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» Entanglement between system and environment I:
Averaging over possible quantum states yields
thermodynamics

» Entanglement between system and environment II:
How can thermodynamics be derived without
averaging and the a priori assumption of
equipartition?

» Entanglement between system and environment IIl:
How is thermal equilibrium reached?
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Assumptions used up to now

» states are a priori equally probable

» interaction between system and environment are
small

» the environment has an appropriate spacing of the
energy levels
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Ensembles of Statistical Physics
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where T:Tr (@5 H) = £, u: Tr (QEON) = N

and the von Neumann Entropy: —Tr (2 log 2)
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» HR C Hs ® HEe dr < ds-de
» arbitrary restriction R
old:
» equiprobable (maximally mixed) state: &z = (’,—z

» canonical state of system S relative to restriction R:
QS = TrE£R

new:

» pure state |¢) € Hpg, chosen randomly according to
the (unitarily invariant) Haar measure

» reduced state of system S: pg = Tre ) (¢
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The trace distance

1
D(ps. 9s) = lIos — Rslly = 5Ty (05 — 25)' (05— 2)

= sup Tr((ps —Qs)O)
[10]1<1

is equal to the maximal difference between two states in
the probability of obtaining any measurement outcome.
Hilbert-Schmidt norm

llos — sl = /T (o5 — )1 (ps — Q)

VM € C™ [|MI[F < n||M]j3

(-) average over all pure states |¢) € Hpg according to the
Haar measure, e.g. Qg = (ps)




Principle of apparently a priori equal
Probability

For almost every pure state |¢) € Hpg, the system S
behaves as if the universe were in the equiprobable state
ER;

i.e. for almost every pure state of the universe is locally
(that is, on the system) indistinguishable from &5.

This means that pg ~ Qsg.
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Grand Canonical Principle

Given a sufficiently small subsystem of the universe,
almost every pure state of the universe is such that the
subsystem is approximately in the canonical state Qg.
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Given that the total energy of the universe is
approximately E, interactions between the system and
the rest of the universe are weak, and that the density of
states of the environment increases approximately
exponentially with energy, almost every pure state of the
universe is such that the state of the system alone is
appro>,<4imately equal to the thermal canonical state

x e k8T with temperature T (corresponding to the
energy E).
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For a randomly chosen state |¢) € Hg and Ve > 0 the
trace distance between the reduced density matrix pg
and the canonical state Qg is given probabilistically by

Prob [D (ps (¢),Qs) > n] =<1/,

1 /ds 1. /9
wheren =¢c+ 5 @gﬁé 3 and

n = 4exp (—LdR€2> ;

the effective size of the environment is dg" = Trs112 > g—g
and Qg = Trég = <PE>-
When dg > 1 and d& > ds, we set e = dj /3 then

and ' become small.
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For any function on a high dimensional hypersphere the
overwelming majority of values are close to the average.

Vf: 54 — R, ¢ € Sy chosen uniformly at random, Ve > 0

Prob [|f(e2) — ()] > ] < 26xp (—5ze?),

where the Lipschitz constant n = sup |[Vf|.

Pure states in Hilbert spaces can be represented as
points on hyperspheres, in our case Hg = Spq,—_1.




Proof
Applying Levy’s Lemma on

f(¢) = D(ps(¢),2s) = llps(») — sl

and noting that f(¢) has Lipschitz constant n < 2, we get

_2dg 2
Prob [|[|ps — Qsll; — {llps — Qsll1)| = €] < 2e7e".
Rearranging gives

Prob[|lps — Qslly > 1] <7

where n = ¢ + (||ps — Qsgl|;) and o' = 4exp (—g—frsdgsz).
It remains to show that

1 [ds
<HPS—QSH1>§§ E.

Entanglement
between system
and environment ||

Markus
Schmassmann

Start of an Exact Proof




Measurement Operators RSB
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Applying Levy’s Lemma on the expectation value of a e
measurement O: S ESSTEnT

f() = Tr(Osps)

and noting that () has Lipschitz constant n < 2{|Og||,
we get

2dp 2

Prob [[Tr (Osps) — (Tr (Osps))| > €] < 2e ==loslF ™ .

However
(Tr(Osps)) = Tr(Os (ps)) = Tr (OsQs)

and choosing € = d,;1/3 we obtain

1/3
2dy

Prob ||Tr (Ogps) — Tr(OsQs)| > di /3| < 2e o=lloslP.




Operator Basis RSB

and environment ||

Markus
Schmassmann

Complete orthogonal operator basis for Hg :

a2—1
0
Ug,..., U’

UK =1 Yo=1,....0%—1

Prob [ax |Tr (Ukps) — Tr(UXQs)| > di/®

20,1 /3
2 _"R__
S 2dse 9""3
It is very likely that all operators Ug will have expectation braotof a weaker bou.
values close to their canonical values. o T
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Using the complete basis of U to expand ps

21
18 1
ps= 4o 2:% Tr (Ug'os) U5 = 4 Z Cx (ps) U5

we obtain

24,
Prob [3x : [Cx (ps) — Cx (2s)| > €] < 203 0" .
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when |Cx (ps) — Cx (Qg)| <& Vx

2
ps — Q| = C}S S (Cx (ps) — Cx () Us
X 2
2
- C:gTr <Z (Cx (ps) — Cx (228)) Ué)
1 dZ—1

Z (Cx (ps) — Cx (QS))2 < dSEZ

x=0

ds
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Using the bound of the trace-norm by the
Hilbert-Schmidt-norm

D(ps;Q2s) = llps — Qslly < v ds|lps — Qsl], < dse

. 1/3 .
and choosing ¢ = <g—§) we obtain

d2 1/3 2d,1q/3
Prob | D (ps,Qg) > <ds> < 2d%e o .
R

Finally for dg >> d2 >> 1 we get therefore D (ps, Qg) ~ 0.




Spin-1/2 System with known Energy

k spins in system S, n — k spins in the environment,
constant external field B

n B .
i=1

All states with the same total number of spins aligned
with the field np form subspace Hg. If np > k then
ds = 2k and

v-(3)

Further calculations ob the board. ..
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Main Results

» averages are not necessary

» Principle of Apparantly Equal a priory Probabilities:

Almost every pure state of the universe is locally
indistinguishable from the canonical state.

» no limitation to weak interactions with the
environment

» more general restrictions on the universe can be
treated
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Conclusion




Thank you for your attention.
What questions do you have?

After the break Daniel will continue our Series on
Entanglement between system and environment
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