Exercises for "Phenomenology of Particle Physics II"

Prof. Dr. A. Gehrmann, Prof. Dr. U. D. Straumann	sheet 6	handed out:	22.4.2009
M. Ritzmann		handed in:	29.4.2009
http://www.itp.phys.ethz.ch/education/lectures_f	s09/PPPII	returned:	6.5.2009

Exercise 9 Evolution of the coupling constant

The evolution of the strong coupling constant is given by

$$\mu^2 \frac{d\alpha_s}{d\mu^2} = \beta(\alpha_s) = -\alpha_s \left(\frac{\alpha_s}{2\pi}\beta_0 + \left(\frac{\alpha_s}{2\pi}\right)^2 \beta_1 + \cdots\right)$$

with the coefficients given by

$$\beta_0 = \frac{11C_A - 4T_R n_f}{6}$$

$$\beta_1 = \frac{16C_A^2 - (6C_F + 10C_A)T_R n_f}{6}.$$

$$(C_F = \frac{N_C^2 - 1}{2N_C}, C_A = N_C, T_R = \frac{1}{2})$$

- (i) Solve the evolution equation at one-loop $(\beta_0 \neq 0, \beta_1 = 0)$ with the boundary condition $\alpha_s \left(\Lambda_{QCD}^{(0)} \right) = \infty$. Calculate $\Lambda_{QCD}^{(0)}$ from $\alpha_s (M_Z^2) = 0.118$, $n_f = 5$ and $M_Z = 91.187$ GeV.
- (ii) Solve the evolution equation for $\beta_0 \neq 0$, $\beta_1 \neq 0$ with the boundary condition $\alpha_s \left(\Lambda_{QCD}^{(1)} \right) = \infty$ (only solve for α_s , do not invert the equation to get $\Lambda_{QCD}^{(1)}$).

Hints:

- (i) Solve the differential equation by direct integration, keep track of the integration constants.
 - Use $\alpha_s \left(\Lambda_{QCD}^2 \right) = \infty$ to bring your result in the form

$$\alpha(\mu^2) = \frac{1}{k \log(\frac{\mu^2}{\Lambda_{QCD}^2})}$$

- (ii) There is no analytic solution, consider an approximate solution by doing a series expansion of α_s in powers of $\log\left(\frac{\mu^2}{\Lambda_1^2}\right)$.
 - Bring your result in the following form:

 $\alpha_s = \text{terms involving } \alpha_s \text{ inside log argument.}$

- Solve the equation to first order in $\frac{1}{\log\left(\frac{\mu^2}{\Lambda_1^2}\right)}$. Insert this α_s on the right-hand side.
- Solve the resulting equation for large $\log\left(\frac{\mu^2}{\Lambda_1^2}\right)$, keeping terms up to $\left(\log\left(\frac{\mu^2}{\Lambda_1^2}\right)\right)^{-2}$. The following series expansion can be used:

$$\frac{1}{1 + c_1 x \log(c_3 \frac{1}{x} + c_2)} = 1 + x c_1 \left(\log \left(x \right) - \log \left(c_3 \right) \right) + O(x^2).$$