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Shannon:

a “measure of uncertainty” should satisfy some

given axioms.

Only the entropy (up to a factor) satisfies them.

Jayne’s intuitive conclusion:

maximizing entropy with respect to our

information reflects in the best possible way our

uncertainty of the system.

Jayne’s justification



Criticism

• An intuitive justification is insufficient.

• Why not maximize some other function?

• A formal derivation is needed.



Definitions and notation (1)

Consider a system with n  possible states     , and

define                      .

      is the set of all discrete probability distributions

with     components, i.e.,

 p e D      the unknown “true” probability distribution.

For a subset  ScN        and    peD      let be p|S

the conditional probability distribution of p  given    ,

i.e.,



Definitions and notation (2)

Let us assume that our information is provided in

constraints:

The elements of       obeying these constraints

define a subset               . We denote the

information by



Definitions and notation (3)

Our goal is to find a posterior distribution, that we denote by

where the posterior is obtained by maximizing some

function

taking the constraints in to account, that is



Towards the axioms

What is it required from a method of inductive

inference to make sense?

The answer here:

different ways of considering the problem

with respect to the same information should

lead to the same result.



Axiom 1 (Uniqueness)

The posterior        is  unique.



Axiom 2 (Permutation invariance)

Let be      a permutation of the elements of                   ,

and define:

Then for any      it holds:



Axiom 3 (System independence)

Let                                 and                               be

informations about two systems.

Then it holds



Axiom 4 (Subset independence)

                    disjoint sets whose union is     .

     information about the conditional distribution              .

      information giving the probability         of having each

subset      .

Then it holds



Theorems
Theorem 1. Let           satisfy uniqueness,

permutation invariance and subset independence.

Then it is equivalent to a function of the form

Theorem 2. Let           satisfy uniqueness, permutation

invariance, system independence and subset

independence. Then it is equivalent to the function

Theorem 3. The entropy                           satisfies

the four axioms.

.

.



Towards the proof

Lemma 1. Let the assumptions of Axiom 4 hold,

and                             .  Let                 and               .

Then       is independent of       and     .

Lemma 2. Let            satisfy permutation

invariance. Then it is equivalent to a symmetric

function of the      variables



Theorem 1. Let           satisfy uniqueness,

permutation invariance and subset independence.

Then it is equivalent to a function of the form

Theorem 2. Let           satisfy uniqueness, permutation

invariance, system independence and subset

independence. Then it is equivalent to the function

Theorem 3. The entropy                           satisfies

the four axioms.

.

.

Theorems



Comment on the axiomatic

derivation

• General problem in statistical inference: how do we

have to interpret the posterior, and how is it related with

the “true” distribution?

•If we require some intuitive conditions on the treatement

of information (i.e. the axioms), then Jayne’s principle is

the unique consistent method of statistical inference.

• The information about the probability distributions is

intended to exist a priori. But this can be controversial in

the applications of the principle.



Information a priori

Suppose that Gino is telling you:

“I have chosen a probability distribution, and I tell you

only its expectation value. Try to estimate the

distribution!”

Then Jayne’s principle could be, on the basis of the

axiomatic derivation, reasonably retained the best

method.

Is this a common situation?



The constraint rule problem

Suppose now you have a dice, and you would like  to

estimate its probability distribution.

You make some repeated experiments and you

measure then the average.

Does it make sense to set the average equal to the

expectation value, in order to apply Jayne’s principle?



An example:

 Jaynes’ principle vs Bayes’ method (1)

Suppose that

Jaynes’ principle yields

This could seem plausible only if     is large.

Let be     the result of the   -th throw, and      the total

number of throws.



Parenthesis: the Bayes’ method (1)

Suppose that each probability distribution is equiprobable.

Let be                         the uniform probability density on

the set      .

We denote by       the number of tries that have

given the result      . It must hold



Parenthesis: the Bayes’ method (2)

The Bayes’ calculations are made as follows:



An example:

 Jaynes’ principle vs Bayes’ method (2)

Bayes’ method of inverse probability yields:

Recall: the Jaynes’ solution in the case

is



Suppose now:

Jaynes yields:

Bayes:

An example:

 Jaynes’ principle vs Bayes’ method (3)



Conclusions

Jaynes’ principle is the unique method of statistical

inference which is consistent with our intuition.

The problem is that it needs an information a priori about

the “true” probability distribution in order to be applied.

Any information provided by a measurement is only an

estimation of the “true” information.

This could lead to results which don’t seem plausible.


