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What we will see:

1. review thermalization mechanism in classical systems

2. introduce eigenstate thermalization as a possible explanation
for thermal behaviour in quantum systems

3. observe eigenstate thermalization in a particular class of
systems



Main Results

More specifically:

1. Thermal behaviour in quantum systems must fundamentally
differ from classical thermalization.

2. According to ETH, thermalization occurs at the level of
individual eigenstates of a given Hamiltonian:

Each eigenstate of the Hamiltonian implicitly contains a
thermal state.

3. ETH correctly assesses thermal behaviour exhibited by
low-density billiards in the semi-classical regime, provided
Berry’s conjecture (BC) holds:

Berry’s conjecture =⇒ eigenstate thermalization



1. CLASSICAL THERMALIZATION



Isolated Systems

Definition
An isolated system consists of N particles with total energy E
confined within volume V . Its state is a point in phase space Γ:

(p, q) = (p1, ..., p3N , q1, ..., q3N) ∈ Γ.

Dynamics are specified by the Hamiltonian H = H(p, q) via

q̇i =
∂H
∂pi

ṗi = −∂H
∂qi

Notes:

I any system will be assumed isolated, unless specified otherwise

I the system is part of a microcanonical ensemble, as suggested
by the triple (N,V ,E )



Fundamental postulate of stat. physics

Let all states satisfying the macroscopic boundary conditions be on
the hypersurface ΓN,V ,E . In equilibrium all have an equal a-priori
probability, i.e. they are uniformly distributed with a (stationary!)
density:

ρmc(p, q) =

{
const. if (p, q) ∈ ΓN,V ,E

0 else

ρmc is the density function of the microcanonical ensemble.

Definition
We denote by Γ(E ) the volume of phase space occupied by the
microcanonical ensemble:

Γ(E ) =

∫
Γ
d3Npd3Nqρmc(p, q)



Dynamical Chaos

I Classical systems are intrinsically deterministic.
I Nonetheless, they may exhibit (deterministic) chaos, i.e.

dynamics highly sensitive to initial conditions
I quantified: e.g. exponential growth of perturbations in the

initial conditions with time (Lyapunov exponent)

For chaotic systems it is useful to:

1. address the issue of possible relaxation of certain measurable
quantities to stationary values (thermalization)

2. attempt at a statistical description of a system in such
thermal equilibrium



Ergodic Hypothesis (Boltzmann, 1871)

Definition
Let A(p, q) be an integrable function, γ a trajectory on the
hypersurface ΓN,V ,E , with parametrization
γ : R+

0 → ΓN,V ,E , t 7→ (p(t), q(t)). Let the (long-) time and
microcanonical averages of A be defined as:

Ā = lim
T→∞

1

T

∫ T

0
dt A(p(t), q(t)), (time average)

〈A〉mc =
1

Γ(E )

∫
Γ
d3Npd3Nq A(p, q) ρmc(p, q) (m.c. average)

Then the system is ergodic iff

Ā = 〈A〉mc (1)



Comments

I ergodicity justifies the use of the m.c. ensemble for calculating
equilibrium values

I (1) is satisfied if the trajectory γ of the (individual) prepared
system covers ΓN,V ,E , the constant energy manifold,
homogenously

I time evolution (dynamical chaos) constructs the thermal state

I more in the next talk



2. EIGENSTATE THERMALIZATION



The Problem

Task:
describe adequately thermal behaviour when exhibited by isolated
quantum systems

−→ ETH (eigenstate thermalization hypothesis)

I assume the system behaves thermally

I whether or not this assumption applies is a different problem
(quantum chaos)

I idea: adapt and use ergodicity



Short Digression: Quantum Chaos

The problem: When does thermalization occur?

I search for property analogous to dynamical chaos in classical
systems a quantum system must have in order to exhibit
thermal behaviour

I random matrix theory
I e.g. for quantum billiards: validity of Berry’s conjecture



A First Thought

Compared to its classical counterpart, any attempt at explaining
the thermalization mechanism in quantum systems must be
fundamentally different:

I time evolution in quantum systems is linear (time-dependent
Schrödinger equation)

Furthermore:

∆x∆p ≥ ~/2 =⇒ coarse graining, no phase space

I no dynamical chaos in the classical sense

=⇒Time evolution cannot construct a thermal state.



The Setting

Quantum System

We shall consider isolated, bounded quantum systems with
Hamiltonian Ĥ and prepared in an initial state:

|ψ(t = 0)〉 ≡ |ψ(0)〉.

I boundedness implies a discrete energy spectrum

I Let Ĥ|ψα〉 = Eα|ψα〉, where {|ψα〉}α is a complete
orthonormal system. Then:

|ψ(0)〉 =
∑
α

Cα|ψα〉, Cα = 〈ψα|ψ(0)〉,
∑
α

|Cα|2 = 1

Note: we call |Cα|2 the eigenstate occupation numbers (EON’s).



Energy

Corollary

For the total energy of the system we obtain:

〈E 〉 = 〈ψ(0)|Ĥ|ψ(0)〉 =
∑
α

|Cα|2Eα

Generic Initial State
We will restrict our attention to initial states |ψ(0)〉 sufficiently
narrow in energy, i.e. the distribution of the |Cα|2 is narrow. More
precisely:

∆E =

( ∑
α

|Cα|2E 2
α−〈E 〉2

)1/2

=

( ∑
α

|Cα|2
(
Eα−〈E 〉

)2
)1/2

� 〈E 〉

For our purposes such an initial state shall be called generic.



Time Evolution

1. The temporal evolution of the state vector is given by:

|ψ(t)〉 =
∑
α

Cαe−
i
~ Eαt |ψα〉

I want to understand: how is thermal behaviour encoded in this
equation

2. The time dependence of the expectation value of any
obeservable A is given by:

〈A(t)〉 = 〈ψ(t)|A|ψ(t)〉 =
∑
α,β

C ∗
αCβe

i
~ (Eα−Eβ)tAαβ (2)

where we define 〈ψα|A|ψβ〉 ≡ Aαβ . Call Aαα eigenstate
expectation value (EEV).



Thermalization

To check whether a system is in thermal equilibrium, we must
measure some observable(s) A belonging to the set S of allowed
observables.

1. no general results for S
2. concrete restrictions arise when one considers specific classes

of systems (e.g. classically chaotic systems)

Definition
We say the quantum system exhibits thermal behaviour if for
A ∈ S, 〈A(t)〉 relaxes towards the thermal value prescribed by
quantum statistical physics after some characteristic relaxation
time.

Note: neglect fluctuations of A



Infinite-time average of an observable

The following average is mathematically tractable (use classical
intuition):

Definition
The infinite-time average Ā is

Ā ≡ lim
τ→∞

1

τ

∫ τ

0
〈A(t)〉dt =

∑
α

|Cα|2Aαα (3)

→ Given A shows thermal behaviour, we assume the relaxation
must be to this value.
(infinite time washes out nonthermal behaviour, contained within
non-diagonal (α 6= β) elements in the sum of eqn. (2))



”Quantum Ergodicity”

Let the system be truly isolated. The quantum statistical average
is (microcanonical ensemble):

〈A〉mc(〈E 〉) =
1

N〈E〉,∆E

∑
α:Eα∈I

Aαα

where I ≡ [〈E 〉 −∆E , 〈E 〉+ ∆E ] is an energy window and N〈E〉,∆E

is the number of eigenstates contributing to the microcanonical
average.
If A behaves thermally, it should also settle to the prediction of the
microcanonical ensemble:

Ā = 〈A〉mc(E ) ⇐⇒
∑
α

|Cα|2Aαα =
1

N〈E〉,∆E

∑
α:Eα∈I

Aαα

Deutsch: “ergodic quantum system”.
This equation is problematic.



Thermodynamical Universality

∑
α

|Cα|2Aαα =
1

N〈E〉,∆E

∑
α:Eα∈I

Aαα (4)

Concern: explain thermodynamical universality in this equation:

I l.h.s. of (4) depends on the initial conditions via
Cα = 〈ψα|ψ(0)〉

I r.h.s. of (4) depends only on 〈E 〉 =
∑

α |Cα|2Eα, which is the
same for many sets {Cα}α

A possible explanation: ETH

I restriction on A necessary: take e.g. A = Pβ = |ψβ〉〈ψβ |



Eigenstate Thermalization

1. intuition: Aαα = const. ∀α
2. idea: EEV’s Aαα almost don’t vary between eigenstates which

are close in energy (within I , c.f. generic initial state)

ETH (Deutsch ’91, Srednicki ’94)

Thermalization in isolated, bounded quantum systems happens at
the level of individual eigenstates of the Hamiltonian:

Aαα = 〈A〉mc(Eα) ∀α (5)

In other words, each eigenstate of the Hamiltonian implicitly
contains a thermal state.



The (auxiliary) role of time

I no time variable t in eqn. (5)

I Role of time evolution:

I initial state = superposition of eigenstates with “carefully”
chosen phases Cα

I revelation of the thermal state due to the dephasing effect of
Hamiltonian time evolution in eqn. (2)

I coherence between Aαβ destroyed, Ā reached

I time evolution doesn’t construct the thermal state, it only
reveals it. The thermal state exists at t=0, but the coherence
hides it (picture).



Second Approach

Lemma
Ā will depend on 〈E 〉 and not on the details of the Cα if Aαα is a
smooth function of Eα with negligible variation over I :

Aαα = Φ(Eα). (6)

Proof
Taylor 1st order: Ā = Φ(〈E 〉)[1 + O(∆E/〈E 〉)]. Assume generic
state.

�

Notes:

1. argument Eα discrete, but close (quasi-continuous) within I

2. Φ approximately constant over I (up to small error)

3. (6)! restriction for the allowed observables



Canonical Thermal Average

I idea c.f. picture

The (canonical) thermal average 〈A〉T is:

〈A〉T =
1

Z (T )

∑
α

e−Eα/kBTAαα =
1

Z (T )

∫ ∞

0
dE n(E )e−E/kBTΦ(E )

with:

I Z (T ) =
∑

α e−Eα/kBT : partition function

I n(E ) =
∑

α δ(E − Eα): density of states



Eigenstate Thermalization

1. Approximating n(E ), one can show:

〈A〉T = Φ(U)[1 + O(N−1/2)] (7)

with U(T ) = T 2Z ′(T )/Z (T ) the internal energy.

2. Ergodicity is satisfied if:

Ā = 〈A〉T ⇐⇒ N � 1 and U(T ) = 〈E 〉.

3. Eigenstate thermalization: we have Aαα = Φ(Eα)

(7) =⇒ Aαα = 〈A〉Tα , where U(Tα) = Eα.



Eigenstate Thermalization: Validity

Results for a few restricted classes of systems:

1. ETH holds for integrable Ĥ with weak perturbation (random
Gaussian matrix)  quantum chaos
( J.M. Deutsch)

2. For quantum systems with chaotic classical counterparts, ETH
is valid sometimes, in particular if Berry’s conjecture holds
(M. Srednicki)

Consider now an example of 2.



3. ETH: A SPECIFIC EXAMPLE



The ∞-hard-sphere gas
I representative example of a system which exhibits chaos

classically in all its available phase space at any energy E
I ergodic, mixing (Sinai, 1963)

Definition
The system consists of N identical particles in a box L3, with mass
m and radius a each. The Hamiltonian is:

H =
∑

i

p2
i

2m
+

∑
i<j

V (|xi − xj |), i , j = 1, ...N

where xi is the position of the i-th particle and the potential is
given by:

V (r) =

{
∞ if r < 2a
0 else

I all following results are formulated specifically for this system
(in particular BC)



Notation

Any wavefuntion ψ(~X ), ~X = (x1, ..., xN) ∈ R3N :

1. is defined on the domain D in coordinate space, where:

D = {x1, ..., xN | −
1

2
L ≤ xi1,2,3 ≤

1

2
L ; |xi − xj | ≥ 2a}

2. satisfies ψ = 0 on ∂D ( ∞ - potential).

Energy eigenfunctions:

1. are denoted by ψα(~X ), where:

Ĥψα(~X ) = Eαψα(~X )

2. in momentum space (semi-classical model):

ψ̃α(~P) ≡ h−3N/2

∫
D

d3NX ψα(~X )e
i
~

~P·~X



What we will see:

The line of thought is the following:

1. Berry’s conjecture (BC)

2. Assume as initial state an energy eigenstate which satisfies BC

3. show that under this assumption the thermal behaviour of a
particular observable is correctly explained by the ETH

Or more concisely:

BC ⇒ ET



Interlude: Thought Experiment

In our case A = p̂1, the momentum of a selected particle.

Thought Experiment

1. Prepare the system in an initial state |ψi 〉
2. After some time t, measure p̂1

3. Repeat (same |ψi 〉, same t, same particle)

Because of the inherent uncertainties in QM, we can hope to
obtain a distribution for p̂1.



Berry’s Conjecture

Berry’s conjecture (Berry, 1977)

Let ψα(~X ) be an energy eigenfunction of the system at sufficiently
high energy. Then ψα(~X ) can be written as:

ψα(~X ) = Nα

∫
d3NP Aα(~P)δ(~P2 − 2mEα)e

i
~

~P·~X (8)

i.e. ψα is a superposition of plane waves with fixed wavelength
(energy).
The amplitudes Aα(~P) behave like Gaussian random variables with
a two-point correlation function given by

〈ψ̃∗α(~P)ψ̃β( ~P ′)〉EE = δαβN 2
αδ(

~P2 − 2mEα)δ3N(~P − ~P ′) (9)



Berry’s conjecture II

Notes:

I EE = Eigenstate Ensemble: fictitious ensemble which contains
all functions that have the properties of a“typical“
eigenfunction. Individual eigenfunctions behave as if they were
selected at random from that ensemble.

I Nα from
∫
D d3NX ψ2

α(~X ) = 1



Validity of Berry’s conjecture

I uncertain, believed to hold in semiclassical classically chaotic
systems (in most of their phase space)

I for our system, condition of sufficiently high energy

I rough criterion (Donald, Kaufman 1988): “thermal
wavelength of each particle smaller than relevant length
feature”(which produces classical chaos):

thermal wavelength: λα ≡ O(1)
h√

2mkBTα

In our case this criterion would be λα ≤ a. Indeed:

λα ≤ a ⇐⇒ Eα =
3

2
NkBTα ≥ . . .

(high energy requirement)



ETH and the hard-sphere gas

Theorem
Let |ψα〉 be an energy eigenstate of the system which satisfies BC.
In the limit of low density Na3 � L3, |ψα〉 “predicts“ a thermal
distribution

fMB(~p1,Tα) , whereTα ≡
2Eα

3NkB

for the momentum ~p1 of a single constituent particle in the limit
N →∞.

I This is precisely the eigenstate thermalization scenario: every
eigenstate implicitly contains a thermal state.



Proof - An Outline I

Work in momentum space: ψ̃α(~P): energy eigenfunctions (FT:˜)

I initial state:
ψ̃(~P, t = 0) ≡

∑
α

Cαψ̃α(~P)

=⇒ ψ̃(~P, t) =
∑
α

Cαe−
i
~ Eαtψ̃α(~P) (10)

I joint probability density of all N particles: |ψ̃(~P, t)|2



Proof - An Outline II

The probability of finding atom 1 with momentum in range d3p
around ~p1 is (marginal density):

f (~p1, t) =

∫
d3p2 . . . d

3pN |ψ̃(~P, t)|2

Now consider an energy eigenstate as initial state:
∃α : Cα = 1,Cβ = 0∀β 6= α. Then:

f (~p1, t) =

∫
d3p2 . . . d

3pN |ψ̃α(~P)|2 ≡ φαα(~p1)

which does not depend on time.



Proof - An Outline III

The trick (to be justified) is to average this time independent
density over our fictitious EE, thereby using BC:

〈φαα(~p1)〉EE = · · · · · ·︸ ︷︷ ︸
BC, low density

= N 2
αL3N

∫
d3p2 . . . d

3pN δ(~P2−2mEα)

At last:
lim

N→∞
〈φαα(~p1)〉EE = fMB(~p1,Tα)

thereby defining Tα via:

Eα =
3

2
NkBTα

�



Comments

Note that:

1. n.t.s. small fluctuations (use Gaussian property):

〈|φαα(~p1)|2〉EE − |〈φαα(~p1)〉EE |2 � 〈φαα(~p1)〉EE

justify that EE is a good choice

2. Eqn. (6): p1αα = 〈p1〉MB(Eα) is a statement about the
expectation value for the observable p1

I have shown corresponding densities are equal

3. symmetry assumptions for ψ  FD-, BE- distributions


