Entanglement as a resource Exercise 13.1

Suppose Alice and Bob share a state ρ_{AB} on $\mathcal{H}_A \otimes \mathcal{H}_B$. We wish to show that entanglement does not increase under local operations and classical communication (LOCC). We measure entanglement using

$$E(A:B) := \frac{1}{2} \min_{\rho_{ABR}} I(A:B|R),$$
(1)

FS09

where the minimum is taken over all extensions ρ_{ABR} of ρ_{AB} such that $tr_R(\rho_{ABR}) = \rho_{AB}$.

- a) Given a pure state ρ_{AB} , show that $\rho_{ABR} = \rho_{AB} \otimes \rho_{R}$.
- b) A maximally entangled state on $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ is a pure state ρ_{AB} with $tr_{A}(\rho_{AB}) = \mathbb{1}_{B}/d_{B}$ and $\operatorname{tr}_{\mathrm{B}}(\rho_{\mathrm{AB}}) = \mathbb{1}_{\mathrm{A}}/d_{\mathrm{A}}$, where $d_{\mathrm{A}} = \dim \mathcal{H}_{\mathrm{A}}$. Calculate E(A:B) for the case when \mathcal{H}_{A} and \mathcal{H}_{B} are two-dimensional.

We first show that local operations (LO) cannot increase entanglement. A local operation is a CPM and can be decomposed into three parts: (i) introduce of an extension $\rho_{ABR} \mapsto \rho_{AA'BR} =$ $\rho_{ABR} \otimes \sigma_{A'}$, (ii) apply a unitary on \mathcal{H}_A and finally (iii) do a partial trace over some subsystem of \mathcal{H}_A .

- c) Show that extensions (i) and unitaries (ii) do not change mutual information I(A : B|R).
- d) Show that a partial trace (iii) can only reduce mutual information I(A : B|R).
- Note that we did not use the minimum in the definition of E(A:B) so far.

Next we show that classical communication (CC) does not increase entanglement. Classical communication consists of a measurement on Alice's side followed by communication of the measurement result. Mathematically, Alice prepares a state that is classical in A' using local operations:

$$\rho_{\rm AA'BR} = \sum_{i} p_i |i\rangle \langle i|_{\rm A'} \otimes \rho^i_{\rm ABR}.$$
(2)

Classical communication maps this state to

$$\rho_{\rm AA'BR} \mapsto \rho_{\rm AA'BB'R''} = \sum_{i} p_i |i\rangle \langle i|_{\rm A'} \otimes |i\rangle \langle i|_{\rm B'} \otimes \rho^i_{\rm ABR''}, \qquad (3)$$

where R'' is another extension of the system.

- e) Show that I(A:B) can increase under classical communication by giving an example. Hint: Start with an empty system and share a classical random variable.
- f) Show that I(A : B|R) does not increase in your example for an appropriate choice of extension R.
- g) Show that for any R there exists an R' such that $I(A, A': B|R) \ge I(A, A': B, B'|R')$.