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Exercise 3 Local Gauge Invariance and Gauge Field Self-Interactions (corrected)

This exercise follows chapter 15.2 in Peskin/Schroeder closely.
In this exercise we derive the necessity of gauge field self-interactions from gauge invariance.
Our gauge group G is a simple compact Lie group. The fermions transform in a unitary
representation of G, the elements of this representation can be written as eiα

aT a
where the

T a are the generators of the representation and the summation over the repeated index a is
understood. The properties of the T a we need are

[
T a, T b

]
= ifabcT c (where the fabc are

antisymmetric under interchange of any two indices) and Tr(T aT b) = C(r)δab. Our starting
point is the gauge symmetry of L under local gauge transformations

ψ(x) → V (x)ψ(x)

where ψ(x) has several components which we supress in our notation. We can see immediately
that the combination ψ(x)ψ(x) is a gauge-invariant quantity. If our Lagrange density is to
contain terms with derivatives (as in ψ(i∂µγ

µ −m)ψ, we encounter the problem that

nµ∂µψ(x) = lim
ε→0

1
ε

(ψ(x+ εn)− ψ(x))

does obviosly not have a well-defined transformation under the local gauge transformation
V (x) because the gauge transformation is in general different at x and x + εn. We define a
derivative which transforms the same as ψ(x) by introducing the comparator U(y, x). The
properties we assume are U(x, x) = 1 and

U(y, x) → eiα
a(y)T a

U(y, x)e−iαb(x)T b

under a local gauge transformation. Using the comparator we define the covariant derivative
as

nµDµψ(x) = lim
ε→0

1
ε

(ψ(x+ εn)− U(x+ εn, x)ψ(x))

which does have the transformation property Dµψ(x) → eiα
a(x)T a

Dµψ(x) by construction
(therefore terms like ψ(iDµγ

µ −m)ψ are candidates for the Lagrange density). The gauge
field is defined as the expansion coefficient of the comparator

U(x+ εn, x) = 1 + igεnµAa
µ(x)T a +O

(
ε2
)



giving us the covariant derivative

Dµ = ∂µ − igAa
µ(x)T a.

Derive the transformation of the gauge field A under an infinitesimal gauge transformation
α(x) from the transformation of the comparator U by first expanding to first order in ε and
then to first order in the gauge transformation α(x). You should arrive at

Aa
µ(x) → Aa

µ(x) +
1
g
(∂µα

a(x)) + fabcAb
µα

c(x).

Now give a short argument why [Dµ, Dν ]ψ(x) transforms like ψ(x), then compute [Dµ, Dν ]
explicitly to see that is in fact not a differential operator but a multiplicative factor which is
therefore gauge invariant. We define the field tensor F a

µν by

[Dµ, Dν ] = −igF a
µνT

a

and compute F a
µνF

aµν , the simplest gauge-invariant combination of the field tensor, to see
that it contains terms that are cubic and quartic in A.

Exercise 4 Higgs couplings in the standard model

Starting from the Lagrange density

L = (Dµφ)+(Dµφ)− V (φ), Dµ = ∂µ − igT aW a
µ − ig′

Y

2
Bµ, V (φ) = µ2φ2 − λ

4
φ4

for the scalar dublet

φ =
1√
2

(
0

υ + h(x)

)
,

find the couplings hWW ,hhWW , hZZ and hhZZ. You may follow the steps below.

• Specialise the Lagrange density to Y = 1, T a = 1
2σ

a and φT = (0, φ2) and get rid of the
Pauli matrices by inserting them explicitly (σ1 = ( 0 1

1 0 ) , σ2 =
(

0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
).

• Diagonalise the quadratic terms by introducing the physical fields

W+
µ =

1√
2

(
W 1

µ − iW 2
µ

)
= (W−

µ )† (1)

Zµ =
gW 3

µ − g′Bµ√
g2 + g′2

(2)

Aµ =
g′W 3

µ + gBµ√
g2 + g′2

. (3)

• Now you can read off the coefficients in the expansion

(Dµφ)+(Dµφ) = (∂µh)2 +M2
WW+

µ W
−µ +

1
2
M2

ZZµZ
µ − iVhWWhW+

µ W
−µ

−iVhhWWhhW+
µ W

−µ − iVhZZhZµZ
µ − iVhhZZhhZµZ

µ.


