
Quantum Field Theory II, Exercise Set ♯ 3.

FS 08/09 Due: 18.03.09

1. Harmonic oscillator

The aim of this exercise is to find the well-known eigenvalues and eigenfunctions of one-dimensional
harmonic oscillator using the path integral formalism. The Hamiltonian is given by H :=
1
2(P 2 + ω2Q2).

a) Show that the Euclidean action of the classical trajectory {qc(·)} is given by

SE[qc(·)] :=

∫ t

0
ds

1

2

(

q̇c(s)
2 + ω2qc(s)

2
)

=
ω

2 sinh(ωt)
[(q2a + q2b ) cosh(ωt) − 2qaqb] , (1)

where qc(0) = qa and qc(t) = qb are the starting and ending point of the trajectory.

Denote by |Ω〉 the ground state vector and with Ω(q) = 〈q |Ω〉 the corresponding wavefunction.
As a warm-up we derive a formula for Ω(q).

b) The spectral decomposition of H is given by

e−tH =

∞
∑

n=0

e−tEn |ψn〉〈ψn| ,

where |ψn〉 is a complete orthonormal set of eigenvectors with eigenvalues En. Note that
|Ω〉 = |ψ0〉. Show that

|Ω〉 = lim
t→∞

1

Zt
e−tH |q〉 ,

where Zt is an appropriate normalisation factor. Here |q〉 = δ(q − q′) is a generalized
eigenvector of Q.

c) Using the Feynman-Kac formula show that

Ω(q) =
(ω

π

)
1

4

exp

(

−ωq2

2

)

. (2)

Hint: Write q(s) = qc(s) + ξ(s), where qc is a solution to the classical Euler-Lagrange
equation. Show that SE[q(·)] = SE[qc(·)] + SE[ξ(·)].

Next we derive the formula

〈qb|e
−tH |qa〉 =

( ω

2π sinhωt

)
1

2

exp

{

−
ω

2 sinhωt
[(qb

2 + q2a) coshωt− 2qbqa]

}

. (3)

d) Show that, formally,

〈qb|e
−tH |qa〉 = N det(A)−

1

2 e−SE[qc] , (4)

where A := − d2

ds2 + ω2 is a self-adjoint differential operator acting on the space of ‘path
functions’ equal to zero at s = 0 and s = t. N is a (divergent) normalisation factor, which
will be determined later on.



e) Using the fact that the determinant of a self-adjoint operator is formally given by the
product of its eigenvalues show that

det(A) =

∞
∏

n=1

(

n2π2

t2
+ ω2

)

= K(t)

(

sinh(ωt)

ωt

)

, (5)

where K(t) is some (divergent) normalisation factor independent of ω.

Hint: Use Euler’s formula sinx = x
∏

∞

n=1

(

1 − x2

n2π2

)

to handle the infinit product.

Combining d) and e) we have derived equation (3) up to some finite normalisation, which can
be determined, for instance, by taking the limit ω → 0. Here is another way. From () we obtain

lim
t→∞

〈qb|e
−tH |qa〉 = lim

t→∞

∞
∑

n=1

〈qb |ψn〉 〈ψn | qa〉e
−Ent = lim

t→∞
〈qb |Ω〉 〈Ω | qa〉e

−E0t . (6)

f) Using this argument and (2) derive the result (3).

g) By expanding sinh(ωt)−
1

2 in (3) and comparing the result with

〈qb|e
−tH |qa〉 =

∞
∑

n=1

〈qb |ψn〉 〈ψn | qa〉e
−Ent ,

find the spectrum of the hamonic oscillator.

Performing the Wick rotation to real times in (3) finally yields the propagator for the harmonic
oscillator.

2. Completing the lecture notes

Derive equation (2.47) from (2.45) and (2.46) in the lecture notes.

3. ϕ4 theory: renormalization and β-function

Let us start from the ‘bare’ Lagrangian of the ϕ4 theory,

L =
1

2
(∂µϕ)(∂µϕ) −

1

2
m2ϕ2 −

λ

4!
ϕ4 . (7)

In QFT I, the renormalized field
ϕR = Z−1/2ϕ

was introduced, so that the two-point Green’s function in terms of ϕR is finite. Here we also
introduce renormalized mass and coupling and impose a set of conditions on the 1PI 2- and 4-
point functions in order to find an explicit form for the counterterms.

In analogy to QED, let us express the renormalized quantites as a power series in λR. To lowest
order we have

m = mR + λRδm ,

λ = λR + λ2
Rδλ ,

Z = 1 + λRδZ .



a) Rewrite the Lagrangian (7) in terms of the renormalized fields, masses and couplings.
Retain only terms up to one order higher in λR than those appearing in (7), i.e., up to
O(λR) in (∂µϕ)2 and ϕ2 and up to O(λ2

R) in ϕ4.

Separate the terms that give the propagator, the ϕ4
R interaction and the counterterms for

the 2- and 4- points functions. What are the corresponding Feynman rules? Why did we
choose Z ∼ 1+ higher order?

We now need to fix a set of conditions in order to obtain the renormalization parameters. In
particular, we require that

i) the renormalized coupling is the magnitude of the scattering amplitude at some specific
value of the Mandelstam variables, s0, t0, u0, i.e.,

Γ4(s0, t0, u0) = −iλR .

Different choices for s0, t0, u0 are possible; yet, as we will se in the lectures, up to two loops
the β function should not depend on this choice;

ii) the square of the renormalized mass m2
R is the pole of the propagator, i.e.,

Γ2(k
2 = m2

R) = 0 ;

iii) the residue at the pole is one, i.e.,

∂

∂k2
Γ2(k

2)|k2=m2

R

= 0 .

b) Find the 1PI 2-point function Γ2(k
2) up to O(λR), including the counterterms. Then use

iii) and ii) to fix δZ and δm respectively.

c) Find the 1PI 4-point function Γ4 up to O(λ2
R) (for zero external momentum), including

the counterterms. Then use i) to fix δλ.

Hint: In the computation of Γ4 you will need to evaluate a divergent integral. First of all,
you will need to think about which the right symmetry factor is – either think about how
many ways you can connect the external lines and swap the internal ones or work all the
way from equation (3.37) in the script with an O(λ2

R
) expansion of the exponentials on

the RHS. Then, after going to Euclidean space, introduce a momentum cutoff Λ and go to
spherical coordinates. To make your calculation simpler, consider the two limiting cases
k → 0 and k ≫ (p1 + p2); when does the integral diverge? Since we are only interested in
the divergent part, which simplification can we introduce?
Hint: Recall that

∫

dΩd = 2πd/2/Γ(d/2), where d is the number of space-time dimensions
and Γ(n) = (n − 1)! for n ∈ N. Finally, introduce some change of variables in order to
evaluate the integral. Since we are only interested in the diverging terms, you can denote
the finite parts by a “+ finite”.

d) From QFT I, recall that the β-function is defined by

β := Λ
∂

∂Λ
λ .

Find the β-function for ϕ4 theory?


