,
/dx exp’%‘”‘”2 2ide = 3v2ra 2

hlZl =

for every de¢,,. All the terms v27a~'/? in the numerator are cancelled by equal
terms in the denominator. We are left with a double sum

mzi=-3 Y (@ piem]) (B W+ pi e m?) Y
7"1,p177“27p2

where the trailing 3V arises from [ d*zd76(x)d(7) and we have written the combi-
natorial factor 3 explicitly. We take the continuum limit of the Fourier transform

as above: )
Z/ w2 +p2 +m2

We recognise the expression above as the two—loop integral in figure 1 with (w? +
p? +m?)~! as the propagator associated with an internal line.

In Zl = —3/\ﬁV

(1)

3. We evaluate In Z; for m = 0, we have therefore w = |p|. First we do the sum in the
propagator:

We evaluate the integral over Fourier modes with a cutoff:

d’p 1 Bw\ 1 A o
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The second term in the expression above is -independent and is therefore omitted,
the other two A-dependent terms vanish in the limit A — oo. If we insert this back
into (1), we arrive at

1\? A
= -1 = — = —— —4
11—6 8V1nZ1— 3)\(12ﬁ2) 486 .
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