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Fundamental Concepts: A General Communication System



Fundamental Concepts: De�nition of Communication

"The fundamental problem of communication is that of

reproducing at one point either exactly or approximately a message

selected at another point." (Shannon, 1948)

The signi�cant aspect is that the actual message is one selected

from a set of possible messages. If the number of messages in the

set is �nite then this number or any monotonic function of this

number can be regarded as a measure of the information produced

when one message is chosen from the set, all choices being equally

like.
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Fundamental Concepts: Logarithmic Measure of Information

Reasons for a logarithmic measure of information:

I Practicability (e.g. doubling the time of transmission squares

the number of possible messages)

I Intuitive Feeling (e.g. two identical channels should have twice

the capacity of one for transmitting information)

I Mathematical Suitability
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Fundamental Concepts: Shannon Information

If the probability distribution of the possible outcomes is

non-uniform, we de�ne the Shannon information content of an

outcome x to be

h(x) = log 1

p(x)

(log = log2 → binary digits or bits)
Improbable outcomes do convey more information than probable

outcomes.
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Fundamental Concepts: Shannon Entropy

Notation: Let X be a random variable with possible outcomes

x ∈ Ω and respective probabilities p(x).

The entropy of X is de�ned to be the average Shannon information

content of an outcome:

H(X ) = −
∑

x∈Ω p(x)logp(x)
Theorem H(X ) ≤ log | Ω |
with equality if X has a uniform distribution over Ω.
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Fundamental Concepts: Entropy of an Event with Two

Possible Outcomes

p1 =

p, p2 = 1− p



Fundamental Concepts: Joint Entropy

The joint entropy of a pair of discrete random variables (X,Y) is

de�ned as

H(X ,Y ) = −
∑

x∈Ω

∑
y∈Φ p(x , y)logp(x , y)

Note: H(X ,Y ) ≤ H(X ) + H(Y ) with equality for independent

events, i.e. p(x , y) = p(x)p(y)
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Fundamental Concepts: Conditional Entropy

The conditional entropy of a pair of discrete random variables

(X,Y) is de�ned as

H(Y | X ) =
∑

x∈Ω p(x)H(Y | X = x)

It measures how uncertain we are of Y on the average when we

know X. (In general H(X | Y ) 6= H(Y | X ))
Chain Rule H(X ,Y ) = H(X ) + H(Y | X )
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Fundamental Concepts: Mutual Information

The mutual information of a pair of discrete random variables

(X,Y) is de�ned as

I (X ;Y ) =
∑

x∈Ω

∑
y∈Φ p(x , y)log p(x ,y)

p(x)p(y)



Fundamental Concepts: Mutual Information

Properties of mutual information:

I Symmetry: I (X ;Y ) = I (Y ;X )

I Reduction of the uncertainity of X due to the knowledge of Y:

I (X ;Y ) = H(X )− H(X | Y ) = H(Y )− H(Y | X )

I Entropy as self-information: I (X ;X ) = H(X )

I Non-negativity: I (X ;Y ) ≥ 0

(equality for independent variables)
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Fundamental Concepts: Conditioning Reduces Entropy

Corollary H(X | Y ) ≤ H(X )
("conditioning reduces entropy")



Fundamental Concepts: Roundup



Fundamental Concepts: Asymptotics

Asymptotic Equipartition Principle

For an ensemble of N i.i.d. (independent identically distributed)

random variables, with N su�ciently large, the outcome is almost

certain to belong to a subset of all possible outcomes having only

2NH members, each having propability close to 2−NH .
(skip ε, δ,...)



Data Compression: Shannon's Source Coding Theorem

Compression (using fewer bits than an unencoded representation

would use) helps reduce the consumption of expensive resources,

such as hard disk space or transmission bandwidth.

How much can the output of a source be compressed by use of the

redundancy of the outcome?

What ist the minimum memory size from which the input can be

recovered reliably?

Equivalent to the AEP is

Shannon's source coding theorem

N i.i.d. random variables each with entropy H can be compressed

into more than NH bits with negligible risk of information loss, as

N →∞; conversely if they are compressed into fewer than NH bits

it is virtually certain that information will be lost.
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Channel Coding: The Binary Symmetric Channel

For a list of S codewords of length N, we de�ne the rate to be the

information in bits transmitted per use of the channel:

R = logS
N

We may add redundancy in a controlled fashion to combat errors in

the channel. However, by adding redundancy the rate of

transmission decreases.

We would expect that to make the probability of error approach

zero, the redundancy of the encoding must increase inde�nitely, and

the rate of transmission therefore approach zero.

This is by no means true!
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Channel Coding: Channel Coding Theorem

The channel capacity of a discrete memoryless channel is de�ned as

C = maxp(x)I (X ;Y ).
where the maximum is taken over all possible input distributions

p(x).

(X: sender, Y: receiver)

For the binary channel we have 0 ≤ C ≤ 1.

The Noisy-Channel Coding Theorem

For every rate R below the channel capacity C , for large enough N,

there exists a code of length N and rate R and a decoding

algorithm, with maximal probability of block error as small as

desired.
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Summarization

Summarization:

I Shannon information content of an outcome x: h(x) = log 1

p(x)

I Shannon's Formula for the entropy of an outcome:

H(X ) = −
∑

x∈Ω p(x)logp(x) ≤ log | Ω |
I Chain Rule: H(X ,Y ) = H(X ) + H(Y | X )

I Conditioning reduces entropy: H(X | Y ) ≤ H(X )

I For large N the outcome is almost certain to belong to a set of

2NH members, each having probability close to 2−NH .

I N i.i.d. random variables each with entropy H can be

compressed into more than NH bits with negligible risk of

information loss.

I There is a positive maximal rate at which information can be

transmitted over a noisy channel with a propability of error as

small as desired: The capacity of the channel.
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