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What we will see:
1. review thermalization mechanism in classical systems
2. introduce eigenstate thermalization as a possible explanation
for thermal behaviour in quantum systems
3. observe eigenstate thermalization in a particular class of
systems



Main Results

More specifically:

1. Thermal behaviour in quantum systems must fundamentally
differ from classical thermalization.

2. According to ETH, thermalization occurs at the level of
individual eigenstates of a given Hamiltonian:

Each eigenstate of the Hamiltonian implicitly contains a
thermal state.

3. ETH correctly assesses thermal behaviour exhibited by
low-density billiards in the semi-classical regime, provided
Berry’s conjecture (BC) holds:

Berry's conjecture = eigenstate thermalization



1. CLASSICAL THERMALIZATION



Isolated Systems

Definition

An isolated system consists of N particles with total energy E
confined within volume V. Its state is a point in phase space I':

(pa q) = (plv <y P3N, QL -y CI3N) erl.
Dynamics are specified by the Hamiltonian H = H(p, q) via

. OH ) OH
ai =

e p = —
op; : 0q;

Notes:

» any system will be assumed isolated, unless specified otherwise

> the system is part of a microcanonical ensemble, as suggested
by the triple (N, V, E)



Fundamental postulate of stat. physics

Let all states satisfying the macroscopic boundary conditions be on
the hypersurface 'y v . In equilibrium all have an equal a-priori
probability, i.e. they are uniformly distributed with a (stationary!)
density:

const. if (p,q) el
Pmc(P7 CI) _ { 0 e|s(ep q) N,V E

Pme is the density function of the microcanonical ensemble.

Definition
We denote by I'(E) the volume of phase space occupied by the
microcanonical ensemble:

r(E) = /r d*Npd*N Gpme(p, q)



Dynamical Chaos

» Classical systems are intrinsically deterministic.

» Nonetheless, they may exhibit (deterministic) chaos, i.e.
dynamics highly sensitive to initial conditions

» quantified: e.g. exponential growth of perturbations in the
initial conditions with time (Lyapunov exponent)
For chaotic systems it is useful to:
1. address the issue of possible relaxation of certain measurable
quantities to stationary values (thermalization)

2. attempt at a statistical description of a system in such
thermal equilibrium



Ergodic Hypothesis (Boltzmann, 1871)

Definition

Let A(p, q) be an integrable function, 7 a trajectory on the
hypersurface I'y v g, with parametrization

v:Ry = Tnve, t— (p(t),q(t)). Let the (long-) time and
microcanonical averages of A be defined as:

TL>oo T/ dt A(p(t), q(t)), (time average)

1
(AYme = r(E)/rd3"’pc/3"’q A(p; q) pme(p,q) (m.c. average)

Then the system is ergodic iff

A= <A>mc (1)



Comments

» ergodicity justifies the use of the m.c. ensemble for calculating
equilibrium values

> (1) is satisfied if the trajectory « of the (individual) prepared
system covers 'y v g, the constant energy manifold,
homogenously

» time evolution (dynamical chaos) constructs the thermal state

» more in the next talk



2. EIGENSTATE THERMALIZATION



The Problem

Task:
describe adequately thermal behaviour when exhibited by isolated
quantum systems

— ETH (eigenstate thermalization hypothesis)

» assume the system behaves thermally

» whether or not this assumption applies is a different problem
(quantum chaos)

» idea: adapt and use ergodicity



Short Digression: Quantum Chaos

The problem: When does thermalization occur?

» search for property analogous to dynamical chaos in classical
systems a quantum system must have in order to exhibit
thermal behaviour

» random matrix theory
» e.g. for quantum billiards: validity of Berry's conjecture



A First Thought

Compared to its classical counterpart, any attempt at explaining
the thermalization mechanism in quantum systems must be
fundamentally different:

> time evolution in quantum systems is linear (time-dependent
Schrodinger equation)

Furthermore:

AxAp > h/2 = coarse graining, no phase space

» no dynamical chaos in the classical sense

—=Time evolution cannot construct a thermal state.



The Setting

Quantum System

We shall consider isolated, bounded quantum systems with
Hamiltonian H and prepared in an initial state:

[9(t = 0)) = [4(0)).

» boundedness implies a discrete energy spectrum

> Let H|tpo) = Ealtha), where {|1ha)}o is a complete
orthonormal system. Then:

W}(O» = Z Ca|¢a>v Co = ¢a|w(0 Z |C |2

Note: we call |C,|? the eigenstate occupation numbers (EON's).



Energy

Corollary
For the total energy of the system we obtain:

(E) = (¥(0)|7]¥(0) Z\CFE

Generic Initial State

We will restrict our attention to initial states [¢(0)) sufficiently
narrow in energy, i.e. the distribution of the |C,|? is narrow. More
precisely:

= (Za: !Ca\2E§—<E>2>1/2 = (Za: \Calz(Ea—<E>)2)l/2 < (E)

For our purposes such an initial state shall be called generic.



Time Evolution

1. The temporal evolution of the state vector is given by:

(1)) = > Cae 1T,

» want to understand: how is thermal behaviour encoded in this
equation

2. The time dependence of the expectation value of any
obeservable A is given by:

(A()) = (&) Al(8)) = > CaCper EmENAL,  (2)
o,

where we define (14 |Al)g) = Aqg. Call Ay, eigenstate
expectation value (EEV).



Thermalization

To check whether a system is in thermal equilibrium, we must
measure some observable(s) A belonging to the set S of allowed
observables.

1. no general results for S

2. concrete restrictions arise when one considers specific classes
of systems (e.g. classically chaotic systems)

Definition

We say the quantum system exhibits thermal behaviour if for
A€ S, (A(t)) relaxes towards the thermal value prescribed by
quantum statistical physics after some characteristic relaxation
time.

Note: neglect fluctuations of A



Infinite-time average of an observable

The following average is mathematically tractable (use classical

intuition):
Definition )
The infinite-time average A is
_ 1 [7
A= lim = [ (A(t)dt =) |Cl?Aua 3
Jim 7 [ e =3 1 3)

— Given A shows thermal behaviour, we assume the relaxation
must be to this value.

(infinite time washes out nonthermal behaviour, contained within
non-diagonal (a # 3) elements in the sum of eqn. (2))



" Quantum Ergodicity”

Let the system be truly isolated. The quantum statistical average
is (microcanonical ensemble):

(A)me((E)) =

oo

aEEI

where | = [(E) — AE,(E) + AE] is an energy window and N(gy Af
is the number of eigenstates contributing to the microcanonical
average.

If A behaves thermally, it should also settle to the prediction of the
microcanonical ensemble:

A=(Am(E) < Y |C| A=

> Aaa

(E).A aEEI

Deutsch: “ergodic quantum system”.
This equation is problematic.



Thermodynamical Universality

> Aca (4)

atEq€l

Z ’Ca|2Ao¢a -

Concern: explain thermodynamical universality in this equation:

Ney.AE

> |.h.s. of (4) depends on the initial conditions via

Co = (Yal1(0))
> r.h.s. of (4) depends only on (E) = 3" |Cy|?E,, which is the
same for many sets {Cq }o

A possible explanation: ETH
> restriction on A necessary: take e.g. A= Pg = |¢g) (3]



Eigenstate Thermalization

1. intuition: Ay, = const. Vo

2. idea: EEV’'s Ao almost don't vary between eigenstates which
are close in energy (within /, c.f. generic initial state)

ETH (Deutsch '91, Srednicki '94)

Thermalization in isolated, bounded quantum systems happens at
the level of individual eigenstates of the Hamiltonian:

Aaa — <A>mc(Ea) Va (5)

In other words, each eigenstate of the Hamiltonian implicitly
contains a thermal state.



The (auxiliary) role of time

> no time variable t in eqn. (5)
» Role of time evolution:

> initial state = superposition of eigenstates with “carefully”
chosen phases C,

> revelation of the thermal state due to the dephasing effect of
Hamiltonian time evolution in eqn. (2)

> coherence between A,z destroyed, A reached

» time evolution doesn’t construct the thermal state, it only
reveals it. The thermal state exists at t=0, but the coherence
hides it (picture).



Second Approach

Lemma
A will depend on (E) and not on the details of the C, if Ayq is a
smooth function of E, with negligible variation over /[:

Ana = O(E,). (6)
Proof B
Taylor 1st order: A = ®((E))[1 4+ O(AE/(E))]. Assume generic
state.
U
Notes:

1. argument E, discrete, but close (quasi-continuous) within /
2. ® approximately constant over / (up to small error)

3. (6) « restriction for the allowed observables



Canonical Thermal Average

» idea c.f. picture
The (canonical) thermal average (A) T is:

1 1 o0
~Ea/keTp - _ E n(E)e E/keTo(E
e Z(T)/o dE n(E)e ()

with:
> Z(T)=>_, e~ Ea/keT: partition function
» n(E) =), 0(E — E,): density of states



Eigenstate Thermalization

1. Approximating n(E), one can show:
(AT = (V)L + O(N?)] (7)

with U(T) = T2Z'(T)/Z(T) the internal energy.
2. Ergodicity is satisfied if:

A= (A7 <<= N>1land U(T)=(E).
3. Eigenstate thermalization: we have A,, = ®(E,)

(7) =  Aaa = <A> Tos where U( Ta) = E,.



Eigenstate Thermalization: Validity

Results for a few restricted classes of systems:

1. ETH holds for integrable 7{ with weak perturbation (random

Gaussian matrix)  ~» quantum chaos
( J.M. Deutsch)

2. For quantum systems with chaotic classical counterparts, ETH
is valid sometimes, in particular if Berry’s conjecture holds
(M. Srednicki)

Consider now an example of 2.



3. ETH: A SPECIFIC EXAMPLE



The oo-hard-sphere gas
> representative example of a system which exhibits chaos
classically in all its available phase space at any energy E
» ergodic, mixing (Sinai, 1963)
Definition
The system consists of N identical particles in a box L3, with mass
m and radius a each. The Hamiltonian is:

2

ps .

HIZ%—FZV(’X,’—XJD, ihj=1,..N
1 1<J

where x; is the position of the i-th particle and the potential is

given by:

oo if r<?2a

V(r):{ 0 else

» all following results are formulated specifically for this system
(in particular BC)



Notation

Any wavefuntion ¥(X), X = (xq, ..., xny) € R3V:

1. is defined on the domain D in coordinate space, where:
1 1
D= {x1,....xn| — EL < X123 < §L ; |xi — xj| > 2a}

2. satisfies 1) = 0 on 9D ( oo - potential).
Energy eigenfunctions:
1. are denoted by 1o (X), where:

ﬁwa()?) = Eoﬂba()_(’)

2. in momentum space (semi-classical model):

Xt

Ga(P) = 132 [ X o (Rt
D



What we will see:

The line of thought is the following:

1. Berry's conjecture (BC)
2. Assume as initial state an energy eigenstate which satisfies BC

3. show that under this assumption the thermal behaviour of a
particular observable is correctly explained by the ETH

Or more concisely:

BC = ET



Interlude: Thought Experiment

In our case A = p;, the momentum of a selected particle.
Thought Experiment

1. Prepare the system in an initial state [);)

2. After some time t, measure p;

3. Repeat (same [¢);), same t, same particle)

Because of the inherent uncertainties in QM, we can hope to
obtain a distribution for p;.



Berry's Conjecture

Berry's conjecture (Berry, 1977)

Let %()?) be an energy eigenfunction of the system at sufficiently
high energy. Then 1),(X) can be written as:

Va(X) = N, / BN AL(B)S(P? — 2mE)et PR (8)

i.e. 1 is a superposition of plane waves with fixed wavelength

(energy).
The amplitudes A, (P) behave like Gaussian random variables with

a two-point correlation function given by

(5(PYDs(P)) ee = SapN26(P? — 2mEL)*N (P — P))  (9)



Berry's conjecture |l

Notes:

» EE = Eigenstate Ensemble: fictitious ensemble which contains
all functions that have the properties of a"“typical“
eigenfunction. Individual eigenfunctions behave as if they were
selected at random from that ensemble.

> N, from [, d3VX 42(X) =1



Validity of Berry's conjecture

» uncertain, believed to hold in semiclassical classically chaotic
systems (in most of their phase space)

» for our system, condition of sufficiently high energy

» rough criterion (Donald, Kaufman 1988): “thermal
wavelength of each particle smaller than relevant length
feature” (which produces classical chaos):

h
thermal wavelength: A\, = O(1) —=—=
\/2ka Ta

In our case this criterion would be A\, < a. Indeed:
3
A <a<— E, = ENkBTa > .

(high energy requirement)



ETH and the hard-sphere gas

Theorem

Let |1),) be an energy eigenstate of the system which satisfies BC.
In the limit of low density Na® < L3, |¢,) “predicts" a thermal
distribution

2E,
fue(p1, To) , whereT, = ——~
MB(p17 a) wnere | o 3Nkg
for the momentum p7 of a single constituent particle in the limit

N — .

» This is precisely the eigenstate thermalization scenario: every
eigenstate implicitly contains a thermal state.



Proof - An Outline |

Work in momentum space: 1 (P): energy eigenfunctions (FT:")

zzg%ﬁ
ZC e wEat ) (P) (10)

> initial state:

» joint probability density of all N particles: W(P, t)|?



Proof - An Outline Il

The probability of finding atom 1 with momentum in range d3p
around P is (marginal density):

f(ﬁlvt):/d3P2~-d3PN|1Z('57 t)[?

Now consider an energy eigenstate as initial state:
Jdo: Gy =1,C3 =0VB # . Then:

F(Br,t) = / Ppa... B pulTal P)P = doa(B1)

which does not depend on time.



Proof - An Outline Il

The trick (to be justified) is to average this time independent
density over our fictitious EE, thereby using BC:

(baa(PL))EE = oo =N§L3N/d3pzu-d3PN §(P?—2mE,)

BC, low density

At last:
lim (¢aa(P1))ee = fma(P1s Ta)

N—oo

thereby defining T, via:

E, = gNkB T,



Comments

Note that:

1. n.t.s. small fluctuations (use Gaussian property):

(|paa(P1))?) e — [{Baa(Pr))ee|* < (PaalPr))EE

justify that EE is a good choice

2. Eqn. (6): p1,., = (p1)mB(Es) is a statement about the
expectation value for the observable p;

» have shown corresponding densities are equal

3. symmetry assumptions for 1) ~» FD-, BE- distributions



