Exercise 4.1 Trace distance

The trace distance between two states given by density matrices $\rho, \sigma \in \mathcal{S}(\mathcal{H})$ is defined as

$$\delta(\rho, \sigma) = \frac{1}{2} \operatorname{tr} |\rho - \sigma|.$$
(1)

Alternatively we may write

$$\delta(\rho, \sigma) = \max_{P} \operatorname{tr}(P(\rho - \sigma)), \qquad (2)$$

where we maximize over all projectors P onto a subspace of \mathcal{H} .

The following lemma can be used to show equivalence of the two definitions:

Lemma 1. Given two quantum states $\rho, \sigma \in S(\mathcal{H})$, there exist two positive operators $S, R \in \mathcal{P}(\mathcal{H})$ with orthogonal support such that $\rho - \sigma = R - S$.

- a) Prove Lemma 1.
- b) Show that (1) and (2) are equivalent.

Exercise 4.2 Trace distance of pure states

Find a simple expression for the trace distance of two pure states $\delta(|\phi\rangle, |\psi\rangle)$.

Exercise 4.3 Purification

A decomposition of a state $\rho_{\rm A} \in \mathcal{S}(\mathcal{H}_{\rm A})$ is a—non-unique—convex combination of pure states $\rho_{\rm A}^x = |a_x\rangle\langle a_x|$ such that $\rho_{\rm A} = \sum_x \lambda_x \rho_{\rm A}^x$.

- a) Show that $|\Psi\rangle = \sum_x \sqrt{\lambda_x} |a_x\rangle_A \otimes |b_x\rangle_B$ is a purification for *any* orthonormal basis $\{|b_x\rangle_B\}_x$ of \mathcal{H}_B .
- b) Show that any two purifications are related by a *local* unitary transformation on the purifying system.
- *b) For ρ_A as defined above, and any purification $|\Phi\rangle$ of ρ_A on $\mathcal{H}_A \otimes \mathcal{H}_B$, find an orthogonal measurement $\{M_B^x\}_x$ on \mathcal{H}_B , such that

$$\lambda_x = \operatorname{tr}(|\Phi\rangle\langle\Phi|(\mathbb{1}_{\mathrm{A}}\otimes M_{\mathrm{B}}^x)) \quad \text{and} \quad \rho_{\mathrm{A}}^x = \frac{\operatorname{tr}_{\mathrm{B}}(|\Phi\rangle\langle\Phi|(\mathbb{1}_{\mathrm{A}}\otimes M_{\mathrm{B}}^x))}{\lambda_x}.$$
(3)

In this picture λ_x is the probability of measuring x and ρ_A^x is the state after such a measurement.