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Time arrow

Time seems to have a preferred
direction in the macroscopic world.

⇒ Many processes occur just in one direction i.e. the direction of
(global) increasing entropy (2nd law of thermodynamics).



Time arrow

Take for example all the irreversible processes in our everyday life:



What is a time arrow?

What is a time arrow? Two different time arrows:

1 The psychological time arrow: Feeling of a directed flow in
time caused by accumulating memories from a continuous
change of perception.

2 The thermodynamical time arrow: An arrow on a
macroscopic scale pointing in the direction of increasing
entropy (2nd law of thermodynamics).

3 . . .



No microscopic time arrow

There is no ”mircoscopic time arrow” i.e. an arrow on a
microscopic scale pointing in a specific direction of time does not
exist in the fundamental theories such as: Hamilton mechanics,
QM, QFT, GR . . .

(Exception: weak-interaction e.g. kaon decay).



No microscopic time arrow (classical)

Time has no preferred direction in the microscopic world:

The fundamental laws of physics are time symmetric (actually
CPT-invariant).

Classical: If x(t) is a solution to mẍ = −∇V (x) then also x(−t).

Example: A classical particle in a central force field

(a) A classical trajectory which stops at t = 0 and (b) reverses its
motion p|t=0 → −p|t=0. If you run the motion picture of trajectory
(a) backward as in (b), you can’t tell whether this is the correct
sequence.



No microscopic time arrow (quantum mechanical)

Quantum mechanical: It’s more difficult in QM. We need a
antiunitary time-reversal operator T .

Example: The Schrödinger equation for a free particle

i~
∂

∂t
Ψ(x , t) = − ~2

2m
∆Ψ ⇒ Ψ(x , t) = Ae i(kx−ωt)

⇒ TΨ(x , t) = Ψ∗(x ,−t) = A∗e−i(kx+ωt)

Both wavefunctions are solutions of the Schrödinger equation.



The Loschmidt Paradox

Problem: How can one derive time-asymmetric laws from
time-symmetric laws (Loschmidt Paradox).

Presented attempts to solve the paradox:

1 Standart approach: In a classical (statistical) framework by
Boltzmann (1877).

2 New approach: In a quantum mechanical framework by
Maccone (2008).



The statistical approach by Boltzmann

A qualitative description of the approach:

Boltzmann states that entropy decreasing processes can occur
(without doing any work), it is just tremendously improbable.

The evolution of a microstate in phase space is such that the
entropy is most likely to increase (or stay constant).



The statistical approach by Boltzmann

The box example

Consider an isolated system at four different times. The two halves
of the box are initially seperated by a damper (a), which is opened
at a later time:

What is the right time ordering?
⇒ The microscopic laws allow a-b-c-d and d-c-b-a!



The statistical approach by Boltzmann

Why do we only see a-b-c-d in nature, i.e. entropy increasing
(or constant) evolutions?

Lets consider the phase space Γ of a system composed of N
particles:

X (t) = (x1,p1, . . . , xN ,pN) ∈ Γ denotes the microstate of the
system in its 6N-dimensional phase space.

M(X (t)) denotes the macrostate of the system (e.g.
temperature). There are many X corresponding to M (in fact
a continuum).

Boltzmann entropy

Boltzmann defined the entropy as (kB = 1):

SB = log |ΓM | ,

where |ΓM | =
∫

ΓM
dpdx denotes the phase space volume

corresponding to the macrostate M = M(X (t)).



The statistical approach by Boltzmann

Macrostate Mi corresponds to the phase space ΓMi
with

i = a, b, c , d . The ΓMi
are subspaces of the systems total

phase space.

The position of X in phase space does correspond to a
specific macrostate M(X (t)).

The phase space volume correspondig to the macrostate
M(X (t)) can change as the system evolves.



The statistical approach by Boltzmann

Simplified diagramm of the phase space volume from
the box example (don’t take it too serious)

The phase space ΓE on the left is a
constant-energy-subspace of the whole
phase space (box example).

The phase space ΓMa is very tiny in
comparison to ΓMeq (consider the double
logarithmic scale).

The system X is initially in ΓMa . We let it
evolve due to Hamilton mechanics.

The phase space volume |ΓM(X (t))| does
depend on the region in which we find
X (t).

The system will (with a random
evolution) most likely explore the available
phase space.

⇒ |ΓM(t)| will increase until it reaches the
maximum value |ΓMeq | where it will most
certainly stay. |ΓMeq |/|ΓE | ' 1.



The statistical approach by Boltzmann

From this point of view, the 2nd law of thermodynamics is
just a statistical principle of a system consisting many
particles.

Lets have a look on how likely an increase of the entropy is:

Example: Enlargement of the phase space

1 Consider a qubic box with a length L containing 1 mol of gas
(NA particles) and the corresponding phase space volume |ΓL|.

2 We then double the sides of the box (8 times bigger spatial
volume) and denote the new available phase space by Γ2L (no
new energy).

3 If we now calculate the ration |Γ2L|/|ΓL|, we get a result of
2NA ≈ 2·1023

.

4 The probability that the system will stay in the initial phase
space is very roughly the inverse of this number.

⇒ The probability that the entropy decreases is ≈ 0.



The statistical approach by Boltzmann

Now, we have an explanation why entropy does increase for an
arbitrary evolution.

But the Loschmidt paradox isn’t solved yet since entropy does
increase in t and −t direction (for an arbitrary initial state, which
has not max. entropy).

For instance figure (b) in the box example. If we didn’t know that
Mb is coming from Ma, we would (with the statistical arguments)
conclude that the entropy does also increase in −t direction.

⇒ We need an assumption.



The statistical approach by Boltzmann

Assumption: The system started in a lower entropy state i.e. the
initial conditions of the system need to have low entropy.

In our box example, the low entropy initial conditions were
due to an experimentalist.

In a general view, we need a low entropy of the ”early
universe” to explain the apparent thermodynamic arrow.

Problem: A low entropy early universe is not explained by any
current theory.

⇒ The Loschmidt paradox is now a problem for cosmologists.



The quantum mechanical approach by Maccone

Boltzmann’s solution to the paradox has an ad-hoc assumption
(initial condition of the universe).

Now, another approach to the problem in a quantum
mechanical framework by Lorenzo Maccone (2008).

Statement of the paper

Entropy increasing and decreasing transformations can occur (as
time reversal dictates), but all entropy decreasing-transformations
can’t leave any trace (e.g. in a memory) of them having happend.

This is indistinguishable from them not having happend.

”The past exist only insofar as it is recorded in the present”
i.e. the only physical evolution that can be studied are those
where entropy has not decreased.

The second law is then forcefully valid and it’s reduced to a
tautology.



The quantum mechanical approach by Maccone

The paper makes just one assumption.

Assumption:

Quantum mechanics is valid at all scales.



The quantum mechanical approach by Maccone

Correlations between systems:

It is generally impossible to exclude that two systems might
be correlated.

A physical process might either increase or reduce this
correlations.

Each bit of memory is one bit of correlation.

”Information is physical” ⇒ Any record of an occurred event
can be decorrelated from such event by appropriate physical
interaction.

As long as the memory is not erased, the correlations are not
eliminated.



The quantum mechanical approach by Maccone: Example

Thought experiment: Bob and Alice (1)

Alice is in an isolated lab which contains a Stern-Gerlach
apparatus oriented along the z-axis. Bob (outside observer)
gives Alice a pure spin-1/2 particle oriented along the x-axis
(pure states have zero entropy):
|→〉 = 1√

2
(| ↑ 〉 + | ↓ 〉) .

Alice performs now a measurement on |→〉 which will be in
the maximally mixed state (| ↑ 〉〈 ↑ | + | ↓ 〉〈 ↓ |)/2 before
the readout.



The quantum mechanical approach by Maccone: Example

Thought experiment: Bob and Alice (2)

The entropy of the spin system will increase by one bit
because of the measurement.

By looking at the result of the measurement, Alice transfers
this one bit of entropy to her memory.

The entropy of the laboratory system has therefore been
increased by 1 bit (for an additional observer in the lab),
whereas the entropy for Bob stayed the same.

For Bob, the measurement is simply a quantum correlation
(entanglement) between Alice and her measurement
apparatus.

1√
2

(| ↑ 〉︸︷︷︸
spin

| Alice sees up〉︸ ︷︷ ︸
rest of laboratory

+ | ↓ 〉︸︷︷︸
spin

| Alice sees down〉︸ ︷︷ ︸
rest of laboratory

) .



The quantum mechanical approach by Maccone: Example

Thought experiment: Bob and Alice (3)

For Bob, Alice’s measurement is an evolution similar to a
controlled-NOT unitary transformation:
UCNOT[(|0〉+ |1〉)⊗|0〉] =|00〉+ |11〉, where qubit b gets
inverted if qubit a is 1. UCNOT can easily be inverted.

Bob can now perform such an inverted transformation. After
this transformation, all records (brain cells, notepads . . .) of
the measurement will have been decorrelated from the spin
state.



The quantum mechanical approach by Maccone: Example

Thought experiment: Bob and Alice (4)

Alice will remember having performed the measurement, but
she must be unable to recall the result. Moreover, the spin has
returned to the pure state |→〉
Entropy has certainly once been created from the viewpoint of
Alice. Bob has then subsequently decreased the entropy by
erasing the correlations.



The quantum mechanical approach by Maccone: Example

Thought experiment: Bob and Alice (5)

The second law has never been violated from neither
viewpoint, since Alice can’t remember and Bob always had
zero entropy.



The quantum mechanical approach by Maccone

Statements of the paper:

Any interaction between A and B which decreases their
entropy by a certain quantity, must also reduce their quantum
mutual information by the same amount (unless the entropy is
dumped into a reservoir R).
An observer in system A will only be aware of entropy
non-decreasing processes.
Not even a super-observer would see any entropy decrease.
Since he sees all correlations ⇒ all processes are always zero
entropy processes.



The quantum mechanical approach by Maccone

The assertion of the paper is summarized in Eq.1:

Claim:

∆S(ρA) + ∆S(ρB)−∆S(ρR)−∆S(ρA : ρB) = 0 (1)

The density matrix ρX describing the system X .

The von Neumann entropy: S(ρX ) ≡ −Tr(ρX log2 ρX).

The quantum mutual information:
S(ρA : ρB) ≡ S(ρA) + S(ρB)− S(ρAB).
With ρA and ρB reduced states of ρAB .

∆S(ρX ) ≡ St(ρX )− S0(ρX ), where S0(ρX ) denotes the inital
entropy and St(ρX ) the entropy at some later time.

∆S(ρA : ρB) ≡ St(ρA : ρB)− S0(ρA : ρB)



The quantum mechanical approach by Maccone

What does Eq.1 mean?

Claim:

∆S(ρA) + ∆S(ρB)−∆S(ρR)−∆S(ρA : ρB) = 0

∆S(ρX ): Change of the entropy in system X .

∆S(ρA : ρB): Change of the quantum mutual information of
system A and B.

⇒ If we want to reduce the entropy of the system A and B,
without increasing the entropy of a reservoir R, we need to
reduce the quantum mutual information between A and B.



The quantum mechanical approach by Maccone

Does Eq.1 hold?

∆S(A) + ∆S(B)−∆S(R)−∆S(A : B) = 0

By inserting the definitions we obtain:

−St(R) + S0(R) + St(AB)− S0(AB) = 0

We choose the reservoir R such that ABR is a pure state and
the evolution maintains the purity (we can always do that).
R is known as a purification space.

If we consider AB to be the reduction of the pure state ABR
(TrR(ABR) = AB)

⇒ S0(AB) = S0(R) and St(AB) = St(R)
(follows from Schmidt decomposition).

Equation (1) is therefore valid.



The quantum mechanical approach by Maccone

A memory of an event is a physical system A having nonzero
classical mutual information on a system C which bears the
consequences of that event.

In order to proof that every entropy decreasing
transformation entails a memory erasure in the classical
sense we need the property that the quantum mutual
information is an upper bound to the classical mutual
information:

S(A : C ) ≥ I (A : C )

This inequallity has been proofed [Yuen and Ozawa].



The quantum mechanical approach by Maccone: Analysis

Is quantum mechanics really necessary to these arguments?

Yes, we used the property that the entropy of a joint system
can be smaller than that of each of its subsystems.

By how much must any system be extended until we can take
advantage of this quantum reduction of the global entropy?

Since the timescale on which a system can be considered as
isolated is very small, the presented effects become relevant
only at a scale that approaches the whole universe very rapidly.
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Summary

We analyzed the arrow-of-time dilemma and gave solutions
from two different points of view.

Arrow-of-time dilemma is actually an
arrow-of-thermodynamics problem. Since the fundamental
laws are time-symmetric, we were questioning how one could
derive the time-asymmetric 2nd law (Loschmidt paradox).

Approach by Boltzmann: Global entropy can decrease it is
just tremendously improbable. ⇒ Needs an ad-hoc
assumption.

Approach by Maccone: Every global entropy decreasing
transformation must entail a memory erasure of this
transformation having happened, which is indistinguishable
from their not having happened at all.
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