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The Question

Coffee and Beer cool down, or warm up and reach room 
temperature if you leave them alone for long enogh 
time.

Thermalization as a fundamental fact of nature

How can one derive thermalization from basic 
dynamical laws ?



  

The Standpoint

Previous talks on Entanglement between System and 
Environment 
Quantum mechanical treatment, density matrix 

formalism
Replacement of equal a proiri probability postulate by 

a more general canonical principle



  

The Standpoint

Previous talks on Entanglement between System and 
Environment 
Quantum mechanical treatment, density matrix 

formalism
Replacement of equal a proiri probability postulate by 

a more general canonical principle
Almost all (pure) states of a large system are such 

that any small subsystem is in a canonical state.
At one certain point in time, kinematic result



  

One Step Further

This talk is about
Subsystems initially far from equilibrium
Time evolution, dynamical aspects
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The Model

The system
Hilbertspace composed by a bath B and a subsystem S

H = HB⊗HS

d S , d B  ∞



  

The Hamiltonian of the total system

only one assumtion: non-degenerate energy gaps
extremely weak assumption

H =∑
k

E k∣Ek 〉 〈 E k∣

The Model



  

The Hamiltonian of the total system

only one assumtion: non-degenerate energy gaps
extremely weak assumption
Implications:

non-degenerate energy levels
Hamiltonian is fully interactive:

H =∑
k

E k∣Ek 〉 〈 E k∣

The Model

H ≠ H S  H B



  

Definitions

Pure state of the total system and its density matrix

State of the bath B / subsystem S
 = ∣Ψt 〉 〈Ψ t ∣∣Ψ t 〉

Bt  = TrS t  S t  = Tr Bt 



  

Definitions

Pure state of the total system and its density matrix

State of the bath B / subsystem S

Time averaged state of the total system, B and S

note

 = ∣Ψt 〉 〈Ψ t ∣∣Ψ t 〉

B , S = 〈B , S t 〉t = TrS , B

 = 〈t 〉t = lim
∞

1
∫0


t d t

Bt  = TrS t  S t  = Tr Bt 



  

Definitions II

Effective dimension of a (mixed) state 
tells us, how many pure states contribute to the mixture



d eff  = 1
Tr 2



  

Definitions II

Effective dimension of a (mixed) state 
tells us, how many pure states contribute to the mixture

Trace distance between two density matrices
characterizes their experimental distinguishibility



d eff  = 1
Tr 2

1 and2

D 1 ,2 =
1
2

Tr 1−2
2



  

Thermalization ...

... is characterized by four independent elements
– Equilibration
– Bath state independence
– Subsystem state independence
– Boltzmann form of the equilibrium state

S =
1
Z exp −

H S

k B T 
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Central Result in Words

Every pure state of a 
large quantum system that is 
composed of a large number of energy eigenstates and 

which evolves under an 
arbitrary Hamiltonian (with non-degenerate energy 

gaps) is such that 
every small subsystem will 
equilibrate.



  

Theorem 1

Consider any state   evolving under a 
Hamiltonian with non-degenerate energy gaps. Then the 
following inequalities hold:

This means: Whenever the state of the bath (total system) 
goes throug many distinct states any small subsystem 
reaches equilibrium (since the mean fluctuation 
becomes very small)

〈D S t  ,S 〉t ≤
1
2  d S

d eff B
≤ 1

2  d S
2

d eff 

∣Ψ 0〉 ∈ H



  

Theorem 1

Q: In which cases (for which initial states ) 
does the total system go through many distinct states?
A: Almost all quantum states have this property.

From now on: restrict the initial state of the total system to 
a Hilbert subspace    of dimension   . 

∣Ψ 0〉 ∈ H

HR ⊂ H d R

∣Ψ 0〉 ∈ HR ⊂ H



  

Theorem 2

 The average effective dimension   where the 
average is computed over all uniformly random pure 
states   is such that 

For a random state , the probability 
that       is smaller than    is exponentially small, 
namely

with 

∣Ψ 0〉 ∈ HR ⊂ H

〈d eff 〉Ψ

〈d eff 〉Ψ ≥
d R

2
.

∣Ψ 0〉 ∈ HR ⊂ H
d eff  d R

4

PrΨ{d eff  
d R

4 }≤ 2 exp−cd R ,

c≈10−4 .



  

Equilibration of systems far from 
equilibrium

Q: Why can't we just plug in in 
above formulas?
A: This does not cover initial states far from 

equilibrium, they are not generic states, they are 
quite rare.

HR = H  and d R = d



  

Equilibration of systems far from 
equilibrium

Consider the following situation:
Bath with known macroscopic parameters (e.g. T)
Place a small subsystem into it, with arbitrary initial 

state
Initial state of the total system: 
Model macroscopic parameters:

 
Under the assumption we achieve: 

For any initial state of the subsystem, and almost all 
initial states of the bath, the subsystem equilibrates.

∣Ψ 0〉 = ∣0〉B∣0〉S
∣0〉B ∈ HB

R ⊂ HB

d B
R ≫ d S

2
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Theorem 3

Return to general model with

The inequalities

hold true with

∣Ψ 0〉 ∈ HR ⊂ HB⊗HS

S  depends on ∣Ψ 0〉 : S
Ψ

〈D S
Ψ ,S 〉Ψ ≤  d S

4 d R
≤  d S

4 d R

S = 〈S
Ψ〉Ψ ,



  

Theorem 3

Return to general model with

The inequalities

hold true with

where

∣Ψ 0〉 ∈ HR ⊂ HB⊗HS

S  depends on ∣Ψ 0〉 : S
Ψ

〈D S
Ψ ,S 〉Ψ ≤  d S

4 d R
≤  d S

4 d R

 =∑
k
〈E k∣

R

d R
∣E k 〉TrS Tr B∣E k 〉 〈 E k∣

2 ≤ 1,

R  is the projector onto HR .

S = 〈S
Ψ〉Ψ ,



  

Bath State Independence

Consider once again subsystem and bath initially in the 
product state:

Given  
almost all states of the bath lead to the same time 

averaged (equilibrium) state of the subsystem.

∣Ψ 0〉 = ∣0〉B∣0〉S ∈ HR = HR
B⊗∣0〉

d R = d R
B

d B
R ≫ d S ,



  

Subsystem State Independence

More complicated question, not yet completely solved
So far: all the used boundaries depended only on 

dimensions
Drastic counter-example: Atomic bomb

Equilibrium of subsystem may depend on its initial 
state.

d ,d S , d B , d B
R .



  

Subsystem State Dependence 
Examples:

● Conserved quantities on subsystem

with observable 

H =∑
n m

Enm∣m 〉 〈m∣B⊗∣n 〉 〈n∣S

A =∑
n

an∣n 〉 〈 n∣S



  

Subsystem State Dependence 
Examples:

● Conserved quantities on subsystem

with observable 

● No conserved quantities on subsystem
Subsystem / bath consisting of 1 / many spins

H =∑
n m

Enm∣m 〉 〈m∣B⊗∣n 〉 〈n∣S

A =∑
n

an∣n 〉 〈 n∣S

E ≫ 1   ,  −1 ≤ H int , H B ≤ 1

H = E S
z  H int  H B



  

Subsystem State Independence

Provided, the energy eigenstates of the total system are 
far from product (from being product states of pure 
states of the subsystem and the bath), almost all initial 
states of the subsystem lead to the same time 
averaged state.

Proof: Apply Theorem 3 on the initial total state

Under the assumption on the form of 

∣Ψ 0〉 = ∣0〉B∣0〉S ∈ HR = ∣0〉B ⊗ HS

∣E k 〉 ,   is small.



  

Outline
● Motivation
● Setup
● Equilibration: 2 Theorems
● Initial state dependence: A Theorem
● Summary



  

Summary
● Motivation
● Setup
– The Model
– Definitions
– What do we mean by Thermalization ?

● Equilibration: 2 Theorems
● Initial state dependence: A Theorem



  

Summary
● Motivation
● Setup
● Equilibration: 2 Theorems
– Central result in words
– Theorem 1
– Theorem 2
– Equilibration of systems far from equilibrium

● Initial state dependence: A Theorem



  

Summary
● Motivation
● Setup
● Equilibration: 2 Theorems
● Initial State Independence: A Theorem
– Theorem 3
– Bath State Independence
– Subsystem State Independence
– Subsystem State Dependence: Examples


