Emergence of Thermal Equilibrium Entanglement between System and Environment I

Maximilian Kelm

Pro-Seminar in Theoretical Physics ETH Zurich

April 6, 2009

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

MOTIVATION

- discrepancy between quantum mechanics and emergent phenomena, thermodynamics
- First attempts to justify thermodynamics by quantum mechanics: quantum statistical mechanics.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

WHAT ARE WE TALKING ABOUT?

- Entanglement between System and Environment I: Averaging over possible quantum states yields thermodynamics.
- Entanglement between System and Environment II: How can thermodynamics be derived without averaging and the a priori assumption of equipartition?

Entanglement between System and Environment III: How is thermal equilibrium achieved?

OUTLINE

INTRODUCTION

Motivation What Are We Talking about?

Reminder: Classical Statistical Mechanics

The Microcanonical Ensemble The Canonical Ensemble

QUANTUM STATISTICAL MECHANICS

A Theorem Some Words on Ergodicity ... Justification of the Microcanonical Ensemble Justification of the Canonical Ensemble

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

SUMMARY

OUTLINE

INTRODUCTION

Motivation What Are We Talking about?

REMINDER: CLASSICAL STATISTICAL MECHANICS The Microcanonical Ensemble The Canonical Ensemble

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

QUANTUM STATISTICAL MECHANICS

A Theorem Some Words on Ergodicity ... Justification of the Microcanonical Ensemble Justification of the Canonical Ensemble

SUMMARY

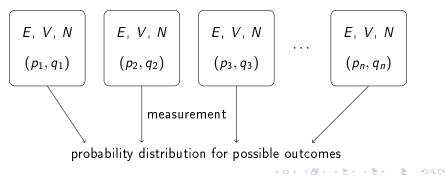
DEFINITIONS

DEFINITION

An ensemble is a collection of systems with certain common macroscopic properties, but which are all in different states. The ensemble average of a quantity is the average of this quantity over all systems in the ensemble.

EXAMPLE

Microcanonical ensemble



The Microcanonical Ensemble

- ► E, V, N fixed
- Postulate: Every state compatible with E, V and N has the same probability.
- This yields a state density

$$ho(p,q) = egin{cases} rac{1}{h^{3N}N!}, & ext{if } E < H(p,q) < E + \Delta \ 0, & ext{otherwise}. \end{cases}$$

 Define the total number of states with energy between E and E + Δ by

$$\Gamma = \Gamma(E) = \int d^{3N} p \, d^{3N} q \, \rho(p, q)$$
$$= \frac{1}{h^{3N} N!} \int_{E < H(p,q) < E + \Delta} d^{3N} p \, d^{3N} q.$$

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

The Microcanonical Ensemble

The quantity

$$S = k_B \log \Gamma$$

can be proven to be extensive and maximal for a closed system. It is thus identified with the **entropy**.

We now get thermodynamics by defining

$$\begin{aligned} \frac{1}{T} &= \frac{\partial S}{\partial E} \Big|_{V,N}, \\ p &= T \frac{\partial S}{\partial V} \Big|_{E,N}, \\ \mu &= T \frac{\partial S}{\partial N} \Big|_{E,V}. \end{aligned}$$

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

THE CANONICAL ENSEMBLE

- System (E_A, V_A, N_A) in thermal contact with a large system (E_B, V_B, N_B) ("heat reservoir")
 - $\blacktriangleright (E_A, V_A, N_A) \ll (E_B, V_B, N_B)$
 - The composite system is isolated: $E \le E_A + E_B \le E + 2\Delta$, E = const.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

 \triangleright V_A , V_B , N_A , N_B are constant.

THE CANONICAL ENSEMBLE

For E_A, E_B fixed, we have Γ(E) = Γ_A(E_A)Γ_B(E_B).
 In general:

$$\Gamma(E) = \sum_{i=1}^{E/\Delta} \Gamma_A(E_i) \Gamma_B(E - E_i)$$
$$S(E) = k_B \log \Gamma(E)$$
$$\approx k_B \log \Gamma_A(\bar{E}) \Gamma_B(E - \bar{E}),$$

where $\Gamma_A(\bar{E})\Gamma_B(E-\bar{E})$ is the maximal summand of $\Gamma(E)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

THE CANONICAL ENSEMBLE

• As $\bar{E} \ll E$, we can expand

$$\Gamma_B(E-\bar{E}) \approx const \cdot e^{-\bar{E}/k_B T_B}$$

- In equilibrium, $T_A = T_B \equiv T$.
- ► The probability for (p_A, q_A) with $H_A(p_A, q_A) = \overline{E}$ is proportional to $\Gamma_B(E \overline{E})$.

► We get:

$$\rho(p,q) = \frac{1}{h^{3N}N!} e^{-H(p,q)/k_BT}$$

and can define the free energy to be

$$F(V, T, N) = -k_B T \log Z_N(V, T),$$

where

$$Z_N(V,T) = \int \mathrm{d}^{3N} p \, \mathrm{d}^{3N} q \, \rho(p,q).$$

ション ふゆ アメリア メリア しょうくしゃ

OUTLINE

INTRODUCTION

Motivation What Are We Talking about?

Reminder: Classical Statistical Mechanics

The Microcanonical Ensemble The Canonical Ensemble

QUANTUM STATISTICAL MECHANICS

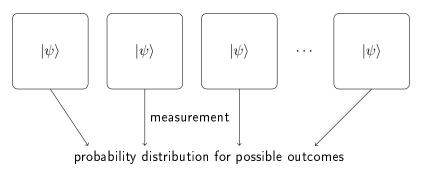
A Theorem Some Words on Ergodicity ... Justification of the Microcanonical Ensemble Justification of the Canonical Ensemble

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

SUMMARY

QUANTUM STATISTICAL MECHANICS

- Setup: A large number of systems all prepared in the same quantum state.
- Quantum Statistics describe the distribution of outcomes of a certain measurement on these systems.
- intrinsic uncertainty
- \blacktriangleright density function replaced by density operator ho



A THEOREM

Theorem

Let $\mathcal{H} \cong \mathbb{C}^n$ be a subset of the Hilbert Space for System A, F an hermitian operator corresponding to some measurement on A. Let \mathcal{A} denote averaging over all $|\psi\rangle \in \mathcal{H}$. Then

$$\sqrt{\mathcal{A}[(\langle \psi|F|\psi\rangle - \frac{1}{n}\operatorname{tr} F)^2]} = \frac{1}{\sqrt{n+1}} \underbrace{\sqrt{\frac{1}{n}\operatorname{tr}(F^2) - \frac{1}{n^2}(\operatorname{tr} F)^2}}_{\leq \max_i |f_i|}.$$

Proof.

On the board.

Meaning: Most of the states behave nearly like an ensemble when *F* is applied on them.

ション ふゆ アメリア メリア しょうくしゃ

A THEOREM

COROLLARY

Let $|\psi\rangle \in \mathcal{H} \cong \mathbb{C}^n$ and a set of real numbers $\{f_i\}_{i=1,...,n}$ be fixed. Let \mathcal{B} denote averaging over all possible orthonormal bases $\{|e_i\rangle\}$ of \mathcal{H} . Then

$$\sqrt{\mathcal{B}[(\langle \psi|F|\psi\rangle - \frac{1}{n}\operatorname{tr} F)^2]} = \frac{1}{\sqrt{n+1}}\sqrt{\frac{1}{n}\operatorname{tr}(F^2) - \frac{1}{n^2}(\operatorname{tr} F)^2},$$

where $F = \sum_{i} f_{i} |e_{i}\rangle \langle e_{i}|$.

Proof.

Follows immediately from the proof of the theorem.

Meaning: The majority of measurements performed on some state $|\psi\rangle$ yield nearly the same results as if applied on the ensemble corresponding to \mathcal{H} .

A THEOREM

Theorem and corollary also hold for higher moments: in particular, the standard deviation of the distribution is very close to the standard deviation of the ensemble.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Some Words on Ergodicity ...

 Bocchieri and Loinger also showed that the average over time behaves very similarly:

The average over time and over all initial state vectors yields almost the same distribution as the ensemble, the standard deviation is small.

Upshot: "[...] for the 'overwhelming majority' of the initial states of the system the distribution laws of quantum statistical mechanics hold at the 'overwhelming majority' of time instants."

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

any measurement takes finite time: time average

JUSTIFICATION OF THE MICROCANONICAL ENSEMBLE

- System: E, V, N fixed (as before)
- $\blacktriangleright \ \mathcal{H} = \mathcal{H}_{E,E+\Delta} = \{ |\psi\rangle : H |\psi\rangle = E' |\psi\rangle, \text{ where } E \leq E' \leq E + \Delta \}$
- By the theorem, the distribution measured will be very close to the distribution predicted by the microcanonical ensemble for almost all |ψ⟩ ∈ H, if n ≫ 1.
- By the corollary, whatever state the system is in, most measurements will yield almost the same distribution as for the microcanonical ensemble.

define entropy S, get thermodynamics

JUSTIFICATION OF THE CANONICAL ENSEMBLE

- ► A small system (E_A, V_A, N_A) interacts weakly with a large system (E_B, V_B, N_B), so the interaction can be treated as a perturbation.
- $\blacktriangleright E \leq E_A + E_B \leq E + 2\Delta$
- The composite system is in an entangled state!
- As we consider the small system only, we have to trace out the large system. This leads to a mixed state and we get our canonical ensemble!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

OUTLINE

INTRODUCTION

Motivation What Are We Talking about?

Reminder: Classical Statistical Mechanics

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

The Microcanonical Ensemble The Canonical Ensemble

QUANTUM STATISTICAL MECHANICS

A Theorem Some Words on Ergodicity ... Justification of the Microcanonical Ensemble Justification of the Canonical Ensemble

SUMMARY

SUMMARY

- For large systems in equilibrium, quantum statistics lead roughly to the same result as classical statistics: thermodynamics.
- > This is shown by **averaging** over all possible states.

Disadvantages:

- not true for all states and all measurements
- canonical case: weak-interaction assumption required

Outlook:

- new approach without averaging, without equiprobability postulate, based on entanglement alone
- What happens if the system is not in equilibrium?

LITERATURE

P. Bocchieri, A. Loinger:

Ergodic Foundation of Quantum Statistical Mechanics

S. Lloyd:

Chapter 3: Pure Quantum Statistical Mechanics and Black Holes

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

in Black Holes, Demons and the Loss of Coherence

K. Huang: Statistical Mechanics