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Reminder of statistical entropy and motivation

Reminder of statistical entropy and motivation

Entropy in statistical mechanics

Gibbs entropya

H = −kB

∑
i

pi log pi or H = −
∑

i

pi log2 pi

Boltzmann formula (for W equiprobable states): H = log2 W
von Neumann entropy: H = −Trρ ln ρ

aformula depends on “choice of units”

Entropy in information theory

Shannon entropy (characterized by few mathematical properties)

H = −
∑

i

pi log2 pi

Marek Pikulski Algorithmic Complexity May 25, 2009 4 / 36



Reminder of statistical entropy and motivation

Motivation

Statistical entropy requires specification of an ensemble and a
probability distribution!

Question: What is the entropy of a single, definite microstate?

→
Use algorithmic randomness to define it.

Study its properties.

Try to unify statistical and algorithmic entropy.

Marek Pikulski Algorithmic Complexity May 25, 2009 5 / 36



Algorithmic randomness

Outline

1 References

2 Reminder of statistical entropy and motivation

3 Algorithmic randomness
Example

4 Algorithmic randomness and statistical entropy
Results from information and coding theory
Estimate average algorithmic randomness

5 Physical entropy
Motivation
Definition
Extraction of work by an IGUS
“The demon’s version of thermodynamics”

6 Summary

Marek Pikulski Algorithmic Complexity May 25, 2009 6 / 36



Algorithmic randomness

The configuration of a system can be specified by a binary string.
→ What is the (algorithmic) complexity of such a string?

Example

010101010101 is algorithmically simple

100010111000 is algorithmically random

However, the leading bits of a binary representation of
√

(2) are
rather simple.
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Algorithmic randomness

Definition (Algorithmic randomness)

Let s be a binary string and U a universal Turing machine. The
algorithmic randomness of s, K (s), is the length |s∗| of the shortest
program s∗, executable by U, that has the following properties:

i) s∗ terminates (after finite time)

ii) s∗ is self-delimiting (contains its length)

iii) after the execution of s∗ the output band contains nothing but s

Definition

A computer/Turing machine U is said to be universal iff for every other
computer C there exists a prefix τC so that U(τC p) = C (p) for all
programs p which can be executed by C .
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Algorithmic randomness

First remarks concerning algorithmic randomness

Most binary strings s are algorithmically random (K (s) ≈ |s|).

Binary representations of random integers i :

K (i) ≈ log2 i +O(1)
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Algorithmic randomness Example

Example (Boltzmann Gas)

Ideal gas in D-dimensional container of fixed volume V

N indistinguishable particles at temperature T

Partition phase space into equally sized, rectangular, paraxial cells of
dimensions ∆V = ∆x

D and ∆p.

E = 1
2 kBT per degree of freedom ⇒ pi =

√
mkBT

Number of grid vertices:

C ≈
(

V

∆V

)(√
mkBT

∆p

)D

Total number of distinguishable configurations:

Ω =
CN

N!
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Algorithmic randomness Example

Algorithmic randomness of a typical configuration 1:

K ≈ log2(Ω) +O(1) = N

(
log2

(
V

N
√

N!∆V

)
+

D

2
log2

mkBT

∆2
p

)
+O(1)

Stirling, big N
≈ N

(
log2

(
V

N∆V

)
+

D

2
log2

mkBT

∆2
p

)
+O(N) +O(1)

huge N
≈ N

(
log2

(
V

N∆V

)
+

D

2
log2

mkBT

∆2
p

)
+O(1)

Consistent with the Sackur-Tetrode equation!

1Stirling’s formula: log N! ≈ N log N − N
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Algorithmic randomness and statistical entropy

Algorithmic randomness and statistical entropy

What do we want to do?

We have:

〈K 〉E (average algorithmic randomness)

H(E) (Shannon entropy)

How are these two quantities related to each other?
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Algorithmic randomness and statistical entropy Results from information and coding theory

Results from information and coding theory

Coding theory

Efficiently encode symbols {sk}, occurring with probabilities pk ,
using code words {s̃k} (composed of an alphabet, here {0, 1}).
Measure of efficiency: L = 〈|s̃k |〉 =

∑
i pi |s̃i |
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Algorithmic randomness and statistical entropy Results from information and coding theory

Definitions

Unique decodability Mapping ”sequence of symbols” 7→ ”sequence of
code words” is injective.

Instantaneous code Each symbol can be decoded immediately after re-
ception.

Prefix-free code No code word is prefix to any other code worda.

aimplies instantaneous code

Example

s1 → 0, s2 → 1, s3 → 00, s4 → 11 not uniquely decodable
s1 → 0, s2 → 01, s3 → 011, s4 → 111 uniquely dec. , not instantaneous a

s1 → 0, s2 → 10, s3 → 110, s4 → 111 instantaneous, prefix-free

aconsider 00111
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Algorithmic randomness and statistical entropy Results from information and coding theory

Theorem (Kraft’s inequality)

Every uniquely decodable code (not necessarily finite number of symbols)
that uses an alphabet consisting of q letters satisfies the inequality∑

i

q−li ≤ 1

Conversely, for every given set of code word lengths {li} which satisfy the
preceding inequality there exists a (even prefix-free) code.
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Algorithmic randomness and statistical entropy Results from information and coding theory

Shannon coding

Shannon coding is defined (up to permutations of code words of equal
length) by lk = d− log2 pke and can be generated as shown in the proof of
the converse of Kraft’s inequality.

s̃k can be generated by knowing only the symbols/probabilities with li ≤ lk .
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Algorithmic randomness and statistical entropy Results from information and coding theory

Theorem (Shannon’s source coding theorem)

For every decipherable (uniquely decodable) code with word lengths lk
which encodes symbols sk occurring with probabilities pk :

H = −
∑
k

pk log2 pk ≤
∑
k

pk lk = L

If the code is optimal (minimizes the expected word length L):

H ≤ L ≤ H + 1 .
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Algorithmic randomness and statistical entropy Estimate average algorithmic randomness

Definition

The algorithmic information content of an ensemble E consisting of states
sk with probabilities pk , K (E), is the length of the shortest program E∗ for
a universal Turing machine which is able to enumerate the states sk—each
of them up to a given precision—along with the values of pk (up to a
given precision).
The output of E∗ has to be weakly sorted: for every δ > 0 there should
exist a finite number of steps Nδ after which E∗ has listed all states with
probabilities pk > δ.

Definition

An ensemble E is called thermodynamic if K (E) ≪ H(E), where H is the
statistical entropy.
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Algorithmic randomness and statistical entropy Estimate average algorithmic randomness

Theorem (Ensemble averages of algorithmic randomness)

The ensemble average of the algorithmic randomness for an ensemble E ,
〈K 〉E , is bounded from below and from above in terms of the statistical
entropy of the ensemble H(E) and the algorithmic information content of
the ensemble specification K (E) according to the following inequality.

H(E) ≤ 〈K 〉E ≤ H(E) + K (E) + O(1)

Proof.

Blackboard.
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Algorithmic randomness and statistical entropy Estimate average algorithmic randomness

Corollary

If E is a thermodynamic ensemble (K (E) ≪ H(E)), the preceding
theorem yields

〈K 〉E ≈ H(E)
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Physical entropy Motivation

Physical entropy, Motivation

Consider a thermodynamic engine and an IGUS (information gathering and
using system) that is able to

1 perform measurements

2 perform computations using the measurement results

3 optimize the operation of the engine

This model is inspired by Szilard’s engine [Szilard(1928)].
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Physical entropy Definition

Definition

Physical entropy is the sum of the missing information and the size of the
most concise record containing the data d known about a system:

Sd = Hd + K (d)

Where, for a system which can be found in states {sk} with respective
probabilities {pk}, H(d) is given by the conditional Shannon entropy:

Hd = −
∑
k

pk|d log2 pk|d
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Physical entropy Definition

Definition (Physical entropy)

sum of missing information and complexity of known data d :

Sd = Hd + K (d), Hd = −
∑
k

pk|d log2 pk|d

Figure: [Zurek(1989)], fig. 2
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Physical entropy Extraction of work by an IGUS

Extraction of work by an IGUS
Show that IGUS cannot extract any work in average.

Calculate average value of Sd for an ensemble E , applying the preceding
theorem to the ensemble ‘E restricted by fixing d ’ (E|d):

〈Sd〉d =
∑
d

pd (Hd + K (d))

≥
∑
d

pd〈K 〉E|d =
∑
k,d

pd pk|d K (sk) =
∑
k

pkK (sk) = 〈K 〉E

And:

〈Sd〉d =
∑
d

pd (Hd + K (d)) ≤
∑
d

pd

(
〈K 〉E|d + K (d)

)
=
∑
k,d

pd pk|d K (sk) +
∑
d

pd K (d) = 〈K 〉E + 〈K (d)〉d

According to [Zurek(1989)], the first inequality is in fact approximately an
equality.
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Physical entropy “The demon’s version of thermodynamics”

“The demon’s version of thermodynamics”

Try to justify the term “entropy” in “physical entropy”.

Thermodynamics

Thermodynamic entropy S defined by:

dU = −δW + δQ

δQ = T dS

(δW work done by the system, δQ heat transferred to the system, U
internal energy, T temperature)

Show that physical entropy S satisfies

∆W = T ∆S .

(Assume dU = 0 and T = const. for simplicity)
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Physical entropy “The demon’s version of thermodynamics”

Consider a transition of the system from state si to state sf in the
presence of an demon-type observer (IGUS)—think of Szilard’s engine.

Assume IGUS operates at temperature T .

Assume that the demon always keeps its memory record about the
state of the system (r) up-to-date.

Initially, r = ri . After the transition, r = rf .

Energy the demon can gain due to the change of (statistical) entropy:

∆W + = T (Hf − Hi )
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Physical entropy “The demon’s version of thermodynamics”

Landauer’s principle [Landauer(1961)]

The erasure of 1 bit of information requires an energy of at least kB T ln 2.
This is equal to T in the presented treatment.

What is ∆W−? (What is the minimum number of bits that have to be
erased when updating ri with rf ?)
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Physical entropy “The demon’s version of thermodynamics”

The substitution of r with r∗ (assuming r∗ is known) can be achieved by
reversible computation (see [Bennett(1973)]):(

r , r∗
) rev.→

(
r , r

) rev.→
(
r , 0

) backtrack−→
1st calc., rev.

(
r∗, 0

)
Assuming mapping ri 7→ rf (operating procedure of the engine) is
“hard-coded” into IGUS:

K (ri , rf ) = K (ri )

K (ri , rf ) = K (rf ) + K (ri |r∗f ) . (note: r∗f is self-delimiting)

ri → r∗f r∗i |f ∗ reversible (r∗i |f ∗ : min. program to calc. ri given r∗f ).

r∗f r∗i |f ∗ → rf r∗i |f ∗︸︷︷︸
needs to be erased

has minimal length

reversible

Minimal thermodyn. cost of memory update:
∆W− = |r∗i |f ∗ | = K (ri |r∗f ) = K (ri )− K (rf )
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Physical entropy “The demon’s version of thermodynamics”

Joint information satisfies:

K (s, t) ≤ K (s) + K (t) +O(1)

Definition of conditional information:

K (s, t) = K (t) + K (s|(t,K (t))) +O(1)
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Physical entropy “The demon’s version of thermodynamics”
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Physical entropy “The demon’s version of thermodynamics”

Theorem

The maximal work gained by an engine coupled with a computerized
demon, which can perform measurements and control the operation of the
engine is no more than

∆W = ∆W + −∆W− = T (Hf − Hi − K (ri ) + K (rf )) = T (Sf − Si )
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Summary

Summary
Boltzmann-Gibbs-Shannon entropy (statistical entropy)

objective for a given ensemble
requires probability distribution
relatively easy to calculate
successful/proven in most applications
limit of physical entropy in case of full ignorance

Algorithmic entropy (algorithmic randomness)
objective
defined for a single, definite microstate
difficult to calculate, relatively easy to estimate
limit of physical entropy in case of complete knowledge

Physical entropy
observer-dependent
allows formulation of thermodynamics in the presence of a demon-type
observer
enables to monitor efficiency of a demon after each single cycle of the
engine
compatible with statistical and algorithmic entropy!
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