EIGENTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Exercise 2.1 Degenerate Perturbation Theory I

In the last task of Exercise 1, we have seen that the formalism of (time-independent) perturbation theory breaks down if some energy eigenvalues of the unperturbed system are degenerate. In order to treat such a system perturbatively, all singularities due to the vanishing denominators $(E_n^{(0)} - E_m^{(0)})$ in the degenerate subspace need to be removed before expanding the eigenenergies and eigenstates in perturbative series. As an illustrative example, we examine a perturbed two-level system where one level is degenerate,

$$H = \begin{pmatrix} E & \lambda & 0\\ \lambda & E & \lambda\\ 0 & \lambda & E' \end{pmatrix}, \tag{1}$$

with $E \neq E'$ and $\lambda \ll |E - E'|$.

- a) Apply perturbation theory through order $\mathcal{O}(\lambda^2)$ to compute the energy eigenvalues.
- b) Let us apply perturbation theory in an unorthodox manner: write $H = H'_0 + \lambda V'$ with

$$H'_{0} = \begin{pmatrix} E & \lambda & 0 \\ \lambda & E & 0 \\ 0 & 0 & E' \end{pmatrix}, \quad V' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$
 (2)

How does this approach differ from the straight forward Ansatz used in a), i.e., $H_0 = H \Big|_{\lambda=0}$?

c) Using part a) solve the following equation,

$$x^{3} - x^{2} - 2\lambda^{2}x + \lambda^{2} = 0, (3)$$

as a perturbative series in λ up to second order.

Exercise 2.2 Degenerate Perturbation Theory II

Now we assume that the perturbation does not mix the two degenerate states,

$$H = \begin{pmatrix} E & 0 & 0\\ 0 & E & \lambda\\ 0 & \lambda & E' \end{pmatrix},\tag{4}$$

with $E \neq E'$ and $\lambda \ll |E - E'|$.

- a) Find the exact solution.
- b) Try to apply degenerate perturbation theory up to NLO (as discussed in class).

c) If $\langle n^{(0)}|V|m^{(0)}\rangle = 0$ for degenerate states $|n^{(0)}\rangle$ and $|m^{(0)}\rangle$ one needs to take into account second order corrections in order to remove the degeneracy. Repeating the analysis which lead to the formula

$$E_n^{(1)}\delta_{nm} = \langle m^{(0)} | V | n^{(0)} \rangle, \quad \text{for } m \in D_n,$$
(5)

where D_n denotes the degenerate subspace, show that the energy corrections are given by the formula

$$E_n^{(2)}\delta_{mn} = \sum_{k \notin D_n} \frac{\langle m^{(0)} | V | k^{(0)} \rangle \langle k^{(0)} | V | n^{(0)} \rangle}{E_n^{(0)} - E_k^{(0)}}.$$
(6)

d) Find the energy eigenvalues of (4) in NNLO and compare the result to the exact solution.

Exercise 2.3 Variational Method

a) Consider the Hamiltonian

$$H = \frac{p^2}{2} + V(x), \quad V(x) = \begin{cases} \infty, & |x| > 1\\ 0, & |x| < 1. \end{cases}$$
(7)

Apply the variational method for $\Psi_{\lambda}(x) = 1 - \lambda x^2$. Explain why this ansatz does not yield a satisfactory result.

b) Once again, we have a look at the perturbed harmonic oscillator from Exercise 1.1,

$$H = \frac{1}{2}(p^2 + x^2) + gx^4.$$
 (8)

Find an upper bound for the ground state energy using the ground state $|0\rangle$ of the unperturbed system as a trial state. Compare your result to the one obtained in first order perturbation theory.

Now, apply the variational method with $\Psi_{\lambda}(x) = \langle x | 0 \rangle (1 + \lambda x^2)$.