Quantum Field Theory II, Exercise Set 6.

FS 08/09 Due: 08.04.09
1. Completing the Lecture Notes - 1

Prove eq. (4.71) of the Lecture Notes, i.e.,
/e—ﬁTA§+inT£d£1 dey, = e—inTAfann/%/detA, (1)

A being an antisymmetrc n X n matrix, with n even.

Hint: Separate the term inT & into (inT€/2 +i€Tn/2), then find the fields &y, € that minimize
the exponent and use them to reshift the integration variables in such a way as to cancel the
spurious terms (inT€/2 +i€Tn/2). You should then be left with the evaluation of an integral of
the form of eq (4.70) in the script. Work out a few examples (n = 2, n = 4) to convince yourself
of the result - keep in mind that A is antisymmetric!

2. Completing the Lecture Notes - 11

Let us prove eq. (4.6) from the Lecture Notes, i.e.,

/6_22‘Z><Z’d§/\dz . (2)
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a) Show that

1 —azZz 1= _ 1
2_71'i e dZ/\dZ—a (3)

Hint: Write the complex number z as z = x + iy, and carefully work out the Jacobian.
Then the integral reduces to the usual Gaussian one!

b) Argue that integrals of the form
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vanish unless n = m. You can simply focus on the case with m = 0. Then compute the
integral
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by noticing that it can be obtained from (3) by taking derivatives with respect to a.

¢) Multiply both sides of equation (1) by (| on the left and by |yx) on the right. Using the
relations (4.3) - (4.8) in the Script and the result from point b), prove that the LHS reduces
indeed to (¥|x).

3. QED: Wick’s theorem and the path integral formulation

The generating functional for the Dirac field is

Z(m,m) =N / Dy D1 exp [i / ddx {p(z) (i — m)p(x) + 7 +Pn}| (6)



with the normalization factor N chosen so that Z(0,0) = 1. Form this equation it is clear that
for example the 2-points function is given by

, (7)
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with 7,7 anticommuting generators. On the other hand, using eq (4.68) of the Script, (6) can
be rewritten as

2 =Nesp |- [ ataatyn@s(e - )] 0
where the fermionic propagator Sp(x — y) is defined via

i(ig = m)Sp(z —y) = =6 (z —y). (9)

a) Using eq (8) and the RHS of eq (7), prove that indeed

(O[T (21)4(2)[0) = Sp(z —y). (10)

b) Proceeding in a similar way, compute (0|7%(x1)9(x2)(x3)1(x4)]|0) and compare your
result with what you would obtain by a straightforward application of Wick’s theorem.

4. Finite Temperature Field Theory

In this exercise we apply the path integral formalism to finite temperature field theory. V\Q/'e
consider a scalar field theory with Hamiltonian H := [ d3ke(k)a*(k)a(k), where, e.g., e(k) = &
The grand-canonical partition function at inverse temperature ( is defined by

Zg = Tr(e PH-1N)Y (11)

where 1 is the chemical potential and N := [ d3ka*(k)a(k).

a) Show that the grand-canonical partition function can be written as
Zy— / D& A Da (] (e=BH=1N) | gye~ T kel (12)

where |o) = el *kalk)a*(k)|0).
Hint: Insert 1 = [ Da A Da la)(ale™ [ K iy the definition of the trace.

b) Using equation (4.25) in the lecture notes, show that grand-canonical partition function is
given by

25 = /Da A Do Jo ds [ dhatks) (@ —ete()alks) (13)
with boundary conditions a(k, 3) = a(k,0) and a(k, 5) = a(k,0).
The thermal average of an operator & at inverse temperature § is given by

(6), = ZiTr(ﬁe—ﬁUf—ﬂN)). (14)
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It can be expressed in terms of the temperature ordered Green’s functions are defined by

G(2n) (k17 515... Kn,y sy ’ kn-‘,—la Sp+1--- kon, 32n)

= ZiTr(e—ﬂH—uN)T la(ki, 1) ... a(kn, 80)a" (Knt1, Snt1) - - - % (Kan, 520)] ), (15)
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where a(k,t) = e/ a(k,0)e ™ and a*(k,t) = ea*(k,0)e "7 0 <t < 3.

We define a generating functional Z3[J, J] by

_ B
25107 = /Da/\ Da exp {—/ ds/ Pr{ak, s)(% — it e()alk,s)
0
+a(k,s)J(k,s) +alk,s)J(k,s)}|, (16)
where we impose the same periodic boundary conditions as in (13).

c¢) Find an expression for the temperature ordered Green’s functions in terms of the generating
functional Zg[J, J].

d) Show that

8
Zg[J, J] = exp —/ ds/d?’k‘Jk,S—jk,s . 17
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e) Expanding J and J in Fourier series, show that
_ B B _
Zg[J, J] = exp [— / ds / ds’ / d*k J(k, s)J (k, s’)G(k,s—s’)] : (18)
0 0
where i

Gty =~ 3 o (19)
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Hint: J(k,s) = 5 3, c222 ns J(k,wn), J(k,wn) = [ dsen5 (K, s).

f) Carrying out the sum in (19) explicitely show that

1 e~ Be(k)—p)
— o te(k)—n) _
Gl 1) = e (1_e—ﬁ(€(k)—u)9(t)+ et (20
Hint: The denominator may be written as % = fooo d\e™ . The summation over wy,
can be carried out using the Poisson summation formula, i.e., use Y o e72mng

B> re o 0(x — kB). Finally, treat the cases t > 0 and t < 0 seperately and pay attention
to the fact that % < 1.



