Algorithmic Complexity [Zurek(1989)]

Marek Pikulski

Proseminar The Role of Information in Statistical Mechanics. Prof. Renner, ETH Zürich

May 25, 2009

Marek Pikulski

-

Bibliography

W. H. Zurek. Algorithmic randomness and physical entropy. *Phys. Rev. A*, 40:4731, 1989.

L. Szilard.

Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. *Zeitschrift für Physik A*, 53:840–856, 1928.

R. Landauer.

Irreversibility and heat generation in the computing process. IBM Journal of Research and Development, 5:183–191, 1961.

C. H. Bennett.

Logical reversibility of computation.

IBM Journal of Research and Development, 17:525-532, 1973.

Outline

- References
- 2 Reminder of statistical entropy and motivation
- 3 Algorithmic randomness
 - Example
- 4 Algorithmic randomness and statistical entropy
 - Results from information and coding theory
 - Estimate average algorithmic randomness

5 Physical entropy

- Motivation
- Definition
- Extraction of work by an IGUS
- "The demon's version of thermodynamics"

Summary

Reminder of statistical entropy and motivation

Entropy in statistical mechanics

Gibbs entropy^a

$$H = -k_B \sum_i p_i \log p_i$$
 or $H = -\sum_i p_i \log_2 p_i$

Boltzmann formula (for W equiprobable states): $H = \log_2 W$ von Neumann entropy: $H = -Tr\rho \ln \rho$

^aformula depends on "choice of units"

Entropy in information theory

Shannon entropy (characterized by few mathematical properties)

$$H = -\sum_i p_i \log_2 p_i$$

Image: Image:

Motivation

Statistical entropy requires specification of an ensemble and a probability distribution!

Question: What is the entropy of a single, definite microstate?

- Use algorithmic randomness to define it.
- \rightarrow Study its properties.
 - Try to unify statistical and algorithmic entropy.

Outline

References

Reminder of statistical entropy and motivation

- 3 Algorithmic randomness• Example
- 4 Algorithmic randomness and statistical entropy
 - Results from information and coding theory
 - Estimate average algorithmic randomness

5 Physical entropy

- Motivation
- Definition
- Extraction of work by an IGUS
- "The demon's version of thermodynamics"

Summary

The configuration of a system can be specified by a binary string. \rightarrow What is the (algorithmic) complexity of such a string?

Example

- 010101010101 is algorithmically simple
- 100010111000 is algorithmically random
- However, the leading bits of a binary representation of $\sqrt{(2)}$ are rather simple.

The configuration of a system can be specified by a binary string. \rightarrow What is the (algorithmic) complexity of such a string?

Example

- 010101010101 is algorithmically simple
- 100010111000 is algorithmically random
- However, the leading bits of a binary representation of $\sqrt(2)$ are rather simple.

Definition (Algorithmic randomness)

Let s be a binary string and U a universal Turing machine. The algorithmic randomness of s, K(s), is the length $|s^*|$ of the shortest program s^* , executable by U, that has the following properties:

- *i*) *s*^{*} terminates (after finite time)
- *ii)* s^* is self-delimiting (contains its length)
- iii) after the execution of s^* the output band contains nothing but s

Definition

A computer/Turing machine U is said to be *universal* iff for every other computer C there exists a prefix τ_C so that $U(\tau_C p) = C(p)$ for all programs p which can be executed by C.

(日) (周) (三) (三)

First remarks concerning algorithmic randomness

- Most binary strings s are algorithmically random $(K(s) \approx |s|)$.
- Binary representations of *random* integers *i*:

$$K(i) \approx \log_2 i + \mathcal{O}(1)$$

Example (Boltzmann Gas)

- Ideal gas in D-dimensional container of fixed volume V
- N indistinguishable particles at temperature T•
- ۲ Partition phase space into equally sized, rectangular, paraxial cells of dimensions $\Delta_V = \Delta_x^D$ and Δ_p .
- $E = \frac{1}{2}k_BT$ per degree of freedom $\Rightarrow p_i = \sqrt{mk_BT}$

$$C pprox \left(rac{V}{\Delta_V}
ight) \left(rac{\sqrt{mk_BT}}{\Delta_p}
ight)^D$$

$$\Omega = \frac{C^N}{N!}$$

Example (Boltzmann Gas)

- Ideal gas in D-dimensional container of fixed volume V
- N indistinguishable particles at temperature T
- Partition phase space into equally sized, rectangular, paraxial cells of dimensions Δ_V = Δ_x^D and Δ_p.
- $E = \frac{1}{2}k_BT$ per degree of freedom $\Rightarrow p_i = \sqrt{mk_BT}$

Number of grid vertices:

$$\mathcal{C} pprox \left(rac{V}{\Delta_V}
ight) \left(rac{\sqrt{mk_BT}}{\Delta_{
ho}}
ight)^D$$

Total number of distinguishable configurations:

$$\Omega = \frac{C^N}{N!}$$

Algorithmic randomness of a typical configuration ¹:

$$\begin{split} \kappa &\approx \log_2(\Omega) + \mathcal{O}(1) = N\left(\log_2\left(\frac{V}{\sqrt[N]}\Delta_V\right) + \frac{D}{2}\log_2\frac{mk_BT}{\Delta_p^2}\right) + \mathcal{O}(1) \\ &\stackrel{\text{Stirling, big } N}{\approx} N\left(\log_2\left(\frac{V}{N\Delta_V}\right) + \frac{D}{2}\log_2\frac{mk_BT}{\Delta_p^2}\right) + \mathcal{O}(N) + \mathcal{O}(1) \\ &\stackrel{\text{huge } N}{\approx} N\left(\log_2\left(\frac{V}{N\Delta_V}\right) + \frac{D}{2}\log_2\frac{mk_BT}{\Delta_p^2}\right) + \mathcal{O}(1) \end{split}$$

Consistent with the Sackur-Tetrode equation!

¹Stirling's formula: $\log N! \approx N \log N - N$

Outline

References

2 Reminder of statistical entropy and motivation

3 Algorithmic randomness

Example

Algorithmic randomness and statistical entropy

- Results from information and coding theory
- Estimate average algorithmic randomness

5 Physical entropy

- Motivation
- Definition
- Extraction of work by an IGUS
- "The demon's version of thermodynamics"

5 Summary

Algorithmic randomness and statistical entropy

What do we want to do?

We have:

- $\langle K \rangle_{\mathcal{E}}$ (average algorithmic randomness)
- $H(\mathcal{E})$ (Shannon entropy)

How are these two quantities related to each other?

Results from information and coding theory

Coding theory

Efficiently encode symbols $\{s_k\}$, occurring with probabilities p_k , using code words $\{\tilde{s_k}\}$ (composed of an alphabet, here $\{0,1\}$). Measure of efficiency: $\mathcal{L} = \langle |\tilde{s_k}| \rangle = \sum_i p_i |\tilde{s_i}|$

Unique decodability	Mapping "sequence of symbols" \mapsto "sequence of
	code words" is injective.
Instantaneous code	Each symbol can be decoded immediately after re-
	ception.
Prefix-free code	No code word is prefix to any other code word ^a .

^aimplies *instantaneous code*

Example

 $s_1 \rightarrow 0, s_2 \rightarrow 1, s_3 \rightarrow 00, s_4 \rightarrow 11$ not uniquely decodable $s_1 \rightarrow 0, s_2 \rightarrow 01, s_3 \rightarrow 011, s_4 \rightarrow 111$ uniquely dec., not instantaneous ^a $s_1 \rightarrow 0, s_2 \rightarrow 10, s_3 \rightarrow 110, s_4 \rightarrow 111$ instantaneous, prefix-free

consider 00111

(日) (周) (三) (三)

Unique decodability	Mapping "sequence of symbols" \mapsto "sequence of
	code words" is injective.
Instantaneous code	Each symbol can be decoded immediately after re-
	ception.
Prefix-free code	No code word is prefix to any other code word ^a .

^aimplies *instantaneous code*

Example

 $s_1 \rightarrow 0, s_2 \rightarrow 1, s_3 \rightarrow 00, s_4 \rightarrow 11$ not uniquely decodable $s_1 \rightarrow 0, s_2 \rightarrow 01, s_3 \rightarrow 011, s_4 \rightarrow 111$ uniquely dec., not instantaneous ^a $s_1 \rightarrow 0, s_2 \rightarrow 10, s_3 \rightarrow 110, s_4 \rightarrow 111$ instantaneous, prefix-free

consider 00111

イロト イポト イヨト イヨト

Unique decodability	Mapping "sequence of symbols" \mapsto "sequence of
	code words" is injective.
Instantaneous code	Each symbol can be decoded immediately after reception.
	•
Prefix-free code	No code word is prefix to any other code word ^{a} .

^aimplies *instantaneous code*

Example

 $s_1 \rightarrow 0, s_2 \rightarrow 1, s_3 \rightarrow 00, s_4 \rightarrow 11$ not uniquely decodable $s_1 \rightarrow 0, s_2 \rightarrow 01, s_3 \rightarrow 011, s_4 \rightarrow 111$ uniquely dec., not instantaneous ^a $s_1 \rightarrow 0, s_2 \rightarrow 10, s_3 \rightarrow 110, s_4 \rightarrow 111$ instantaneous, prefix-free

^aconsider 00111

イロト 不得下 イヨト イヨト 二日

Unique decodability	Mapping "sequence of symbols" \mapsto "sequence of
	code words" is injective.
Instantaneous code	Each symbol can be decoded immediately after re-
	ception.
Prefix-free code	No code word is prefix to any other code word ^a .

^aimplies *instantaneous code*

Example

 $s_1 \rightarrow 0, s_2 \rightarrow 1, s_3 \rightarrow 00, s_4 \rightarrow 11$ not uniquely decodable $s_1 \rightarrow 0, s_2 \rightarrow 01, s_3 \rightarrow 011, s_4 \rightarrow 111$ uniquely dec. , not instantaneous a $s_1 \rightarrow 0, s_2 \rightarrow 10, s_3 \rightarrow 110, s_4 \rightarrow 111$ instantaneous, prefix-free

^aconsider 00111

イロト イポト イヨト イヨト

Theorem (Kraft's inequality)

Every uniquely decodable code (not necessarily finite number of symbols) that uses an alphabet consisting of q letters satisfies the inequality

$$\sum_{i} q^{-l_i} \leq 1$$

Conversely, for every given set of code word lengths $\{I_i\}$ which satisfy the preceding inequality there exists a (even prefix-free) code.

Shannon coding

Shannon coding is defined (up to permutations of code words of equal length) by $I_k = \lfloor -\log_2 p_k \rfloor$ and can be generated as shown in the proof of the converse of Kraft's inequality.

 \tilde{s}_k can be generated by knowing only the symbols/probabilities with $l_i \leq l_k$.

Theorem (Shannon's source coding theorem)

For every decipherable (uniquely decodable) code with word lengths l_k which encodes symbols s_k occurring with probabilities p_k :

$$H = -\sum_{k} p_k \log_2 p_k \le \sum_{k} p_k l_k = \mathcal{L}$$

If the code is optimal (minimizes the expected word length \mathcal{L}):

$$H \leq \mathcal{L} \leq H+1$$

.

The algorithmic information content of an ensemble \mathcal{E} consisting of states s_k with probabilities p_k , $K(\mathcal{E})$, is the length of the shortest program \mathcal{E}^* for a universal Turing machine which is able to enumerate the states s_k —each of them up to a given precision—along with the values of p_k (up to a given precision).

The output of \mathcal{E}^* has to be *weakly sorted*: for every $\delta > 0$ there should exist a finite number of steps N_{δ} after which \mathcal{E}^* has listed all states with probabilities $p_k > \delta$.

Definition

An ensemble \mathcal{E} is called *thermodynamic* if $K(\mathcal{E}) \ll H(\mathcal{E})$, where H is the statistical entropy.

(日) (同) (三) (三)

Theorem (Ensemble averages of algorithmic randomness)

The ensemble average of the algorithmic randomness for an ensemble \mathcal{E} , $\langle K \rangle_{\mathcal{E}}$, is bounded from below and from above in terms of the statistical entropy of the ensemble $H(\mathcal{E})$ and the algorithmic information content of the ensemble specification $K(\mathcal{E})$ according to the following inequality.

$$H(\mathcal{E}) \leq \langle K \rangle_{\mathcal{E}} \leq H(\mathcal{E}) + K(\mathcal{E}) + O(1)$$

Proof.

Blackboard.

Theorem (Shannon's source coding theorem)

For every decipherable (uniquely decodable) code with word lengths l_k which encodes symbols s_k occurring with probabilities p_k :

$$H = -\sum_{k} p_k \log_2 p_k \le \sum_{k} p_k l_k = \mathcal{L}$$

If the code is optimal (minimizes the expected word length \mathcal{L}):

$$H \leq \mathcal{L} \leq H+1$$

.

Theorem (Ensemble averages of algorithmic randomness)

The ensemble average of the algorithmic randomness for an ensemble \mathcal{E} , $\langle K \rangle_{\mathcal{E}}$, is bounded from below and from above in terms of the statistical entropy of the ensemble $H(\mathcal{E})$ and the algorithmic information content of the ensemble specification $K(\mathcal{E})$ according to the following inequality.

$$H(\mathcal{E}) \leq \langle K \rangle_{\mathcal{E}} \leq H(\mathcal{E}) + K(\mathcal{E}) + O(1)$$

Proof.

Blackboard.

Corollary

If \mathcal{E} is a thermodynamic ensemble ($K(\mathcal{E}) \ll H(\mathcal{E})$), the preceding theorem yields

 $\langle K \rangle_{\mathcal{E}} \approx H(\mathcal{E})$

- < A

3 × -

Outline

References

2 Reminder of statistical entropy and motivation

- 3 Algorithmic randomness
 - Example
- 4 Algorithmic randomness and statistical entropy
 - Results from information and coding theory
 - Estimate average algorithmic randomness

5 Physical entropy

- Motivation
- Definition
- Extraction of work by an IGUS
- "The demon's version of thermodynamics"

Summary

Motivation

Physical entropy, Motivation

Consider a thermodynamic engine and an IGUS (information gathering and using system) that is able to

- perform measurements
- erform computations using the measurement results
- Optimize the operation of the engine

This model is inspired by Szilard's engine [Szilard(1928)].

Physical entropy is the sum of the missing information and the size of the most concise record containing the data *d* known about a system:

$$\mathcal{S}_d = H_d + K(d)$$

Where, for a system which can be found in states $\{s_k\}$ with respective probabilities $\{p_k\}$, H(d) is given by the conditional Shannon entropy:

$$H_d = -\sum_k p_{k|d} \log_2 p_{k|d}$$

Definition (Physical entropy)

sum of missing information and complexity of known data d:

$$\mathcal{S}_d = \mathcal{H}_d + \mathcal{K}(d), \quad \mathcal{H}_d = -\sum_k p_{k|d} \log_2 p_{k|d}$$

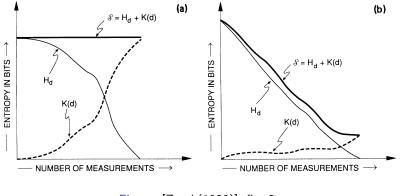


Figure: [Zurek(1989)], fig. 2

Extraction of work by an IGUS

Show that IGUS cannot extract any work in average.

Calculate average value of S_d for an ensemble \mathcal{E} , applying the preceding theorem to the ensemble ' \mathcal{E} restricted by fixing d' $(\mathcal{E}|d)$:

$$\langle \mathcal{S}_d \rangle_d = \sum_d p_d \left(H_d + \mathcal{K}(d) \right) \\ \geq \sum_d p_d \langle \mathcal{K} \rangle_{\mathcal{E}|d} = \sum_{k,d} p_d \, p_{k|d} \, \mathcal{K}(s_k) = \sum_k p_k \mathcal{K}(s_k) = \langle \mathcal{K} \rangle_{\mathcal{E}}$$

And:

$$egin{aligned} \langle \mathcal{S}_d
angle_d &= \sum_d p_d \left(\mathcal{H}_d + \mathcal{K}(d)
ight) \leq \sum_d p_d \left(\langle \mathcal{K}
angle_{\mathcal{E}|d} + \mathcal{K}(d)
ight) \ &= \sum_{k,d} p_d \, p_{k|d} \, \mathcal{K}(s_k) + \sum_d p_d \, \mathcal{K}(d) = \langle \mathcal{K}
angle_{\mathcal{E}} + \langle \mathcal{K}(d)
angle_d \end{aligned}$$

According to [Zurek(1989)], the first inequality is in fact approximately an equality.

Marek Pikulski

"The demon's version of thermodynamics"

Try to justify the term "entropy" in "physical entropy".

Thermodynamics

Thermodynamic entropy *S* defined by:

 $dU = -\delta W + \delta Q$ $\delta Q = T dS$

 $(\delta W$ work done by the system, δQ heat transferred to the system, U internal energy, T temperature)

Show that physical entropy $\mathcal S$ satisfies

$$\Delta W = T \Delta S$$

(Assume dU = 0 and T = const. for simplicity)

"The demon's version of thermodynamics"

Try to justify the term "entropy" in "physical entropy".

Thermodynamics

Thermodynamic entropy S defined by:

$$dU = -\delta W + \delta Q$$

$$\delta Q = T dS$$

 $(\delta W$ work done by the system, δQ heat transferred to the system, U internal energy, T temperature)

Show that physical entropy ${\mathcal S}$ satisfies

$$\Delta W = T \Delta S$$

(Assume dU = 0 and T = const. for simplicity)

- Consider a transition of the system from state s_i to state s_f in the presence of an demon-type observer (IGUS)—think of Szilard's engine.
- Assume IGUS operates at temperature T.
- Assume that the demon always keeps its memory record about the state of the system (r) up-to-date.
- Initially, $r = r_i$. After the transition, $r = r_f$.

Energy the demon can gain due to the change of (statistical) entropy:

 $\Delta W^+ = T(H_f - H_i)$

- Consider a transition of the system from state s_i to state s_f in the presence of an demon-type observer (IGUS)—think of Szilard's engine.
- Assume IGUS operates at temperature T.
- Assume that the demon always keeps its memory record about the state of the system (r) up-to-date.
- Initially, $r = r_i$. After the transition, $r = r_f$.

Energy the demon can gain due to the change of (statistical) entropy:

$$\Delta W^+ = T(H_f - H_i)$$

Landauer's principle [Landauer(1961)]

The erasure of 1 bit of information requires an energy of at least $k_B T \ln 2$. This is equal to T in the presented treatment.

What is $\Delta W^{-?}$ (What is the minimum number of bits that have to be erased when updating r_i with r_f ?)

$$\begin{pmatrix} r, & r^* \end{pmatrix} \xrightarrow{\text{rev.}} \begin{pmatrix} r, & r \end{pmatrix} \xrightarrow{\text{rev.}} \begin{pmatrix} r, & 0 \end{pmatrix} \xrightarrow[1^{st} \text{ calc., rev.}]{} \xrightarrow[1^{st} \text{ calc., rev.}} \begin{pmatrix} r^*, & 0 \end{pmatrix}$$

Assuming mapping $r_i \mapsto r_f$ (operating procedure of the engine) is "hard-coded" into IGUS:

$$\begin{array}{lll} K(r_i,r_f) &=& K(r_i) \\ K(r_i,r_f) &=& K(r_f) + K(r_i|r_f^*) & . \end{array} \quad (\text{note: } r_f^* \text{ is self-delimiting}) \end{array}$$

• $r_i \rightarrow r_f^* r_{i|f^*}^*$ reversible $(r_{i|f^*}^*$: min. program to calc. r_i given r_f^*). • $r_f^* r_{i|f^*}^* \rightarrow r_f r_{i|f^*}^*$ reversible

> needs to be erased has minimal length

Joint information satisfies:

$$K(s,t) \leq K(s) + K(t) + \mathcal{O}(1)$$

Definition of conditional information:

$$K(s,t) = K(t) + K(s|(t,K(t))) + O(1)$$

< □ > < ---->

$$\begin{pmatrix} r, & r^* \end{pmatrix} \xrightarrow{\text{rev.}} \begin{pmatrix} r, & r \end{pmatrix} \xrightarrow{\text{rev.}} \begin{pmatrix} r, & 0 \end{pmatrix} \xrightarrow[1^{st} \text{ calc., rev.}]{} \stackrel{\text{backtrack}}{\xrightarrow{}} \begin{pmatrix} r^*, & 0 \end{pmatrix}$$

Assuming mapping $r_i \mapsto r_f$ (operating procedure of the engine) is "hard-coded" into IGUS:

$$\begin{array}{lll} \mathcal{K}(r_i,r_f) &=& \mathcal{K}(r_i) \\ \mathcal{K}(r_i,r_f) &=& \mathcal{K}(r_f) + \mathcal{K}(r_i|r_f^*) & . & (\text{note: } r_f^* \text{ is self-delimiting}) \end{array}$$

• $r_i \rightarrow r_f^* r_{i|f^*}^*$ reversible $(r_{i|f^*}^*$: min. program to calc. r_i given r_f^*). • $r_f^* r_{i|f^*}^* \rightarrow r_f r_{i|f^*}^*$ reversible

> needs to be erased has minimal length

$$\begin{pmatrix} r, & r^* \end{pmatrix} \xrightarrow{\text{rev.}} \begin{pmatrix} r, & r \end{pmatrix} \xrightarrow{\text{rev.}} \begin{pmatrix} r, & 0 \end{pmatrix} \xrightarrow[1^{st} \text{ calc., rev.}]{} \stackrel{\text{backtrack}}{\xrightarrow{}} \begin{pmatrix} r^*, & 0 \end{pmatrix}$$

Assuming mapping $r_i \mapsto r_f$ (operating procedure of the engine) is "hard-coded" into IGUS:

$$\begin{array}{lll} \mathcal{K}(r_i,r_f) &=& \mathcal{K}(r_i) \\ \mathcal{K}(r_i,r_f) &=& \mathcal{K}(r_f) + \mathcal{K}(r_i|r_f^*) & . \end{array} \quad (\text{note: } r_f^* \text{ is self-delimiting}) \end{array}$$

• $r_i \rightarrow r_f^* r_{i|f^*}^*$ reversible $(r_{i|f^*}^*$: min. program to calc. r_i given r_f^*). • $r_f^* r_{i|f^*}^* \rightarrow r_f r_{i|f^*}^*$ reversible

> needs to be erased has minimal length

$$\begin{pmatrix} r, & r^* \end{pmatrix} \xrightarrow{\text{rev.}} \begin{pmatrix} r, & r \end{pmatrix} \xrightarrow{\text{rev.}} \begin{pmatrix} r, & 0 \end{pmatrix} \xrightarrow[1^{st} \text{ calc., rev.}]{} \xrightarrow[r^*, & 0 \end{pmatrix}$$

Assuming mapping $r_i \mapsto r_f$ (operating procedure of the engine) is "hard-coded" into IGUS:

$$\begin{array}{lll} \mathcal{K}(r_i,r_f) &=& \mathcal{K}(r_i) \\ \mathcal{K}(r_i,r_f) &=& \mathcal{K}(r_f) + \mathcal{K}(r_i|r_f^*) & . \end{array} \quad (\text{note: } r_f^* \text{ is self-delimiting}) \end{array}$$

• $r_i \rightarrow r_f^* r_{i|f^*}^*$ reversible $(r_{i|f^*}^*: \text{ min. program to calc. } r_i \text{ given } r_f^*)$. • $r_f^* r_{i|f^*}^* \rightarrow r_f r_{i|f^*}^*$ reversible

> needs to be erased has minimal length

Theorem

The maximal work gained by an engine coupled with a computerized demon, which can perform measurements and control the operation of the engine is no more than

$$\Delta W = \Delta W^{+} - \Delta W^{-} = T(H_{f} - H_{i} - K(r_{i}) + K(r_{f})) = T(S_{f} - S_{i})$$

- Boltzmann-Gibbs-Shannon entropy (statistical entropy)
 - objective for a given ensemble
 - requires probability distribution
 - relatively easy to calculate
 - successful/proven in most applications
 - limit of physical entropy in case of full ignorance
- Algorithmic entropy (algorithmic randomness)
 - objective
 - defined for a single, definite microstate
 - difficult to calculate, relatively easy to estimate
 - limit of physical entropy in case of complete knowledge
- Physical entropy
 - observer-dependent
 - allows formulation of thermodynamics in the presence of a demon-type observer
 - enables to monitor efficiency of a demon after each single cycle of the engine
 - compatible with statistical and algorithmic entropy!

- Boltzmann-Gibbs-Shannon entropy (statistical entropy)
 - objective for a given ensemble
 - requires probability distribution
 - relatively easy to calculate
 - successful/proven in most applications
 - limit of physical entropy in case of full ignorance
- Algorithmic entropy (algorithmic randomness)
 - objective
 - defined for a single, definite microstate
 - difficult to calculate, relatively easy to estimate
 - limit of physical entropy in case of complete knowledge
- Physical entropy
 - observer-dependent
 - allows formulation of thermodynamics in the presence of a demon-type observer
 - enables to monitor efficiency of a demon after each single cycle of the engine
 - compatible with statistical and algorithmic entropy!

- Boltzmann-Gibbs-Shannon entropy (statistical entropy)
 - objective for a given ensemble
 - requires probability distribution
 - relatively easy to calculate
 - successful/proven in most applications
 - limit of physical entropy in case of full ignorance
- Algorithmic entropy (algorithmic randomness)
 - objective
 - defined for a single, definite microstate
 - difficult to calculate, relatively easy to estimate
 - limit of physical entropy in case of complete knowledge
- Physical entropy
 - observer-dependent
 - allows formulation of thermodynamics in the presence of a demon-type observer
 - enables to monitor efficiency of a demon after each single cycle of the engine
 - compatible with statistical and algorithmic entropy

- Boltzmann-Gibbs-Shannon entropy (statistical entropy)
 - objective for a given ensemble
 - requires probability distribution
 - relatively easy to calculate
 - successful/proven in most applications
 - limit of physical entropy in case of full ignorance
- Algorithmic entropy (algorithmic randomness)
 - objective
 - defined for a single, definite microstate
 - difficult to calculate, relatively easy to estimate
 - limit of physical entropy in case of complete knowledge
- Physical entropy
 - observer-dependent
 - allows formulation of thermodynamics in the presence of a demon-type observer
 - enables to monitor efficiency of a demon after each single cycle of the engine
 - compatible with statistical and algorithmic entropy!

- Boltzmann-Gibbs-Shannon entropy (statistical entropy)
 - objective for a given ensemble
 - requires probability distribution
 - relatively easy to calculate
 - successful/proven in most applications
 - limit of physical entropy in case of full ignorance
- Algorithmic entropy (algorithmic randomness)
 - objective
 - defined for a single, definite microstate
 - difficult to calculate, relatively easy to estimate
 - limit of physical entropy in case of complete knowledge
- Physical entropy
 - observer-dependent
 - allows formulation of thermodynamics in the presence of a demon-type observer
 - enables to monitor efficiency of a demon after each single cycle of the engine
 - compatible with statistical and algorithmic entropy!