Explicit thermalisation models II: Quantum master equations

Martin Fluder

27. April 2009

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Outline

Introduction

Closed and open quantum systems

Closed systems and the master equation thereof Dynamics of open systems

Quantum markov systems and the quantum dynamical semigroup Definition of the dynamical map on an arbitrary open system Quantum Markov systems and semigroup

Derivation of the generator of the semigroup for an N-level system

Generator \mathcal{L} of the semigroup Generator of the N-level system Diagonal form

Example: Decay of two-level system

Summary

Introduction

I will be talking about:

- Quantum master equations in open and closed systems: first order differential equations for density matrices of a system
- Concept of quantum dynamical semigroup associated with quantum Markov systems
- Derivation of the general form of the Markovian master equation for a N-level system
- Example: Decay of a two-level system and relaxation into thermal equilibrium thereof

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Closed and open quantum systems

Closed systems and the master equation thereof

Closed systems

Definition

A closed quantum system is a system S, which is prepared in such a way that there is no interaction with the environment

If we thus have a closed system S, the state of such a system is then described by a state vector $|\psi\rangle \in \mathcal{H}_S$, where \mathcal{H}_S is the Hilbert space corresponding to S, with inner product $\langle \psi | \varphi \rangle$. We therefore can use the technics studyied in our classes.

Closed and open quantum systems

Closed systems and the master equation thereof

Closed systems

Definition

A closed quantum system is a system S, which is prepared in such a way that there is no interaction with the environment

If we thus have a closed system S, the state of such a system is then described by a state vector $|\psi\rangle \in \mathcal{H}_{\mathcal{S}}$, where $\mathcal{H}_{\mathcal{S}}$ is the Hilbert space corresponding to S, with inner product $\langle \psi | \varphi \rangle$. We therefore can use the technics studyied in our classes.

Closed and open quantum systems

Closed systems and the master equation thereof

Schrödinger equation and unitary time-evolution

$$i\frac{d}{dt} |\psi(t)\rangle = H(t) |\psi(t)\rangle \tag{1}$$

From which we know the solution:

$$|\psi(t)\rangle = U(t, t_0) |\psi(t_0)\rangle$$
(2)

where $U(t, t_0)$ is the *unitary time-evolution operator*. If we plug (2) into (1) we get:

$$i\frac{d}{dt}U(t,t_0) = H(t)U(t,t_0)$$
(3)

with initial condition: $U(t_0, t_0) = id$

Closed and open quantum systems

Closed systems and the master equation thereof

Schrödinger equation and unitary time-evolution

$$i\frac{d}{dt} \mid \psi(t) \rangle = H(t) \mid \psi(t) \rangle \tag{1}$$

From which we know the solution:

$$|\psi(t)\rangle = U(t, t_0) |\psi(t_0)\rangle$$
(2)

where $U(t, t_0)$ is the unitary time-evolution operator. If we plug (2) into (1) we get:

$$i\frac{d}{dt}U(t,t_0) = H(t)U(t,t_0)$$
(3)

with initial condition: $U(t_0, t_0) = id$

Closed and open quantum systems

Closed systems and the master equation thereof

Schrödinger equation and unitary time-evolution

$$i\frac{d}{dt} \mid \psi(t) \rangle = H(t) \mid \psi(t) \rangle \tag{1}$$

From which we know the solution:

$$|\psi(t)\rangle = U(t, t_0) |\psi(t_0)\rangle$$
(2)

where $U(t, t_0)$ is the unitary time-evolution operator. If we plug (2) into (1) we get:

$$i\frac{d}{dt}U(t,t_0) = H(t)U(t,t_0)$$
(3)

with initial condition: $U(t_0, t_0) = id$

Closed and open quantum systems

Closed systems and the master equation thereof

Density matrices

Now, let us introduce the *density matrix* of the system S:

$$\rho(t) = \sum_{\alpha} \omega_{\alpha} \mid \psi_{\alpha}(t) \rangle \langle \psi_{\alpha}(t) \mid$$
(4)

where ω_{α} are the statistical weights.

$$\rho(t) = \sum_{\alpha} \omega_{\alpha} U(t, t_0) \mid \psi_{\alpha}(t_0) \rangle \langle \psi_{\alpha}(t_0) \mid U^{\dagger}(t, t_0)$$

$$= U(t, t_0) \rho(t_0) U^{\dagger}(t, t_0)$$
(5)

Closed and open quantum systems

Closed systems and the master equation thereof

Density matrices

Now, let us introduce the *density matrix* of the system S:

$$ho(t) = \sum_{lpha} \omega_{lpha} \mid \psi_{lpha}(t)
angle \langle \psi_{lpha}(t) \mid$$
 (4)

where ω_{α} are the statistical weights. With previous considerations we get:

$$\rho(t) = \sum_{\alpha} \omega_{\alpha} U(t, t_0) | \psi_{\alpha}(t_0) \rangle \langle \psi_{\alpha}(t_0) | U^{\dagger}(t, t_0)$$

$$= U(t, t_0) \rho(t_0) U^{\dagger}(t, t_0)$$
(5)

Closed and open quantum systems

 \square Closed systems and the master equation thereof

Liouville-von Neumann and master equation

Differentiate equation (5) on both sides by t and using equation (3) we get:

$$\frac{d}{dt}\rho(t) = -i(H(t)\rho(t) - \rho(t)H(t)) = -i[H(t),\rho(t)]$$
(6)

Equation (6) is then called the *Liouville-von Neumann equation*. Introduce the Liouville super-operator:

$$\mathcal{L}(t)\rho(t) = -i\left[H(t),\rho(t)\right] \tag{7}$$

And we get another form of equation (6):

$$\frac{d}{dt}\rho(t) = \mathcal{L}(t)\rho(t) \tag{8}$$

the master equation of a closed quantum system

Closed and open quantum systems

Closed systems and the master equation thereof

Liouville-von Neumann and master equation

Differentiate equation (5) on both sides by t and using equation (3) we get:

$$\frac{d}{dt}\rho(t) = -i(H(t)\rho(t) - \rho(t)H(t)) = -i[H(t),\rho(t)]$$
(6)

Equation (6) is then called the *Liouville-von Neumann equation*. Introduce the Liouville super-operator:

$$\mathcal{L}(t)\rho(t) = -i\left[H(t),\rho(t)\right] \tag{7}$$

And we get another form of equation (6):

$$\frac{d}{dt}\rho(t) = \mathcal{L}(t)\rho(t) \tag{8}$$

the master equation of a closed quantum system

Closed and open quantum systems

Closed systems and the master equation thereof

Liouville-von Neumann and master equation

Differentiate equation (5) on both sides by t and using equation (3) we get:

$$\frac{d}{dt}\rho(t) = -i(H(t)\rho(t) - \rho(t)H(t)) = -i[H(t),\rho(t)]$$
(6)

Equation (6) is then called the *Liouville-von Neumann equation*. Introduce the Liouville super-operator:

$$\mathcal{L}(t)\rho(t) = -i\left[H(t),\rho(t)\right] \tag{7}$$

And we get another form of equation (6):

$$\frac{d}{dt}\rho(t) = \mathcal{L}(t)\rho(t) \tag{8}$$

the master equation of a closed quantum system

Closed and open quantum systems

Dynamics of open systems

Definition of an open system

Definition

- An open quantum system is the subsystem S, of a closed combined system S+B, where the B, represents the system corresponding to the *environment*.
- ► The subsystem S, being the system we are interested in, is then called the *reduced system*.

Denote by \mathcal{H}_S , \mathcal{H}_B the Hilbert space of S, B respectively. We then know that the Hilbert space of the combined system S + B is: $\mathcal{H} = \mathcal{H}_S \otimes \mathcal{H}_B$

Closed and open quantum systems

Dynamics of open systems

Definition of an open system

Definition

- An open quantum system is the subsystem S, of a closed combined system S+B, where the B, represents the system corresponding to the *environment*.
- The subsystem S, being the system we are interested in, is then called the *reduced system*.

Denote by \mathcal{H}_S , \mathcal{H}_B the Hilbert space of S, B respectively. We then know that the Hilbert space of the combined system S + B is: $\mathcal{H} = \mathcal{H}_S \otimes \mathcal{H}_B$

Closed and open quantum systems

Dynamics of open systems

Hamiltonian of an open system

With the previous consideration, we can write the Hamiltonian of the total closed system S + B the following way:

$$H = H_S \otimes I_B + I_S \otimes H_B + H_I \tag{9}$$

where:

- ► *H_S*: the self-Hamiltonian of the reduced system S
- H_B : the free Hamiltonian of the environment
- ► H_I: the interaction Hamiltonian between S and B

Closed and open quantum systems

Dynamics of open systems

Expectation values in the total and reduced system

Recall: For any system described by a density matrix ρ and C an arbitrary observable of the system, we know, that the expectation value (C) of the observable C is given by:

$$\langle C \rangle = tr\{C\rho\} \tag{10}$$

This follows immediately from the definition of the density matrix $\rho.$

If A is an operator on H_S we get that à = A ⊗ I_B is an operator on H and the observable A acting on the open system's Hilbert space H_S is determined through the formula:

$$\langle A \rangle = tr\{A\rho_S\} \tag{11}$$

where $\rho_S = tr_B \rho$ is the reduced density matrix and $tr_B\{\cdot\}$ is the partial trace over the subsystem B.

Closed and open quantum systems

Dynamics of open systems

Expectation values in the total and reduced system

Recall: For any system described by a density matrix ρ and C an arbitrary observable of the system, we know, that the expectation value (C) of the observable C is given by:

$$\langle C \rangle = tr\{C\rho\} \tag{10}$$

This follows immediately from the definition of the density matrix ρ .

If A is an operator on H_S we get that à = A ⊗ I_B is an operator on H and the observable A acting on the open system's Hilbert space H_S is determined through the formula:

$$\langle A \rangle = tr\{A\rho_{\mathcal{S}}\} \tag{11}$$

where $\rho_S = tr_B \rho$ is the reduced density matrix and $tr_B\{\cdot\}$ is the partial trace over the subsystem B.

Closed and open quantum systems

Dynamics of open systems

Master equation on the reduced system

From the derivation of the quantum master equation of a closed system we find for the density matrix of the reduced system:

$$\rho_{S}(t) = tr_{B}\{U(t, t_{0})\rho(t_{0})U^{\dagger}(t, t_{0})\}$$
(12)

Taking these considerations into account, we can derive the *master* equation on the reduced system S, by taking the partial trace on both sides of the Liouville-von Neumann equation and we get:

$$\frac{d}{dt}\rho_S(t) = -\imath tr_B\{[H(t), \rho(t)]\}$$
(13)

We note that these two equations describe the reduced system exactly.

- Closed and open quantum systems

Dynamics of open systems

Master equation on the reduced system

From the derivation of the quantum master equation of a closed system we find for the density matrix of the reduced system:

$$\rho_{S}(t) = tr_{B}\{U(t, t_{0})\rho(t_{0})U^{\dagger}(t, t_{0})\}$$
(12)

Taking these considerations into account, we can derive the *master* equation on the reduced system *S*, by taking the partial trace on both sides of the Liouville-von Neumann equation and we get:

$$\frac{d}{dt}\rho_{S}(t) = -itr_{B}\{[H(t),\rho(t)]\}$$
(13)

We note that these two equations describe the reduced system exactly.

Quantum markov systems and the quantum dynamical semigroup

 \square Definition of the dynamical map on an arbitrary open system

Definition of the dynamical map on an arbitrary open system

Assume: At t = 0: total state uncorrelated $\Rightarrow \rho(0) = \rho_S(0) \otimes \rho_B$, and ρ_B some reference state.

Then:

For
$$t > 0$$
: $\rho_S(0) \mapsto \rho_S(t) = V(t)\rho_S(0)$ and

 $\rho_{S}(t) = V(t)\rho_{S}(0) = tr_{B}\{U(t,0)[\rho_{S}(0) \otimes \rho_{B}]U^{\dagger}(t,0)\}$ (14)

► The map V(t) is called a *dynamical map* acting on the space of density operators S(H_s) on H_S:

 $\mathcal{S}(\mathcal{H}_S) \to \mathcal{S}(\mathcal{H}_S)$ $ho_S(0) \mapsto V(t)
ho_S(0) =
ho_S(t)$

Quantum markov systems and the quantum dynamical semigroup

Definition of the dynamical map on an arbitrary open system

Definition of the dynamical map on an arbitrary open system

Assume: At t = 0: total state uncorrelated $\Rightarrow \rho(0) = \rho_S(0) \otimes \rho_B$, and ρ_B some reference state.

Then:

► For
$$t > 0$$
: $\rho_S(0) \mapsto \rho_S(t) = V(t)\rho_S(0)$ and
 $\rho_S(t) = V(t)\rho_S(0) = tr_B\{U(t,0)[\rho_S(0) \otimes \rho_B]U^{\dagger}(t,0)\}$ (14)

The map V(t) is called a dynamical map acting on the space of density operators S(H_s) on H_S:

$$egin{aligned} \mathcal{S}(\mathcal{H}_{\mathcal{S}}) &
ightarrow \mathcal{S}(\mathcal{H}_{\mathcal{S}}) \ &
ho_{\mathcal{S}}(0) \ &\mapsto V(t)
ho_{\mathcal{S}}(0) =
ho_{\mathcal{S}}(t) \end{aligned}$$

Quantum markov systems and the quantum dynamical semigroup

Definition of the dynamical map on an arbitrary open system

Explicit form of the dynamical map

• Spectral decomposition of $\rho_B \Rightarrow \rho_B = \sum_{\beta} \lambda_{\beta} | \varphi_{\beta} \rangle \langle \varphi_{\beta} |$, where $| \varphi_{\beta} \rangle$ is an orthonormal basis of $\mathcal{H}_{\mathcal{B}}$ and $\lambda_{\beta} \ge 0$ such that $\sum_{\beta} \lambda_{\beta} = 1$

► Then:

$$V(t)\rho_{S}(0) = \sum_{\alpha,\beta} W_{\alpha\beta}(t)\rho_{S}(0)W_{\alpha\beta}^{\dagger}(t)$$
(15)

where $W_{lphaeta} = \sqrt{\lambda_eta} \cdot \langle arphi_lpha \mid U(t,0) \mid arphi_eta
angle$

Explicit thermalisation models II: Quantum master equations Quantum markov systems and the quantum dynamical semigroup

 \square Definition of the dynamical map on an arbitrary open system

Explicit form of the dynamical map

• Spectral decomposition of $\rho_B \Rightarrow \rho_B = \sum_{\beta} \lambda_{\beta} | \varphi_{\beta} \rangle \langle \varphi_{\beta} |$, where $| \varphi_{\beta} \rangle$ is an orthonormal basis of $\mathcal{H}_{\mathcal{B}}$ and $\lambda_{\beta} \ge 0$ such that $\sum_{\beta} \lambda_{\beta} = 1$

► Then:

$$V(t)\rho_{\mathcal{S}}(0) = \sum_{\alpha,\beta} W_{\alpha\beta}(t)\rho_{\mathcal{S}}(0)W_{\alpha\beta}^{\dagger}(t)$$
(15)

where $W_{lphaeta} = \sqrt{\lambda_eta} \cdot \langle arphi_lpha \mid U(t,0) \mid arphi_eta
angle$

Quantum markov systems and the quantum dynamical semigroup

Definition of the dynamical map on an arbitrary open system

Definition of complete positivity of a map

Definition

A linear map $\Phi : \mathcal{A} \to \mathcal{B}$ is called *completely positive*, if the tensor product map $\Phi^{(n)} := \Phi \otimes I_n : \mathcal{A} \otimes \mathcal{M}(n) \to \mathcal{B} \otimes \mathcal{M}(n)$ is positive $\forall n \in \mathbb{N}$

Quantum markov systems and the quantum dynamical semigroup

Definition of the dynamical map on an arbitrary open system

Representation theorem for super-operators by Kraus

Let Φ be a super-operator then:

1. Φ is completely positive $\iff \exists \Omega_k$, countable set of operators such that $\underline{\Phi(\rho) = \sum_k \Omega_k \rho \Omega_k^{\dagger}}$

Furthermore:

2. $tr(\Phi\rho) = tr(\rho) \qquad \iff \sum_k \Omega_k^{\dagger} \Omega_k = I$

Quantum markov systems and the quantum dynamical semigroup

Definition of the dynamical map on an arbitrary open system

V(t) is completely positive and trace preserving

Applying the representation theorem to our result (15) we see that:

- V(t) is linear
- V(t) is completely positive
- V(t) is trace-preserving

Quantum markov systems and the quantum dynamical semigroup

Quantum Markov systems and semigroup

Quantum Markov processes

Now, let us consider a *Markov system*: In such a system the time-evolution is *"Markovian"*, meaning local in time, so that memory effects are neglected.

Note:

- ▶ The Markovian assumption is often a brutal approximation to the time-evolution of the system, because $\rho_S(t + dt)$ normally not only depends on $\rho_S(t)$ but also on ρ_S at earlier times, since information that has left the system can be transferred back from the environment again.
- The condition underlying the Markovian approximation is: timescale over which state of S varies appreciably
 τ_R ≫ τ_B = timescale over which influence of S on B relaxes

-Quantum markov systems and the quantum dynamical semigroup

Quantum Markov systems and semigroup

Quantum Markov processes

Now, let us consider a *Markov system*: In such a system the time-evolution is *"Markovian"*, meaning local in time, so that memory effects are neglected. **Note:**

- The Markovian assumption is often a brutal approximation to the time-evolution of the system, because ρ_S(t + dt) normally not only depends on ρ_S(t) but also on ρ_S at earlier times, since information that has left the system can be transferred back from the environment again.
- The condition underlying the Markovian approximation is: timescale over which state of S varies appreciably
 τ_R ≫ τ_B = timescale over which influence of S on B relaxes

Quantum markov systems and the quantum dynamical semigroup

Quantum Markov systems and semigroup

If we assume S to be a Markov system, then:

The dynamical map takes on the following so called *semigroup property*:

$$V(t_1)V(t_2) = V(t_1 + t_2)$$

Because: $\rho_S(t_1 + t_2)$ is completely determined by $\rho_S(t_1)$ in a Markov system

Quantum markov systems and the quantum dynamical semigroup

Quantum Markov systems and semigroup

Quantum dynamical semigroup

Define the continuous one-parameter family $V := \{V(t) \mid t \in \mathbb{R}_{\geq 0}\}$ of completely positive trace-preserving linear maps: $V(t) : S(\mathcal{H}_S) \to S(\mathcal{H}_S)$, describing the whole future time evolution of the open system.

Definition

A continuous family of linear maps $V := \{V(t) \mid t \in \mathbb{R}_{\geq 0}\}$ is called a *quantum dynamical semigroup* if the following conditions are satisfied:

1. V(0) = I

2. V(t) is completely positive $orall t \in \mathbb{R}_{\geq 0}$

3. V(t) is trace-preserving

4.
$$V(t_1)V(t_2) = V(t_1 + t_2)$$

Quantum markov systems and the quantum dynamical semigroup

Quantum Markov systems and semigroup

Quantum dynamical semigroup

Define the continuous one-parameter family $V := \{V(t) \mid t \in \mathbb{R}_{\geq 0}\}$ of completely positive trace-preserving linear maps: $V(t) : S(\mathcal{H}_S) \to S(\mathcal{H}_S)$, describing the whole future time evolution of the open system.

Definition

A continuous family of linear maps $V := \{V(t) \mid t \in \mathbb{R}_{\geq 0}\}$ is called a *quantum dynamical semigroup* if the following conditions are satisfied:

- 1. V(0) = I
- 2. V(t) is completely positive $\forall t \in \mathbb{R}_{\geq 0}$
- 3. V(t) is trace-preserving

4.
$$V(t_1)V(t_2) = V(t_1 + t_2)$$

 $\label{eq:linear} \begin{array}{l} \mbox{Explicit thermalisation models II: Quantum master equations} \\ \hline \mbox{Derivation of the generator of the semigroup for an N-level system} \\ \hline \mbox{Generator \mathcal{L} of the semigroup} \end{array}$

The Markovian master equation

Assume: Semigroup property and sufficiently smooth evolution **Then:** we can define a master equation for the Markovian evolution:

$$\frac{d}{dt}\rho_{S}(t) = \lim_{\Delta t \to 0} \frac{\rho_{S}(t + \Delta t) - \rho_{S}(t)}{\Delta t} \\
= \underbrace{\lim_{\Delta t \to 0} \left\{ \frac{V(\Delta t) - V(0)}{\Delta t} \right\}}_{\mathcal{L}} \cdot \underbrace{V(t)\rho_{S}(0)}_{\rho_{S}(t)} \\
= \mathcal{L}\rho_{S}(t)$$
(16)

(16) is the Markovian master equation and $\mathcal{L} = \lim_{\Delta t \to 0} \frac{V(\Delta t) - V(0)}{\Delta t}$ is called the generator of the semigroup.

Derivation of the generator of the semigroup for an N-level system

Generator of the N-level system

Generator of an N-level system

Consider now an N-level system with N-dimensional Hilbert space $\mathcal{H}_S \cong \mathbb{C}^N$. Then:

- The the Hilbert space of operators is N²-dimensional. Therefore: S(H_S) ⊂ M(N) := {(a_{ij})^N_{i,j=1} | a_{ij} ∈ C}, with inner product: (A, B) = tr(A[†]B)
- Choose an orthonormal Basis $\{Fi\}_{i=1}^{N^2}$ of $\mathcal{M}(N)$ such that: 1. $(F_i, F_j) = \delta_{ij}$ 2. $F_{N^2} = \sqrt{\frac{1}{N}} \cdot I_S$ 3. $tr(F_i) = 0, \quad \forall i \in \{1, \dots, N^2 - 1\}$

Derivation of the generator of the semigroup for an N-level system

Generator of the N-level system

Generator of an N-level system

Consider now an N-level system with N-dimensional Hilbert space $\mathcal{H}_S \cong \mathbb{C}^N$. Then:

The the Hilbert space of operators is N²-dimensional. Therefore: S(H_S) ⊂ M(N) := {(a_{ij})^N_{i,j=1} | a_{ij} ∈ C}, with inner product: (A, B) = tr(A[†]B)

• Choose an orthonormal Basis $\{Fi\}_{i=1}^{N^2}$ of $\mathcal{M}(N)$ such that:

1.
$$(F_i, F_j) = \delta_{ij}$$

2. $F_{N^2} = \sqrt{\frac{1}{N}} \cdot I_S$
3. $tr(F_i) = 0, \quad \forall i \in \{1, \dots, N^2 - 1\}$

Explicit thermalisation models II: Quantum master equations Derivation of the generator of the semigroup for an N-level system Generator of the N-level system

With the definitions from the previous slide we can now write $W_{\alpha\beta}(t)$ the following way:

$$W_{\alpha\beta}(t) = \sum_{i=1}^{N^2} F_i(F_i, W_{\alpha\beta}(t))$$
(17)

And we get:

$$V(t)\rho_{S} = \sum_{i,j=1}^{N^{2}} c_{ij}(t) F_{i}\rho_{S} F_{j}^{\dagger}$$
(18)

where: $c_{ij} = \sum_{\alpha,\beta} (F_i, W_{\alpha\beta}(t))(F_j, W_{\alpha\beta}(t))^*$ is a Hermitean and positive matrix in $\mathcal{M}(N^2)$

Explicit thermalisation models II: Quantum master equations Derivation of the generator of the semigroup for an N-level system Generator of the N-level system

With the definitions from the previous slide we can now write $W_{\alpha\beta}(t)$ the following way:

$$W_{\alpha\beta}(t) = \sum_{i=1}^{N^2} F_i(F_i, W_{\alpha\beta}(t))$$
(17)

And we get:

$$V(t)\rho_{S} = \sum_{i,j=1}^{N^{2}} c_{ij}(t)F_{i}\rho_{S}F_{j}^{\dagger}$$
(18)

where: $c_{ij} = \sum_{\alpha,\beta} (F_i, W_{\alpha\beta}(t))(F_j, W_{\alpha\beta}(t))^*$ is a Hermitean and positive matrix in $\mathcal{M}(N^2)$

Derivation of the generator of the semigroup for an N-level system

Generator of the N-level system

Use the Markovian master equation:

$$\frac{d}{dt}\rho_{S} = \mathcal{L}\rho_{S} = \lim_{\Delta t \to 0} \frac{V(\Delta t)\rho_{S} - \rho_{S}}{\Delta t}$$
(19)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

And define:

$$\begin{array}{lll} a_{ij} & = & \lim_{\Delta t \to 0} \frac{c_{ij}(\Delta t)}{\Delta t}, & \text{if } i, j \in \{1, \cdots, N^2 - 1\} \\ a_{iN^2} & = & a_{N^2 i} = \lim_{\Delta t \to 0} \frac{c_{iN^2}(\Delta t)}{\Delta t}, & \text{if } i \in \{1, \cdots, N^2 - 1\} \\ a_{N^2 N^2} & = & \lim_{\Delta t \to 0} \frac{c_{N^2 N^2}(\Delta t) - N}{\Delta t} \\ F & = & \frac{1}{\sqrt{N}} \cdot \sum_{i=1}^{N^2 - 1} a_{iN^2} F_i \\ G & = & \frac{1}{2N} \cdot a_{N^2 N^2} I_S + \frac{1}{2} \cdot (F^{\dagger} + F) \\ H & = & \frac{1}{2i} \cdot (F^{\dagger} - F) \end{array}$$

Derivation of the generator of the semigroup for an N-level system

Generator of the N-level system

With these definitions we get:

$$\mathcal{L}\rho_{S} = (-i)[H, \rho_{S}] + \{G, \rho_{S}\} + \sum_{i,j=1}^{N^{2}-1} a_{ij}F_{i}\rho_{S}F_{j}^{\dagger}$$
(20)

But since semigroup is tracepreserving, we have:

$$tr\{\mathcal{L}\rho_S\} = tr\{\frac{d\rho_S}{dt}\} = \frac{d}{dt}\underbrace{tr\{\rho_S\}}_{=1} = 0$$
(21)

Now plug in (20) into (21) and use the fact that $tr{AB} = tr{BA}$:

$$\Rightarrow tr\left\{\left(2G + \sum_{i,j=1}^{N^2 - 1} a_{ij}F_j^{\dagger}F_i\right)\rho_S\right\} = 0 \qquad \forall \rho_S \in \mathcal{S}(\mathcal{H}_S)$$
(22)

$$G = -\frac{1}{2} \cdot \sum_{i,j=1}^{N^2 - 1} a_{ij} F_j^{\dagger} F_i \tag{23}$$

Derivation of the generator of the semigroup for an N-level system

Generator of the N-level system

With these definitions we get:

$$\mathcal{L}\rho_{S} = (-i)[H, \rho_{S}] + \{G, \rho_{S}\} + \sum_{i,j=1}^{N^{2}-1} a_{ij}F_{i}\rho_{S}F_{j}^{\dagger}$$
(20)

But since semigroup is tracepreserving, we have:

$$tr\{\mathcal{L}\rho_{S}\} = tr\{\frac{d\rho_{S}}{dt}\} = \frac{d}{dt}\underbrace{tr\{\rho_{S}\}}_{=1} = 0$$
(21)

Now plug in (20) into (21) and use the fact that $tr{AB} = tr{BA}$:

$$\Rightarrow tr\left\{\left(2G + \sum_{i,j=1}^{N^2 - 1} a_{ij}F_j^{\dagger}F_i\right)\rho_S\right\} = 0 \qquad \forall \rho_S \in \mathcal{S}(\mathcal{H}_S)$$
(22)

$$G = -\frac{1}{2} \cdot \sum_{i,j=1}^{N^2 - 1} a_{ij} F_j^{\dagger} F_i \tag{23}$$

Derivation of the generator of the semigroup for an N-level system

Generator of the N-level system

With these definitions we get:

$$\mathcal{L}\rho_{S} = (-i)[H, \rho_{S}] + \{G, \rho_{S}\} + \sum_{i,j=1}^{N^{2}-1} a_{ij}F_{i}\rho_{S}F_{j}^{\dagger}$$
(20)

But since semigroup is tracepreserving, we have:

$$tr\{\mathcal{L}\rho_{S}\} = tr\{\frac{d\rho_{S}}{dt}\} = \frac{d}{dt}\underbrace{tr\{\rho_{S}\}}_{=1} = 0$$
(21)

Now plug in (20) into (21) and use the fact that $tr{AB} = tr{BA}$:

$$\Rightarrow tr\left\{\left(2G + \sum_{i,j=1}^{N^2 - 1} a_{ij}F_j^{\dagger}F_i\right)\rho_S\right\} = 0 \qquad \forall \rho_S \in \mathcal{S}(\mathcal{H}_S)$$
(22)

$$G = -\frac{1}{2} \cdot \sum_{i,j=1}^{N^2 - 1} a_{ij} F_j^{\dagger} F_i \tag{23}$$

Derivation of the generator of the semigroup for an N-level system

Generator of the N-level system

With these definitions we get:

$$\mathcal{L}\rho_{S} = (-i)[H, \rho_{S}] + \{G, \rho_{S}\} + \sum_{i,j=1}^{N^{2}-1} a_{ij}F_{i}\rho_{S}F_{j}^{\dagger}$$
(20)

But since semigroup is tracepreserving, we have:

$$tr\{\mathcal{L}\rho_{S}\} = tr\{\frac{d\rho_{S}}{dt}\} = \frac{d}{dt}\underbrace{tr\{\rho_{S}\}}_{=1} = 0$$
(21)

Now plug in (20) into (21) and use the fact that $tr{AB} = tr{BA}$:

$$\Rightarrow tr\left\{\left(2G + \sum_{i,j=1}^{N^2 - 1} a_{ij}F_j^{\dagger}F_i\right)\rho_S\right\} = 0 \qquad \forall \rho_S \in \mathcal{S}(\mathcal{H}_S)$$
(22)

$$G = -\frac{1}{2} \cdot \sum_{i,j=1}^{N^2 - 1} a_{ij} F_j^{\dagger} F_i \tag{23}$$

Derivation of the generator of the semigroup for an N-level system

Generator of the N-level system

Generator of the N-level system

If we now use all our previous results and put them together we get the first standard form of the generator of an N-level open system:

$$\mathcal{L}\rho_{S} = -\imath[H,\rho_{S}] + \sum_{i,j=1}^{N^{2}-1} \mathsf{a}_{ij}(\mathsf{F}_{i}\rho_{S}\mathsf{F}_{j}^{\dagger} - \frac{1}{2}\{\mathsf{F}_{j}^{\dagger}\mathsf{F}_{i},\rho_{S}\})$$
(24)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Derivation of the generator of the semigroup for an N-level system

Diagonal form

Diagonal form of the generator of the N-level system

Using the fact that $\{a_{ij}\}_{i,j=1}^{N^2-1}$ is symmetric and positive, we can diagonalize it: \exists unitary transformation **u** such that: $\gamma_i \in \mathbb{R}_{>0}$ and:

$$\mathbf{uau}^{\dagger} = \begin{pmatrix} \gamma_{1} & 0 & \dots & 0 \\ 0 & \gamma_{2} & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & \gamma_{N^{2}-1} \end{pmatrix}$$

We get the *diagonal form* of the generator of the semigroup by defining A_k such that: $F_i = \sum_{k=1}^{N^2-1} u_{ki}A_k$:

$$\mathcal{L}\rho_{S} = -i[H,\rho_{S}] + \sum_{k=1}^{N^{2}-1} \gamma_{k} (A_{k}\rho_{S}A_{k}^{\dagger} - \frac{1}{2}A_{k}^{\dagger}A_{k}\rho_{S} - \frac{1}{2}\rho_{S}A_{k}^{\dagger}A_{k})$$

$$(25)$$

Derivation of the generator of the semigroup for an N-level system

Diagonal form

Diagonal form of the generator of the N-level system

Using the fact that $\{a_{ij}\}_{i,j=1}^{N^2-1}$ is symmetric and positive, we can diagonalize it: \exists unitary transformation **u** such that: $\gamma_i \in \mathbb{R}_{>0}$ and:

$$\mathbf{uau}^{\dagger} = \begin{pmatrix} \gamma_1 & 0 & \dots & 0 \\ 0 & \gamma_2 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & \gamma_{N^2 - 1} \end{pmatrix}$$

We get the *diagonal form* of the generator of the semigroup by defining A_k such that: $F_i = \sum_{k=1}^{N^2-1} u_{ki}A_k$:

$$\mathcal{L}\rho_{S} = -i[H,\rho_{S}] + \sum_{k=1}^{N^{2}-1} \gamma_{k} \left(A_{k}\rho_{S}A_{k}^{\dagger} - \frac{1}{2}A_{k}^{\dagger}A_{k}\rho_{S} - \frac{1}{2}\rho_{S}A_{k}^{\dagger}A_{k}\right)$$
(25)

Derivation of the generator of the semigroup for an N-level system

Diagonal form

Notes:

- The diagonal form is the most general form of the generator of a quantum dynamical semigroup
- A_k are usually referred to as the Lindblad operators and $\frac{d}{dt}\rho_S = \mathcal{L}\rho_S$ as the Lindblad equation
- Lindblad proved in 1976 that (25) is the most general form for a bounded generator in a seperable Hilbert space if k is allowed over a countable set

Explicit thermalisation models II: Quantum master equations Example: Decay of two-level system

Decay of two-level system

We consider now:

- A bound two-level quantum system (eg. atom), with energy-spacing $\Delta E = \omega_0$ ($\hbar = 1$) interacting with quantized radiation field
- The radiation field represents a reservoir of temperature T and the bound system is the reduced system

Then we have:

- ▶ Hamiltonian *H_S* of atom
- Hamiltonian of reservoir: H_B

Explicit thermalisation models II: Quantum master equations Example: Decay of two-level system

Decay of two-level system

We consider now:

- A bound two-level quantum system (eg. atom), with energy-spacing $\Delta E = \omega_0$ ($\hbar = 1$) interacting with quantized radiation field
- The radiation field represents a reservoir of temperature T and the bound system is the reduced system

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Then we have:

- ▶ Hamiltonian *H_S* of atom
- ► Hamiltonian of reservoir: *H*_B

Two-level system

The Hilbert space of the reduced system is: $\mathcal{H} = span\{|e\rangle, |g\rangle\}$, and $\mathcal{S}(\mathcal{H}) \subset \mathcal{M}(2)$. Introduce *Pauli-operators* in basis $\{|e\rangle, |g\rangle\}$:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

And the raising/lowering operators:

$$\sigma_{+} = \frac{1}{2}(\sigma_{1} + \imath \sigma_{2}) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad \sigma_{-} = \frac{1}{2}(\sigma_{1} - \imath \sigma_{2}) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Explicit thermalisation models II: Quantum master equations Example: Decay of two-level system

Assume:

- $\tau_R \gg \tau_B \Rightarrow$ Markovian system
- weak-coupling
- interaction Hamiltonian in dipole approximation: $H_I = -\vec{D} \cdot \vec{E}$

$$\blacktriangleright H_S = \frac{1}{2}\omega_0\sigma_3$$

Then: The quantum Markovian master equation for this system is:

$$\frac{d}{dt}\rho_{S}(t) = \gamma_{0}(N(\omega_{0})+1)\left\{\sigma_{-}\rho_{S}(t)\sigma_{+}-\frac{1}{2}\sigma_{+}\sigma_{-}\rho_{S}(t)-\frac{1}{2}\rho_{S}(t)\sigma_{+}\sigma_{-}\right\}$$
$$+\gamma_{0}N(\omega_{0})\left\{\sigma_{+}\rho_{S}(t)\sigma_{-}-\frac{1}{2}\sigma_{-}\sigma_{+}\rho_{S}(t)-\frac{1}{2}\rho_{S}(t)\sigma_{-}\sigma_{+}\right\}$$

where $N(\omega_0) = N = \frac{1}{e^{\beta \hbar \omega_0} - 1}$, $\gamma_0 = \frac{4\omega_0^3 |\vec{d}|^2}{3\hbar c}$

 $\vec{d} = \langle e \mid \vec{D} \mid g \rangle.$

Explicit thermalisation models II: Quantum master equations Example: Decay of two-level system

Assume:

- $\tau_R \gg \tau_B \Rightarrow$ Markovian system
- weak-coupling
- ► interaction Hamiltonian in dipole approximation: $H_I = -\vec{D} \cdot \vec{E}$

$$\bullet \ H_S = \frac{1}{2}\omega_0\sigma_3$$

Then: The quantum Markovian master equation for this system is:

$$\begin{aligned} \frac{d}{dt}\rho_{S}(t) &= \gamma_{0}(N(\omega_{0})+1)\Big\{\sigma_{-}\rho_{S}(t)\sigma_{+}-\frac{1}{2}\sigma_{+}\sigma_{-}\rho_{S}(t)-\frac{1}{2}\rho_{S}(t)\sigma_{+}\sigma_{-}\Big\} \\ &+ \gamma_{0}N(\omega_{0})\Big\{\sigma_{+}\rho_{S}(t)\sigma_{-}-\frac{1}{2}\sigma_{-}\sigma_{+}\rho_{S}(t)-\frac{1}{2}\rho_{S}(t)\sigma_{-}\sigma_{+}\Big\} \end{aligned}$$

where $N(\omega_0) = N = \frac{1}{e^{\beta \hbar \omega_0 - 1}}$, $\gamma_0 = \frac{4\omega_0^3 |\vec{d}|^2}{3\hbar c}$, spontaneous emission rate $\vec{d} = \langle e \mid \vec{D} \mid g \rangle$. To solve the Markovian master equation use the following ansatz for ρ_S :

$$\rho_{\mathcal{S}}(t) = \frac{1}{2} (I + \langle \sigma(t) \rangle \cdot \vec{\sigma}) = \begin{pmatrix} \frac{1}{2} (1 + \langle \sigma_3(t) \rangle) & \langle \sigma_-(t) \rangle \\ \langle \sigma_+(t) \rangle & \frac{1}{2} (1 - \langle \sigma_3(t) \rangle) \end{pmatrix}$$

where: $\langle \vec{\sigma}(t) \rangle = tr\{\vec{\sigma} \cdot \rho_{\mathcal{S}}(t)\}$ and $\vec{\sigma} = (\sigma_1, \sigma_2, \sigma_3)^T$

Therefore we have the populations of the states $| e \rangle$ and $| g \rangle$:

$$p_{e}(t) = (\rho_{5})_{11} = \frac{1}{2}(1 + \langle \sigma_{3}(t) \rangle)$$
$$p_{g}(t) = (\rho_{5})_{22} = \frac{1}{2}(1 - \langle \sigma_{3}(t) \rangle)$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

To solve the Markovian master equation use the following ansatz for ρ_S :

$$\rho_{\mathcal{S}}(t) = \frac{1}{2} (I + \langle \sigma(t) \rangle \cdot \vec{\sigma}) = \begin{pmatrix} \frac{1}{2} (1 + \langle \sigma_3(t) \rangle) & \langle \sigma_-(t) \rangle \\ \langle \sigma_+(t) \rangle & \frac{1}{2} (1 - \langle \sigma_3(t) \rangle) \end{pmatrix}$$

where: $\langle \vec{\sigma}(t) \rangle = tr\{\vec{\sigma} \cdot \rho_{\mathcal{S}}(t)\}$ and $\vec{\sigma} = (\sigma_1, \sigma_2, \sigma_3)^T$

Therefore we have the populations of the states $| e \rangle$ and $| g \rangle$:

$$p_e(t) = (\rho_S)_{11} = \frac{1}{2}(1 + \langle \sigma_3(t) \rangle)$$

 $p_g(t) = (\rho_S)_{22} = \frac{1}{2}(1 - \langle \sigma_3(t) \rangle)$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Plugging our ansatz into the Markovian master equation and using the commutation relations of the Pauli-Matrices we get:

$$\frac{d}{dt}\langle \vec{\sigma}(t)\rangle = \begin{pmatrix} -\frac{\gamma}{2}\langle \sigma_{1}(t)\rangle \\ -\frac{\gamma}{2}\langle \sigma_{2}(t)\rangle \\ -\gamma\langle \sigma_{3}(t)\rangle - \gamma_{0} \end{pmatrix}, \quad \text{where } \underbrace{\gamma = \gamma_{0} \cdot (2N+1)}_{\text{total emission rate}}$$
(26) s we are interested in thermalisation, we need to find p_{e}^{s} and p_{e}^{s} :

Set (26) = $(0,0,0)^T \Rightarrow \langle \sigma_3 \rangle_S = -\frac{\gamma_0}{\gamma} = -\frac{1}{2N+1}$ and thus:

$$p_{e}^{s} = \frac{N}{2N+1} = \frac{1}{e^{\beta\hbar\omega_{0}} + 1}$$
(27)

Choosing the initial state: $\rho_S(0) = |g\rangle\langle g|$ and solving (26) we find:

$$p_e(t) = p_e^s \cdot (1 - e^{-\gamma t}) \tag{28}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

S

Plugging our ansatz into the Markovian master equation and using the commutation relations of the Pauli-Matrices we get:

$$\frac{d}{dt} \langle \vec{\sigma}(t) \rangle = \begin{pmatrix} -\frac{\gamma}{2} \langle \sigma_1(t) \rangle \\ -\frac{\gamma}{2} \langle \sigma_2(t) \rangle \\ -\gamma \langle \sigma_3(t) \rangle - \gamma_0 \end{pmatrix}, \quad \text{where } \underbrace{\gamma = \gamma_0 \cdot (2N+1)}_{\text{total emission rate}}$$
(26)
As we are interested in thermalisation, we need to find p_e^s and p_g^s :
et $(26) = (0, 0, 0)^T \Rightarrow \langle \sigma_3 \rangle_S = -\frac{\gamma_0}{\gamma} = -\frac{1}{2N+1}$ and thus:
$$p_e^s = \frac{N}{2N+1} = \frac{1}{e^{\beta\hbar\omega_0} + 1}$$
(27)

Choosing the initial state: $\rho_S(0) = |g\rangle\langle g|$ and solving (26) we find:

$$p_e(t) = p_e^s \cdot (1 - e^{-\gamma t}) \tag{28}$$

S

Plugging our ansatz into the Markovian master equation and using the commutation relations of the Pauli-Matrices we get:

$$\frac{d}{dt}\langle\vec{\sigma}(t)\rangle = \begin{pmatrix} -\frac{\gamma}{2}\langle\sigma_{1}(t)\rangle \\ -\frac{\gamma}{2}\langle\sigma_{2}(t)\rangle \\ -\gamma\langle\sigma_{3}(t)\rangle - \gamma_{0} \end{pmatrix}, \quad \text{where } \underbrace{\gamma = \gamma_{0} \cdot (2N+1)}_{\text{total emission rate}}$$
(26)
As we are interested in thermalisation, we need to find p_{e}^{s} and p_{g}^{s} :
et $(26) = (0, 0, 0)^{T} \Rightarrow \langle\sigma_{3}\rangle_{S} = -\frac{\gamma_{0}}{\gamma} = -\frac{1}{2N+1}$ and thus:
$$p_{e}^{s} = \frac{N}{2N+1} = \frac{1}{e^{\beta\hbar\omega_{0}} + 1}$$
(27)

Choosing the initial state: $\rho_{S}(0) = |g\rangle\langle g|$ and solving (26) we find:

$$p_e(t) = p_e^s \cdot (1 - e^{-\gamma t})$$
 (28)

Summary

- Exact master equations of closed quantum systems
- Open and Markovian quantum systems and its "exact" master equations
- Quantum dynamical semigroup in relation with the Markovian quantum systems - and its generator
- General form of the generator and the master equation of a Markovian N-level system
- Application of the above theory to a thermalisation process of a two-level system

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00