Exercises for "Phenomenology of Particle Physics II"

Prof. Dr. A. Gehrmann, Prof. Dr. U. D. Straumann sheet 7 handed out: 29.4.2009
M. Ritzmann
handed in: 6.5.2009
http://www.itp.phys.ethz.ch/education/lectures_fs09/PPPII returned: 13.5.2009

Exercise 10 IR- and Collinear-safe Observables

The following event variables are used in practice:

Thrust

$$
T_{m}=\max _{\vec{n}} \frac{\sum_{i=1}^{m}\left|\vec{p}_{i} \cdot \vec{n}\right|}{\sum_{i=1}^{m}\left|\vec{p}_{i}\right|}
$$

C-Parameter

$$
C_{m}=3\left(\Theta_{11} \Theta_{22}+\Theta_{22} \Theta_{33}+\Theta_{33} \Theta_{11}-\Theta_{12} \Theta_{12}-\Theta_{23} \Theta_{23}-\Theta_{31} \Theta_{31}\right)
$$

where

$$
\Theta_{j k}=\frac{1}{\sum_{i=1}^{m}\left|\vec{p}_{i}\right|} \cdot \sum_{i=1}^{m} \frac{p_{i}^{j} p_{i}^{k}}{\left|\vec{p}_{i}\right|}
$$

where p^{j} denotes the j-th component of the momentum \vec{p}.

Sphericity

$$
S_{m}=\frac{3}{2} \min _{\vec{n}} \frac{\sum_{i=1}^{m}\left(\vec{p}_{i}^{T}\right)^{2}}{\sum_{i=1}^{m} \vec{p}_{i}^{2}}
$$

where \vec{p}_{i}^{T} denotes the component of $\overrightarrow{p_{i}}$ orthogonal to \vec{n}.

Check whether these variables are infrared and collinear safe, means for $\varphi=T_{m}, C_{m}, S_{m}$

- collinear

$$
\vartheta_{n}\left(p_{1}, p_{2}, \ldots, p_{n}\right) \xrightarrow{p_{2} / / p_{1}} \vartheta_{n-1}\left(p_{1}+p_{2}, \ldots, p_{n}\right)
$$

- infrared

$$
\vartheta_{n}\left(p_{1}, p_{2}, \ldots, p_{n-1}, p_{n}\right) \xrightarrow{E_{n} \rightarrow 0} \vartheta_{n-1}\left(p_{1}, p_{2}, \ldots, p_{n-1}\right) .
$$

Exercise 11

Calculate the norm squared of the matrix element for $\gamma^{*} \rightarrow q \bar{q} g$ (summed over final states) in the limit of vanishing quark mass. Use $s_{i j}=2 p_{i} p_{j}\left(=\left(p_{i}+p_{j}\right)^{2}\right)$ as the variables.

- Read off the amplitudes from the two Feynman diagrams.
- Write down the two squared amplitudes and the interference terms.
- Use the following replacements for the polarisation sums of the photon and the gluon:

$$
\sum_{\lambda} \epsilon_{\mu}(k, \lambda) \epsilon_{\nu}^{*}(k, \lambda) \rightarrow-g_{\mu \nu}
$$

Warning: In general you have to include the emission of ghosts except if you work in a physical gauge (for example the axial gauge).

- The fermionic traces can be written as a sum of f 's and g 's, where f and g are defined as follows:

$$
\begin{aligned}
f(a, b, c, d) & =\operatorname{Tr}\left(A \gamma^{\mu} \not b \gamma^{\nu} \quad k \gamma_{\nu} \not d \gamma_{\mu}\right)=16(a \cdot b c \cdot d-a \cdot c b \cdot d+a \cdot d b \cdot c) \\
g & =\operatorname{Tr}\left(A \gamma^{\mu} \not b \gamma^{\nu} \not k \gamma_{\mu} \not \partial \gamma_{\nu}\right)=-32 a \cdot c b \cdot d,
\end{aligned}
$$

note that f vanishes if two massless momenta are next to each other:

$$
f(a, a, c, d)=f(b, a, a, c)=f(b, c, a, a)=f(a, b, c, a)=0, \quad \text { if } \quad a^{2}=0
$$

Exercise 12 Limits for Soft or Collinear Particles

Investigate the limit of the matrix element norm squared in the preceding exercise

$$
\left|M\left(\gamma^{*} \rightarrow q \bar{q} g\right)\right|^{2}=64 \pi^{2}\left(e_{q}^{2} \alpha \alpha_{s}\right) \frac{N_{C}^{2}-1}{2}\left(\frac{s_{q g}}{s_{\bar{q} g}}+\frac{s_{\bar{q} g}}{s_{q g}}+2 \frac{s_{q \bar{q}}\left(s_{q \bar{q}}+s_{q g}+s_{\bar{q} g}\right)}{s_{q g} s_{\bar{q} g}}\right)
$$

in the collinear limit

$$
s_{q g} \rightarrow 0 \quad p_{q} \rightarrow z P_{q g} \quad p_{g} \rightarrow(1-z) P_{q g}
$$

and in the soft limit $s_{q g} \rightarrow 0, s_{\bar{q} g} \rightarrow 0$.

