Exercises for "Phenomenology of Particle Physics II"

Prof. Dr. A. Gehrmann, Prof. Dr. U. D. Straumann sheet 4 handed out: 18.3.2009 M. Ritzmann
handed in: 25.3.2009
http://www.itp.phys.ethz.ch/education/lectures_fs09/PPPII returned: 1.4.2009

Exercise $6 e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$with the Z-boson

In the electroweak standard model, the following two diagrams contribute to $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$ at tree level:

Calculate the cross section and the forward-backward asymmetry for this process for $m_{\mu}^{2} \ll s$. Take into account the fact that the Z-boson is unstable, therefore $p^{2}-M_{Z}^{2} \rightarrow p^{2}-M_{Z}^{2}+i M_{Z} \Gamma_{Z}$ in the propagator of the Z-boson.
Proceed as follows:

- Decompose both amplitudes using the projectors P_{R} and P_{L} for both fermions, such that the matrix element is a sum of four non-interfering contributions
- Write the differential cross section $\frac{d \sigma}{d \Omega}$ as

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{\alpha^{2}}{4 s}\left[A_{0}\left(1+\cos ^{2} \Theta\right)+A_{1} \cos \theta\right] .
$$

- Show that the forward-backward asymmetry is given by

$$
A=\frac{F-B}{F+B}=\frac{3 A_{1}}{8 A_{0}}, \quad F=\int_{\cos \theta=0}^{\cos \theta=1} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega} \mathrm{~d} \Omega, \quad B=\int_{\cos \theta=-1}^{\cos \theta=0} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega} \mathrm{~d} \Omega
$$

The QED results for the polarized differential cross sections are

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma^{\mathrm{QED}}}{\mathrm{~d} \Omega}\left(e_{L}^{+} e_{R}^{-} \rightarrow \mu_{L}^{+} \mu_{R}^{-}\right)=\frac{\mathrm{d} \sigma^{\mathrm{QED}}}{\mathrm{~d} \Omega}\left(e_{R}^{+} e_{L}^{-} \rightarrow \mu_{R}^{+} \mu_{L}^{-}\right)=\frac{\alpha^{2}}{4 s}(1+\cos \Theta)^{2} \\
& \frac{\mathrm{~d} \sigma^{\mathrm{QED}}}{\mathrm{~d} \Omega}\left(e_{L}^{+} e_{R}^{-} \rightarrow \mu_{R}^{+} \mu_{L}^{-}\right)=\frac{\mathrm{d} \sigma^{\mathrm{QED}}}{\mathrm{~d} \Omega}\left(e_{R}^{+} e_{L}^{-} \rightarrow \mu_{L}^{+} \mu_{R}^{-}\right)=\frac{\alpha^{2}}{4 s}(1-\cos \Theta)^{2} .
\end{aligned}
$$

