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Exercise 8.1 Charge Density and Current Density Operators

In this exercise we consider some of the most fundamental properties of electromagnetism
in quantum mechanics, such as gauge invariance and the continuity equation.

a) We will first consider a system of chargeless particles for which we define the oper-
ators

ρ̂(r) := δ(r− r̂) (1)

ĵ(r) :=
1

2m

(
p̂ ρ̂(r) + ρ̂(r) p̂

)
, (2)

where ρ̂(r) represents the particle density and ĵ(r) the current density.

Show that for a given (normalizable) state ψ, the following relations hold:

(i) : 〈 ρ̂(r) 〉ψ = |ψ(r)|2 , (3)

(ii) : 〈 ĵ(r) 〉ψ =
~

2mi

[
ψ(r)∇ψ(r)− ψ(r)∇ψ(r)

]
(4)

b) Now we want to turn our interest to charged particles. As a first step, we consider
a single charged particle controlled by the scalar potential V (r, t) and couple it the
electromagnetic field. This system can conveniently be described by the Hamiltonian

Ĥ(t) =
1

2m

(
p̂− e

c
A(r̂)

)2

+ V (r̂, t) , (5)

where the coupling to the vector potential A(r) is performed by “minimal substitu-
tion”, p̂→ p̂− eA(r̂)/c .

Show that the particle density operator ρ̂(r) and the operator Ĵ(r),

Ĵ(r) := ĵ(r)− e

mc
A(r) ρ̂(r) , (6)

satisfy the continuity equation in the Heisenberg-picture (subscript “H”):

∂

∂t
ρ̂H(r, t) + ∇ · ĴH(r, t) = 0 (7)

Note that in general the current density is defined through the continuity equation,
i.e. given the density of a system, one expresses its time derivative by the divergence
of a vector field. This vector field then defines the current density of this system.
Consequently, we can identify the operator Ĵ(r) with the current density of the
system. The first part of the current density (6) is known as the “paramagnetic”
current density while the second part denotes the “diamagnetic” part.

c) From classical electrodynamics we know that the electromagnetic field comes with
a gauge degree of freedom. In this part of the exercise, we want to consider the
corresponding gauge transformation in quantum mechanics.



Show that the matrix elements 〈ψ | Ĵ(r) |ϕ〉 are invariant with respect to gauge
transformations

A(r) 7−→ A(r) + [∇χ(r)] , φ(r) 7−→ φ(r) eieχ(r)/~c , (8)

where φ stands for both ψ and ϕ and χ(r) is an arbitrary scalar function.

What is the difference between gauge transformations in classical electrodynamics
and in quantum mechanics?

Hints for Exercise 8.1:

b) In the Heisenberg-picture, an arbitrary operator ÔH is given by

ÔH(r, t) = Û †(t) Ô(r) Û(t) , (9)

where Û(t) defines the time-evolution operator. ÔH follows the equation of motion

i~
d

dt
ÔH(t) = [ÔH(t), ĤH(t)] + i~

(
d

dt
ÔS(t)

)
H

. (10)

Use Û(t) to express the equation of motion for ρ̂H(r, t) in terms of Schrödinger-
picture operators.

c) First relate the off-diagonal matrix elements 〈ψ|Ô|ϕ〉 to a sum of diagonal matrix
elements 〈ψ±ϕ|Ô|ψ±ϕ〉 and 〈ψ± iϕ|Ô|ψ± iϕ〉. Hence, it is sufficient to show the
statement for diagonal matrix elements.

Exercise 8.2 Quantum Dot Coupled to an Electromagnetic Field

A quantum dot is a small (nano-scale) structure with quantized electronic excitations that
are confined to the range of the quantum dot. Usually, quantum dots are implemented in
semiconductors and consist of “potential islands” where a single (or sometimes very few)
electron is localized.
We will describe a quantum dot as a spherically symmetric three-dimensional harmonic
oscillator of frequency ωd. In this picture, every state can be written as a superposition
(tensor product) of states of three independent one-dimensional harmonic oscillators,

|n〉 ≡ |nx, ny, nz〉 ≡ |nx〉 ⊗ |ny〉 ⊗ |nz〉 . (11)

The energy EN of such a state |n〉, given by EN = ~ωd (nx+ny +nz + 3/2), only depends
on N = nx + ny + nz. Therefore, the excited states, N > 0, are highly degenerate. We
assume the quantum dot initially to be set up in the ground state and couple it to a
polarized, monochromatic electromagnetic radiation field (not quantized), given by the
vector potential

A(r, t) =
1

L3/2

[
A e eik·r−iωt + A∗ e∗ e−ik·r+iωt

]
. (12)

Here A is the amplitude, e the polarization vector, L3 the volume of the whole system
(not the volume of the quantum dot) and k = (0, 0, k) the wave number.



We assume that the transition probability of the system into one of the excited states |n〉
is given by Fermi’s golden rule,

Γ(0)→(n) =
2π

~
δ(En − E0 − ~ω)

e2

L3c2
|A|2

∣∣∣〈n| ĵ(−k) · e |0〉
∣∣∣2 , (13)

where ĵ(k) represents the paramagnetic current density (cf. Exercise 8.1) in momentum
space, i.e.

ĵ(k) =

∫
d3r e−ik·rĵ(r) =

1

2

[
p̂

m
e−ik·r̂ + e−ik·r̂

p̂

m

]
. (14)

a) Compute the matrix elements 〈n| ĵ(−k) · e |0〉 and distinguish between the three
types of polarization:

(i) e = eX = (1, 0, 0) linear polarization in x direction

(ii) e = eY = (0, 1, 0) linear polarization in y direction

(iii) e = e± = (1,±i, 0)/
√

2 circular polarization (left- / right-handed)

b) Show that the total absorption rate Γ(ω) of the quantum dot as a function of the
frequency ω, which is defined as the sum over the partial absorption rates, is given
by

Γ(ω) :=
∑

nx,ny ,nz

Γ(0)→(n)

=
e2π

L3c2m~
|A|2

∑
nz

δ

(
nz + 1− ω

ωd

)(
ω2

ωdωm

) ω
ωd
−1

Γ

[
ω

ωd

]−1

e
− ω2

ωdωm , (15)

where we introduced ωm = 2c2m/~ and k = ω/c.

Hints for Exercise 8.2:

a) It may be useful to express r̂ and p̂ in terms of the creation and annihilation oper-
ators of the states |ni〉.
Use the Baker-Campbell-Hausdorff formula,

exp
{
Â+ B̂

}
= exp

{
Â
}

exp
{
B̂
}

exp
{
−1

2

[
Â , B̂

]}
, (16)

which holds if [Â, [Â, B̂]] = [B̂, [B̂, Â]] = 0.

b) Use the relation

n! = Γ [n+ 1] . (17)


