Quantum Field Theory II, Exercise Set 6.

FS 08/09
Due: 08.04.09

1. Completing the Lecture Notes - I

Prove eq. (4.71) of the Lecture Notes, i.e.,

$$
\begin{equation*}
\int e^{-\xi^{T} A \xi+\mathrm{i} \eta^{T} \xi} d \xi_{1} \cdots d \xi_{n}=e^{-\frac{1}{4} \eta^{T} A^{-1} \eta} 2^{n / 2} \sqrt{\operatorname{det} A} \tag{1}
\end{equation*}
$$

A being an antisymmetrc $n \times n$ matrix, with n even.
Hint: Separate the term $i \eta^{T} \xi$ into $\left(i \eta^{T} \xi / 2+i \xi^{T} \eta / 2\right)$, then find the fields $\xi_{c l}$, $\xi_{c l}^{T}$ that minimize the exponent and use them to reshift the integration variables in such a way as to cancel the spurious terms $\left(i \eta^{T} \xi / 2+i \xi^{T} \eta / 2\right)$. You should then be left with the evaluation of an integral of the form of eq (4.70) in the script. Work out a few examples $(n=2, n=4)$ to convince yourself of the result - keep in mind that A is antisymmetric!

2. Completing the Lecture Notes - II

Let us prove eq. (4.6) from the Lecture Notes, i.e.,

$$
\begin{equation*}
\int e^{-|z|^{2}}|z\rangle\langle z| \frac{\mathrm{d} \bar{z} \wedge \mathrm{~d} z}{2 \pi \mathrm{i}}=1 \tag{2}
\end{equation*}
$$

a) Show that

$$
\begin{equation*}
\frac{1}{2 \pi \mathrm{i}} \int e^{-a \bar{z} z} \mathrm{~d} \bar{z} \wedge \mathrm{~d} z=\frac{1}{a} \tag{3}
\end{equation*}
$$

Hint: Write the complex number z as $z=x+\mathrm{i} y$, and carefully work out the Jacobian. Then the integral reduces to the usual Gaussian one!
b) Argue that integrals of the form

$$
\begin{equation*}
\int z^{n} \bar{z}^{m} e^{-|z|^{2}}|z\rangle\langle z| \frac{\mathrm{d} \bar{z} \wedge \mathrm{~d} z}{2 \pi \mathrm{i}} \tag{4}
\end{equation*}
$$

vanish unless $n=m$. You can simply focus on the case with $m=0$. Then compute the integral

$$
\begin{equation*}
\int(z \bar{z})^{n} e^{-|z|^{2}}|z\rangle\langle z| \frac{\mathrm{d} \bar{z} \wedge \mathrm{~d} z}{2 \pi \mathrm{i}} \tag{5}
\end{equation*}
$$

by noticing that it can be obtained from (3) by taking derivatives with respect to a.
c) Multiply both sides of equation (1) by $\langle\psi|$ on the left and by $|\chi\rangle$ on the right. Using the relations (4.3) - (4.8) in the Script and the result from point b), prove that the LHS reduces indeed to $\langle\psi \mid \chi\rangle$.

3. QED: Wick's theorem and the path integral formulation

The generating functional for the Dirac field is

$$
\begin{equation*}
Z(\bar{\eta}, \eta)=\mathcal{N} \int \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left[\mathrm{i} \int d 4 x\{\bar{\psi}(x)(\mathrm{i} \partial-m) \psi(x)+\bar{\eta} \psi+\bar{\psi} \eta\}\right] \tag{6}
\end{equation*}
$$

with the normalization factor \mathcal{N} chosen so that $Z(0,0)=1$. Form this equation it is clear that for example the 2-points function is given by

$$
\begin{equation*}
\langle 0| T \psi\left(x_{1}\right) \bar{\psi}\left(x_{2}\right)|0\rangle=\left.\mathcal{N}^{-1}\left(\frac{1}{\mathrm{i}} \frac{\delta}{\delta \bar{\eta}\left(x_{1}\right)}\right)\left(-\frac{1}{\mathrm{i}} \frac{\delta}{\delta \eta\left(x_{2}\right)}\right) Z(\bar{\eta}, \eta)\right|_{\bar{\eta}, \eta=0} \tag{7}
\end{equation*}
$$

with $\eta, \bar{\eta}$ anticommuting generators. On the other hand, using eq (4.68) of the Script, (6) can be rewritten as

$$
\begin{equation*}
Z(\bar{\eta}, \eta)=\mathcal{N} \exp \left[-\int \mathrm{d}^{4} x \mathrm{~d}^{4} y \bar{\eta}(x) S_{F}(x-y) \eta(y)\right] \tag{8}
\end{equation*}
$$

where the fermionic propagator $S_{F}(x-y)$ is defined via

$$
\begin{equation*}
\mathrm{i}(\mathrm{i} \partial \partial-m) S_{F}(x-y)=-\delta^{(4)}(x-y) \tag{9}
\end{equation*}
$$

a) Using eq (8) and the RHS of eq (7), prove that indeed

$$
\begin{equation*}
\langle 0| T \psi\left(x_{1}\right) \bar{\psi}\left(x_{2}\right)|0\rangle=S_{F}(x-y) . \tag{10}
\end{equation*}
$$

b) Proceeding in a similar way, compute $\langle 0| T \psi\left(x_{1}\right) \bar{\psi}\left(x_{2}\right) \psi\left(x_{3}\right) \bar{\psi}\left(x_{4}\right)|0\rangle$ and compare your result with what you would obtain by a straightforward application of Wick's theorem.

4. Finite Temperature Field Theory

In this exercise we apply the path integral formalism to finite temperature field theory. We consider a scalar field theory with Hamiltonian $H:=\int \mathrm{d}^{3} k \varepsilon(\mathbf{k}) a^{*}(\mathbf{k}) a(\mathbf{k})$, where, e.g., $\varepsilon(\mathbf{k})=\frac{\mathbf{k}^{2}}{2 m}$. The grand-canonical partition function at inverse temperature β is defined by

$$
\begin{equation*}
Z_{\beta}:=\operatorname{Tr}\left(\mathrm{e}^{-\beta(H-\mu N)}\right), \tag{11}
\end{equation*}
$$

where μ is the chemical potential and $N:=\int \mathrm{d}^{3} k a^{*}(\mathbf{k}) a(\mathbf{k})$.
a) Show that the grand-canonical partition function can be written as

$$
\begin{equation*}
Z_{\beta}=\int \mathcal{D} \bar{\alpha} \wedge \mathcal{D} \alpha\langle\alpha|\left(\mathrm{e}^{-\beta(H-\mu N)}\right)|\alpha\rangle \mathrm{e}^{-\int \mathrm{d}^{3} k|\alpha(\mathbf{k})|^{2}} \tag{12}
\end{equation*}
$$

where $|\alpha\rangle=\mathrm{e}^{\int \mathrm{d}^{3} k \alpha(\mathbf{k}) a^{*}(\mathbf{k})}|0\rangle$.
Hint: Insert $\mathbb{1}=\int \mathcal{D} \bar{\alpha} \wedge \mathcal{D} \alpha|\alpha\rangle\langle\alpha| \mathrm{e}^{-\int \mathrm{d}^{3} k|\alpha(\mathbf{k})|^{2}}$ in the definition of the trace.
b) Using equation (4.25) in the lecture notes, show that grand-canonical partition function is given by

$$
\begin{equation*}
Z_{\beta}=\int \mathcal{D} \bar{\alpha} \wedge \mathcal{D} \alpha \mathrm{e}^{-\int_{0}^{\beta} \mathrm{d} s \int \mathrm{~d}^{3} k \bar{\alpha}(\mathbf{k}, s)\left(\frac{\partial}{\partial s}-\mu+\varepsilon(\mathbf{k})\right) \alpha(\mathbf{k}, s)} \tag{13}
\end{equation*}
$$

with boundary conditions $\alpha(\mathbf{k}, \beta)=\alpha(\mathbf{k}, 0)$ and $\bar{\alpha}(\mathbf{k}, \beta)=\bar{\alpha}(\mathbf{k}, 0)$.

The thermal average of an operator \mathscr{O} at inverse temperature β is given by

$$
\begin{equation*}
\langle\mathscr{O}\rangle_{\beta}=\frac{1}{Z_{\beta}} \operatorname{Tr}\left(\mathscr{O} \mathrm{e}^{-\beta(H-\mu N)}\right) \tag{14}
\end{equation*}
$$

It can be expressed in terms of the temperature ordered Green's functions are defined by

$$
\begin{align*}
& G^{(2 n)}\left(\mathbf{k}_{1}, s_{1} ; \ldots \mathbf{k}_{n}, s_{n} \mid \mathbf{k}_{n+1}, s_{n+1} \ldots \mathbf{k}_{2 n}, s_{2 n}\right) \\
&:=\frac{1}{Z_{\beta}} \operatorname{Tr}\left(\mathrm{e}^{-\beta(H-\mu N)} \mathrm{T}\left[a\left(\mathbf{k}_{1}, s_{1}\right) \ldots a\left(\mathbf{k}_{n}, s_{n}\right) a^{*}\left(\mathbf{k}_{n+1}, s_{n+1}\right) \ldots a^{*}\left(\mathbf{k}_{2 n}, s_{2 n}\right)\right]\right), \tag{15}
\end{align*}
$$

where $a(\mathbf{k}, t)=\mathrm{e}^{t H} a(\mathbf{k}, 0) \mathrm{e}^{-t H}$ and $a^{*}(\mathbf{k}, t)=\mathrm{e}^{t H} a^{*}(\mathbf{k}, 0) \mathrm{e}^{-t H}, 0 \leq t \leq \beta$.
We define a generating functional $Z_{\beta}[J, \bar{J}]$ by

$$
\begin{align*}
& Z_{\beta}[J, \bar{J}]:=\int \mathcal{D} \bar{\alpha} \wedge \mathcal{D} \alpha \exp \left[-\int_{0}^{\beta} \mathrm{d} s \int \mathrm{~d}^{3} k\left\{\bar{\alpha}(\mathbf{k}, s)\left(\frac{\partial}{\partial s}-\mu+\varepsilon(\mathbf{k})\right) \alpha(k, s)\right.\right. \\
&+\bar{\alpha}(\mathbf{k}, s) \bar{J}(\mathbf{k}, s)+\alpha(\mathbf{k}, s) J(\mathbf{k}, s)\}] \tag{16}
\end{align*}
$$

where we impose the same periodic boundary conditions as in (13).
c) Find an expression for the temperature ordered Green's functions in terms of the generating functional $Z_{\beta}[J, \bar{J}]$.
d) Show that

$$
\begin{equation*}
Z_{\beta}[J, \bar{J}]=\exp \left[-\int_{0}^{\beta} \mathrm{d} s \int \mathrm{~d}^{3} k J(\mathbf{k}, s) \frac{1}{\frac{\partial}{\partial s}-\mu+\varepsilon(\mathbf{k})} \bar{J}(\mathbf{k}, s)\right] \tag{17}
\end{equation*}
$$

e) Expanding J and \bar{J} in Fourier series, show that

$$
\begin{equation*}
Z_{\beta}[J, \bar{J}]=\exp \left[-\int_{0}^{\beta} \mathrm{d} s \int_{0}^{\beta} \mathrm{d} s^{\prime} \int \mathrm{d}^{3} k J(\mathbf{k}, s) \bar{J}\left(\mathbf{k}, s^{\prime}\right) G\left(\mathbf{k}, s-s^{\prime}\right)\right] \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
G(\mathbf{k}, t)=\frac{1}{\beta} \sum_{\omega_{n} \in \frac{2 \pi}{\beta} \mathbb{Z}} \frac{\mathrm{e}^{-\mathrm{i} \omega_{n} t}}{-\mathrm{i} \omega_{n}-\mu+\varepsilon(\mathbf{k})} \tag{19}
\end{equation*}
$$

Hint: $J(\mathbf{k}, s)=\frac{1}{\beta} \sum_{\omega_{n} \in \frac{2 \pi}{\beta} \mathbb{Z}} \mathrm{e}^{\mathrm{i} \omega_{n} s} \hat{J}\left(k, \omega_{n}\right), \hat{J}\left(\mathbf{k}, \omega_{n}\right)=\int_{0}^{\beta} \mathrm{d} s \mathrm{e}^{-\mathrm{i} \omega_{n} s} J(\mathbf{k}, s)$.
f) Carrying out the sum in (19) explicitely show that

$$
\begin{equation*}
G(\mathbf{k}, t)=\mathrm{e}^{-t(\varepsilon(\mathbf{k})-\mu)}\left(\frac{1}{1-\mathrm{e}^{-\beta(\varepsilon(\mathbf{k})-\mu)}} \theta(t)+\frac{\mathrm{e}^{-\beta(\varepsilon(\mathbf{k})-\mu)}}{1-\mathrm{e}^{-\beta(\varepsilon(\mathbf{k})-\mu)}} \theta(-t)\right) \tag{20}
\end{equation*}
$$

Hint: The denominator may be written as $\frac{1}{a}=\int_{0}^{\infty} \mathrm{d} \lambda \mathrm{e}^{-\lambda a}$. The summation over ω_{n} can be carried out using the Poisson summation formula, i.e., use $\sum_{n=-\infty}^{\infty} \mathrm{e}^{-2 \pi \mathrm{i} n \frac{x}{\beta}}=$ $\beta \sum_{k=-\infty}^{\infty} \delta(x-k \beta)$. Finally, treat the cases $t>0$ and $t<0$ seperately and pay attention to the fact that $\frac{|t|}{\beta}<1$.

