FS 08/09

Due: 04.03.09

1. Towards the SU(3) flavour group

In the lecture it was shown that the symmetry group $G = SU(2) \times SU(2)$ is not enough to explain the spectrum of observed baryons and mesons. For this reason we added to the set of relations

$$[H^i, E^i_{\pm}] = \pm 2E^i_{\pm} \quad , \quad [E^i_+, E^i_-] = H^i \quad , \quad [H^1, H^2] = 0$$

The requirement that if $|v\rangle$ is simultaneously an eigenvector of H^1 and H^2 with eigenvalues m_1, m_2 , respectively, then $E^j_+|v\rangle$ is again an eigenvector of H^1 and H^2 .

- a) From the definitions of the H^i , explain why the eigenvalues have to be integers.
- b) Show that our previous requirement can be translated into

$$[H^i, E^j_\pm] = \pm A^{ij} E^j_\pm \,,$$

with $A^{ij} \in \mathbb{Z}$.

c) Show that the operators $E_{\pm}^{\theta} := [E_{\pm}^1, E_{\pm}^2]$ and $[E_{\pm}^1, E_{\pm}^2]$ are raising and lowering operators for (H^1, H^2) .

Hint: A *is a raising operator for* N *if* $[N, A] = \alpha A$. In fact, if we denote by $|n\rangle$ an eigenvector of N and by n its eigenvalue, we immediately obtain

$$N(A|n\rangle) = (\alpha A + AN)|n\rangle = \alpha A|n\rangle + An|n\rangle = (n + \alpha)(A|n\rangle).$$

- d) Starting from $[E_{\pm}^{i}, [E_{\mp}^{i}, E_{\pm}^{j}]]$ and using the Jacobi identity, show that if we require $A^{ij} \neq 0$, then at least one set of raising/lowering operators from point c) does not vanish. Without loss of generality, we can assume these to be E_{+}^{θ} and E_{-}^{θ} .
- e) Let us impose the further conditions

$$[E_{\pm}^1, E_{\mp}^2] = 0$$
 and $[E_{\pm}^i, [E_{\pm}^1, E_{\pm}^2]] = 0$.

Show that $A^{12} = A^{21} = -1$.

2. SU(3) representations

a) Starting from

$$(n,0) \otimes (0,m) = (n,m) \oplus [(n-1,0) \otimes (0,m-1)]$$

prove that

$$\dim(n,m) = \frac{1}{2}(n+1)(m+1)(n+m+2)$$

b) Mesons are formed by a quark $(\mathbf{3} = (1,0))$ and an antiquark $(\mathbf{\overline{3}} = (0,1))$. Argue that

$$\mathbf{3} \otimes \bar{\mathbf{3}} = \mathbf{1} \oplus \mathbf{8} \,. \tag{1}$$

c) Baryons are formed instead by three valence quarks. Argue that

$$\mathbf{3}\otimes\mathbf{3}\otimes\mathbf{3}=\mathbf{1}\oplus\mathbf{8}\oplus\mathbf{8}\oplus\mathbf{10}$$
 .

d) The strange, up and down quarks transform according to the **3** representation of SU(3). This three dimensional representation contains an isospin singlet (the strange quark) and an isodoublet. In addition, without loss of generality, we can assign hypercharge y to the singlet and y + 1 to the doublet. Therefore when we restrict the **3** of SU(3) to the isospin-hypercharge subgroup, we obtain

$$(1,0)\Big|_{SU(2)_{\text{isospin}} \times U(1)_Y} = \left(\frac{1}{2}\right)^{\frac{1}{3}} \oplus (0)^{-\frac{2}{3}} \qquad , \tag{2}$$

where we denote by $(i)^y$ a state with isospin *i* and hypercharge *y*.

- i) Show that $Y \in su(3)$ indeed implies y = -2/3.
- ii) Using the above decomposition, the Gell-Mann–Nishijima formula and S = Y B (the baryon number B being 1/3 for the quarks), find the quantum numbers I^z, Y, Q, S for these three quarks.
- e) Using (1) and (2), find the quantum numbers of the baryon octet.

Hint: Antiquarks can still be arranged into an isodoublet and an isosinglet, but their hypercharge changes sign. What is therefore the equivalent of (2) for (0, 1)?

3. Gauge field and covariant derivative

Let ρ be a unitary irreducible representation of a compact Lie group G on a vector space V. A field ϕ is a V-valued function over \mathbb{M}^4 . A G-gauge transformation of ϕ is defined by

$$\phi(x) \mapsto \phi^g(x) = \rho(g(x))\phi(x)$$
.

where $g(x) \in G, x \in \mathbb{M}^4$, is a *G*-valued function, assumed to be C^1 . For definiteness we choose $G = \mathrm{SU}(N)$ and ρ is taken to be the fundamental representation. By definition, we have $V = \mathbb{C}^N$, and we might suppress ρ in the notation.

Consider the Lagrangian

$$\mathcal{L} = (\partial_\mu \phi(x))^* \partial^\mu \phi(x) - m^2 \phi(x)^* \phi(x)$$
 .

- a) Show that the given Lagrangian is invariant if g is a global transformation, i.e. $\partial_{\mu}g(x) = 0.$
- b) How does \mathcal{L} transform instead if g = g(x), i.e., the transformation is *local*? Which term renders it not invariant?

Since we want the Lagrangian to be invariant, we introduce the notion of covariant derivative:

$$D^A_{\mu} := \partial_{\mu} - \mathrm{i}q\dot{\rho}(A_{\mu}) \,,$$

where A_{μ} is the non-abelian gauge field, which takes values in the Lie algebra Lie(G) of G. This fact will be shown later on in the lecture. Here $\dot{\rho}$ is the representation of Lie(G) induced by the representation ρ of G (see exercise set 1, QFT I), as above we suppress the $\dot{\rho}$ in our notation.

c) Find the transformed gauge field A^g_{μ} , if we require that the Lagrangian

$$\mathcal{L} = (D^A_\mu \phi(x))^* D^{A\mu} \phi(x) - m^2 \phi(x)^* \phi(x) \,.$$

be G-gauge invariant.

Hint: The Lagrangian is invariant if

$$(D^{A^g}_{\mu}\phi^g)(x) = g(x)D^A_{\mu}\phi(x) \,.$$

According to which representation of G transforms the covariant derivative?

For the construction of a gauge invariant kinematic term of the gauge field A_{μ} the covariant derivate is used itself.

e) How does the object $F_{\mu\nu} := -[D^A_{\mu}, D^A_{\nu}]$ transform under a gauge transformation? Which operation can we still perform on it to obtain a gauge invariant object?