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Exercise 3 Local Gauge Invariance and Gauge Field Self-Interactions (corrected)

This exercise follows chapter 15.2 in Peskin/Schroeder closely.

In this exercise we derive the necessity of gauge field self-interactions from gauge invariance.
Our gauge group G is a simple compact Lie group. The fermions transform in a unitary
representation of G, the elements of this representation can be written as e’*“7" where the
T are the generators of the representation and the summation over the repeated index a is
understood. The properties of the T% we need are [T“,Tb} = jfabere (where the fabe are
antisymmetric under interchange of any two indices) and Tr(T%T?) = C(r)d®. Our starting

point is the gauge symmetry of £ under local gauge transformations

P(z) = V(z)y(x)
where 1(x) has several components which we supress in our notation. We can see immediately
that the combination 1 (z)y(z) is a gauge-invariant quantity. If our Lagrange density is to
contain terms with derivatives (as in ¢(i9,7* — m)v, we encounter the problem that

() = lim = ($(x + en) — (x))

e—0 €
does obviosly not have a well-defined transformation under the local gauge transformation
V(x) because the gauge transformation is in general different at x and x + en. We define a
derivative which transforms the same as ¢(x) by introducing the comparator U(y,x). The
properties we assume are U(z,z) = 1 and

Uly,z) — " WU (y, z)e " @1

under a local gauge transformation. Using the comparator we define the covariant derivative
as )
n'Dy(z) = 1in(1) —(Y(x +en) —U(z + en,x)(x))
e—0 €

which does have the transformation property D, (x) — €*@7T“D 1)(x) by construction
(therefore terms like 9 (iD,v* — m)y are candidates for the Lagrange density). The gauge
field is defined as the expansion coefficient of the comparator

U(x +en,z) = 1 +igent A7 ()T + O (€2>



giving us the covariant derivative
Dy = 0, —igAj(x)T*.

Derive the transformation of the gauge field A under an infinitesimal gauge transformation
a(z) from the transformation of the comparator U by first expanding to first order in € and
then to first order in the gauge transformation a(x). You should arrive at

A%(2) — A%(x) + ;(aua“(:v)) T fobeAbac(z).

Now give a short argument why [D,, D,]v(x) transforms like ¢(z), then compute [D,,, D,]
explicitly to see that is in fact not a differential operator but a multiplicative factor which is
therefore gauge invariant. We define the field tensor Fj, by

[Dy, D, = —igF,T®

and compute Fy, F*, the simplest gauge-invariant combination of the field tensor, to see
that it contains terms that are cubic and quartic in A.

Exercise 4 Higgs couplings in the standard model

Starting from the Lagrange density

é¢4

Y
L= (Dud) (D'6) = V(6). Dy =0, —igT"Wi —ig' 5 By V(9) = 10" ]

2

a0
V2 \ v+ )’

find the couplings hWWW hhWW  hZZ and hhZZ. You may follow the steps below.

for the scalar dublet

e Specialise the Lagrange density to Y =1, T %U“ and ¢7 = (0, ¢2) and get rid of the

1

Pauli matrices by inserting them explicitly (o = (9 §),02 = (9 ), =(§ %))
e Diagonalise the quadratic terms by introducing the physical fields
Wi = s =) = ) 0
4 VB, .
i3
4, = LBt 3)

Vo +g7?
e Now you can read off the coefficients in the expansion
_ 1 . _
(Dud)t(Dud) = (0uh)?* + MG WIW 4+ ngZMZ” — iVawwhW,F W=+
—iVinwwhhWIW ™ — iVygzhZ, 2V — iV zzhh Z, 2.



