
Quantum Field Theory II, Exercise Set 6.

FS 08/09 Due: 08.04.09

1. Completing the Lecture Notes - I

Prove eq. (4.71) of the Lecture Notes, i.e.,

∫

e−ξT Aξ+iηT ξdξ1 · · · dξn = e−
1

4
ηT A−1η2n/2

√
detA , (1)

A being an antisymmetrc n× n matrix, with n even.

Hint: Separate the term iηT ξ into (iηT ξ/2 + iξT η/2), then find the fields ξcl, ξ
T
cl that minimize

the exponent and use them to reshift the integration variables in such a way as to cancel the
spurious terms (iηT ξ/2 + iξT η/2). You should then be left with the evaluation of an integral of
the form of eq (4.70) in the script. Work out a few examples (n = 2, n = 4) to convince yourself
of the result - keep in mind that A is antisymmetric!

2. Completing the Lecture Notes - II

Let us prove eq. (4.6) from the Lecture Notes, i.e.,

∫

e−|z|2|z〉〈z|dz ∧ dz

2πi
= 1 . (2)

a) Show that
1

2πi

∫

e−azzdz ∧ dz =
1

a
. (3)

Hint: Write the complex number z as z = x + iy, and carefully work out the Jacobian.
Then the integral reduces to the usual Gaussian one!

b) Argue that integrals of the form

∫

znzme−|z|2|z〉〈z|dz ∧ dz

2πi
(4)

vanish unless n = m. You can simply focus on the case with m = 0. Then compute the
integral

∫

(zz)ne−|z|2|z〉〈z|dz ∧ dz

2πi
(5)

by noticing that it can be obtained from (3) by taking derivatives with respect to a.

c) Multiply both sides of equation (1) by 〈ψ| on the left and by |χ〉 on the right. Using the
relations (4.3) - (4.8) in the Script and the result from point b), prove that the LHS reduces
indeed to 〈ψ|χ〉.

3. QED: Wick’s theorem and the path integral formulation

The generating functional for the Dirac field is

Z(η, η) = N
∫

DψDψ exp

[

i

∫

d4x
{

ψ(x)(i6∂ −m)ψ(x) + ηψ + ψη
}

]

, (6)



with the normalization factor N chosen so that Z(0, 0) = 1. Form this equation it is clear that
for example the 2-points function is given by

〈0|Tψ(x1)ψ(x2)|0〉 = N−1

(

1

i

δ

δη(x1)

)(

−1

i

δ

δη(x2)

)

Z(η, η)











η,η=0

, (7)

with η, η anticommuting generators. On the other hand, using eq (4.68) of the Script, (6) can
be rewritten as

Z(η, η) = N exp

[

−
∫

d4xd4y η(x)SF (x− y)η(y)

]

, (8)

where the fermionic propagator SF (x− y) is defined via

i(i6∂ −m)SF (x− y) = −δ(4)(x− y) . (9)

a) Using eq (8) and the RHS of eq (7), prove that indeed

〈0|Tψ(x1)ψ(x2)|0〉 = SF (x− y) . (10)

b) Proceeding in a similar way, compute 〈0|Tψ(x1)ψ(x2)ψ(x3)ψ(x4)|0〉 and compare your
result with what you would obtain by a straightforward application of Wick’s theorem.

4. Finite Temperature Field Theory

In this exercise we apply the path integral formalism to finite temperature field theory. We
consider a scalar field theory with Hamiltonian H :=

∫

d3kε(k)a∗(k)a(k), where, e.g., ε(k) = k
2

2m .
The grand-canonical partition function at inverse temperature β is defined by

Zβ := Tr(e−β(H−µN)) , (11)

where µ is the chemical potential and N :=
∫

d3ka∗(k)a(k).

a) Show that the grand-canonical partition function can be written as

Zβ =

∫

Dα ∧ Dα 〈α|(e−β(H−µN))|α〉e−
R

d3k|α(k)|2 , (12)

where |α〉 = e
R

d3kα(k)a∗(k)|0〉.
Hint: Insert 1 =

∫

Dα ∧ Dα |α〉〈α|e−
R

d3k|α(k)|2 in the definition of the trace.

b) Using equation (4.25) in the lecture notes, show that grand-canonical partition function is
given by

Zβ =

∫

Dα ∧ Dα e−
R β

0
ds

R

d3kα(k,s)( ∂
∂s

−µ+ε(k))α(k,s) , (13)

with boundary conditions α(k, β) = α(k, 0) and α(k, β) = α(k, 0).

The thermal average of an operator O at inverse temperature β is given by

〈

O
〉

β
=

1

Zβ
Tr(Oe−β(H−µN)) . (14)



It can be expressed in terms of the temperature ordered Green’s functions are defined by

G(2n)(k1, s1; . . . kn, sn |kn+1, sn+1 . . .k2n, s2n)

:=
1

Zβ
Tr
(

e−β(H−µN)T [a(k1, s1) . . . a(kn, sn)a∗(kn+1, sn+1) . . . a
∗(k2n, s2n)]

)

, (15)

where a(k, t) = etHa(k, 0)e−tH and a∗(k, t) = etHa∗(k, 0)e−tH , 0 ≤ t ≤ β.

We define a generating functional Zβ [J, J ] by

Zβ[J, J ] :=

∫

Dα ∧ Dα exp

[

−
∫ β

0
ds

∫

d3k
{

α(k, s)(
∂

∂s
− µ+ ε(k))α(k, s)

+ α(k, s)J(k, s) + α(k, s)J(k, s)
}

]

, (16)

where we impose the same periodic boundary conditions as in (13).

c) Find an expression for the temperature ordered Green’s functions in terms of the generating
functional Zβ[J, J ].

d) Show that

Zβ[J, J ] = exp

[

−
∫ β

0
ds

∫

d3k J(k, s)
1

∂
∂s − µ+ ε(k)

J(k, s)

]

. (17)

e) Expanding J and J in Fourier series, show that

Zβ[J, J ] = exp

[

−
∫ β

0
ds

∫ β

0
ds′
∫

d3k J(k, s)J(k, s′)G(k, s− s′)

]

, (18)

where

G(k, t) =
1

β

∑

ωn∈
2π
β

Z

e−iωnt

−iωn − µ+ ε(k)
. (19)

Hint: J(k, s) = 1
β

∑

ωn∈
2π
β

Z
eiωnsĴ(k, ωn), Ĵ(k, ωn) =

∫ β
0 dse−iωnsJ(k, s).

f) Carrying out the sum in (19) explicitely show that

G(k, t) = e−t(ε(k)−µ)

(

1

1 − e−β(ε(k)−µ)
θ(t) +

e−β(ε(k)−µ)

1 − e−β(ε(k)−µ)
θ(−t)

)

. (20)

Hint: The denominator may be written as 1
a =

∫∞
0 dλe−λa. The summation over ωn

can be carried out using the Poisson summation formula, i.e., use
∑∞

n=−∞ e−2πin x
β =

β
∑∞

k=−∞ δ(x − kβ). Finally, treat the cases t > 0 and t < 0 seperately and pay attention

to the fact that |t|
β < 1.


