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Motivation

I discrepancy between quantum mechanics and emergent
phenomena, thermodynamics

I First attempts to justify thermodynamics by quantum
mechanics: quantum statistical mechanics.



What Are We Talking about?

I Entanglement between System and Environment I:
Averaging over possible quantum states yields
thermodynamics.

I Entanglement between System and Environment II:
How can thermodynamics be derived without averaging and
the a priori assumption of equipartition?

I Entanglement between System and Environment III:
How is thermal equilibrium achieved?
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Definitions

Definition
An ensemble is a collection of systems with certain common
macroscopic properties, but which are all in di�erent states.
The ensemble average of a quantity is the average of this quantity
over all systems in the ensemble.

Example
Microcanonical ensemble

(p1, q1)

E , V , N

(p2, q2)

E , V , N

(p3, q3)

E , V , N
· · ·

(pn, qn)

E , V , N

measurement

probability distribution for possible outcomes



The Microcanonical Ensemble

I E , V , N �xed

I Postulate: Every state compatible with E , V and N has the
same probability.

I This yields a state density

ρ(p, q) =

{
1

h3NN!
, if E < H(p, q) < E + ∆

0, otherwise.

I De�ne the total number of states with energy between E and
E + ∆ by

Γ = Γ(E ) =

∫
d3Np d3Nq ρ(p, q)

=
1

h3NN!

∫
E<H(p,q)<E+∆

d3Np d3Nq.



The Microcanonical Ensemble

I The quantity
S = kB log Γ

can be proven to be extensive and maximal for a closed
system. It is thus identi�ed with the entropy.

I We now get thermodynamics by de�ning

1

T
=
∂S

∂E

∣∣∣∣
V ,N

,

p = T
∂S

∂V

∣∣∣∣
E ,N

,

µ = T
∂S

∂N

∣∣∣∣
E ,V

.



The Canonical Ensemble

I System (EA,VA,NA) in thermal contact with
a large system (EB ,VB ,NB) (�heat reservoir�)

I (EA,VA,NA)� (EB ,VB ,NB)

I The composite system is isolated:

E ≤ EA + EB ≤ E + 2∆, E = const.

I VA, VB , NA, NB are constant.



The Canonical Ensemble

I For EA, EB �xed, we have Γ(E ) = ΓA(EA)ΓB(EB).

I In general:

Γ(E ) =

E/∆∑
i=1

ΓA(Ei )ΓB(E − Ei )

S(E ) =kB log Γ(E )

≈kB log ΓA(Ē )ΓB(E − Ē ),

where ΓA(Ē )ΓB(E − Ē ) is the maximal summand of Γ(E ).



The Canonical Ensemble

I As Ē � E , we can expand

ΓB(E − Ē ) ≈ const · e−Ē/kBTB

I In equilibrium, TA = TB ≡ T .

I The probability for (pA, qA) with HA(pA, qA) = Ē is
proportional to ΓB(E − Ē ).

I We get:

ρ(p, q) =
1

h3NN!
e−H(p,q)/kBT

and can de�ne the free energy to be

F (V ,T ,N) = −kBT logZN(V ,T ),

where

ZN(V ,T ) =

∫
d3Np d3Nq ρ(p, q).
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Quantum Statistical Mechanics

I Setup: A large number of systems all prepared in the same

quantum state.

I Quantum Statistics describe the distribution of outcomes of
a certain measurement on these systems.

I intrinsic uncertainty

I density function replaced by density operator ρ

|ψ〉 |ψ〉 |ψ〉 · · · |ψ〉

measurement

probability distribution for possible outcomes



A Theorem

Theorem
Let H ∼= Cn be a subset of the Hilbert Space for System A,

F an hermitian operator corresponding to some measurement on A.

Let A denote averaging over all |ψ〉 ∈ H. Then√
A[(〈ψ|F |ψ〉 − 1

n
tr F )2] =

1√
n + 1

√
1

n
tr(F 2)− 1

n2
(tr F )2︸ ︷︷ ︸

≤maxi |fi |

.

Proof.

On the board.

Meaning: Most of the states behave nearly like an ensemble when
F is applied on them.



A Theorem

Corollary
Let |ψ〉 ∈ H ∼= Cn and a set of real numbers {fi}i=1,...,n be �xed.

Let B denote averaging over all possible orthonormal bases {|ei 〉}
of H. Then√

B[(〈ψ|F |ψ〉 − 1

n
tr F )2] =

1√
n + 1

√
1

n
tr(F 2)− 1

n2
(tr F )2,

where F =
∑

i fi |ei 〉〈ei |.

Proof.

Follows immediately from the proof of the theorem.

Meaning: The majority of measurements performed on some state
|ψ〉 yield nearly the same results as if applied on the ensemble
corresponding to H.



A Theorem

I Theorem and corollary also hold for higher moments: in
particular, the standard deviation of the distribution is very
close to the standard deviation of the ensemble.



Some Words on Ergodicity . . .

I Bocchieri and Loinger also showed that the average over time
behaves very similarly:
The average over time and over all initial state vectors yields
almost the same distribution as the ensemble, the standard
deviation is small.

I Upshot: �[...] for the `overwhelming majority' of the initial
states of the system the distribution laws of quantum
statistical mechanics hold at the `overwhelming majority' of
time instants.�

I any measurement takes �nite time: time average



Justification of the Microcanonical Ensemble

I System: E , V , N �xed (as before)

I H = HE ,E+∆ = {|ψ〉 : H|ψ〉 = E ′|ψ〉, where E ≤ E ′ ≤ E+∆}
I By the theorem, the distribution measured will be very close to

the distribution predicted by the microcanonical ensemble for
almost all |ψ〉 ∈ H, if n� 1.

I By the corollary, whatever state the system is in, most
measurements will yield almost the same distribution as for the
microcanonical ensemble.

I de�ne entropy S , get thermodynamics



Justification of the Canonical Ensemble

I A small system (EA,VA,NA) interacts weakly with a large
system (EB ,VB ,NB), so the interaction can be treated as a
perturbation.

I E ≤ EA + EB ≤ E + 2∆

I The composite system is in an entangled state!

I As we consider the small system only, we have to trace

out the large system. This leads to a mixed state and

we get our canonical ensemble!
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Summary

I For large systems in equilibrium, quantum statistics lead
roughly to the same result as classical statistics:
thermodynamics.

I This is shown by averaging over all possible states.

I Disadvantages:
I not true for all states and all measurements
I canonical case: weak-interaction assumption required

I Outlook:
I new approach without averaging, without equiprobability

postulate, based on entanglement alone
I What happens if the system is not in equilibrium?
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