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Context

@ The concept of entanglement plays a crucial role in nowadays
models of thermalisation. (Popescu, S. et al.)

@ The von Neuman entropy Sa = — Tr(paln(pa)) can be used as
a measure of the entanglement between a system A and its
environment B.

@ The main goal of this talk is the computation of S within
2dim conformal field theory.
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Example: Two spin degrees of freedom

o Pure state:|¢)) = cosf|14,0p) + sinf |04, 15),

o Trgp =

(1| @ ida |) (V] ida @ [1g) + (08| ® ida [¢) (¥] ida ® |0B)
= pa = sin’0104) (0] + cos?0 |1 a) (14

= Sp = —Trapaln(pa) = —(cos?0In(cos?0) + sin®0In(sin0))
= max(Sa) = Sa(cos?0 = ) = —(In(3)) = In(2)

The maximal entangled states are:

%) = 75 (11a,08) % (04, 15))
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o Plot of Saas a function of cos?(f):

Plot[- (xwlog[x] + (L-x) wLog[(1-x)]), {x, O, 1}]
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QOutline

1. Models in consideration: Critical quantum field theories in
1 spatial dimension

1.a Transverse Ising model and quantum phase transitions (T=0)

1.b Scale invariance at the critical point

2. Field theoretical methods

2.a Conformal field theory in 2 dimensions

2.b Euclidean path integrals in quantum mechanics

3. Explicit calculation of Sy = —Trapaln(pa) for an 1
dimensional infinite system at T=0

2.c Calculation of Sa, A being a finite interval on the x-axis
2.d Results for T=0 and T finite

4, Conclusion
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@ Systems in Consideration
@ Introduction to CFT
© The path integral formulation

@ Calculation of Sx
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Systems in Consideration

@ Systems in Consideration
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Systems in Consideration
€000

REMEIRS

@ We want to find the entanglement entropy between subsystem
A and environment B for systems with many degrees of
freedom where the total system is in a pure state p = |¢) (.

@ In general this is not possible.

@ For 1-dim lattice models at a quantum critical point, which
can be described by a conformal field theory in 141
dimensions, explicit results have been obtained and this is the
content of the talk.

@ Whether these results have any importance for the issue of
thermalisation is not considered here.

Nikolaus Buchheim Explicit thermalisation models |



Systems in Consideration
0000

The Ising model

o Consider a spin degree of freedom at every point of a 1d lattice
(0%(x) = £1) with lattice constant a and a transverse tunable
magnetic field that drives the phase transition at T = 0.

@ This can be described by the Hamiltonian
Hi(8) = —82200% — 20 0a0 041

e At g = 0 we have (0?) = £1, at g = oo the transverse field
dominates and(cZ) = 0. The continuous phase transition
between these two regimes happens at g = 1.
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Systems in Consideration
0000

Quantum Phase transitions
Pictures taken from Subir Sachdev: Quantum phase transitions, Yale 2004
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Picture 1: Phase diagram for the 1d Ising model as function of g . In the
non critical region the excitations of the system can be described by
fermionic quasi-particles.

Picture 2: The ground state at T = 0: Dependence of the average
magnetization as function of g. For g < g. the system is in a
ferromagnetic state described by a wave function similar to
|up) = ®x |1,) for g > g in a paramagnetic state with
|right) = Q4 |1x). Similar means that fluctuations don’t break the phase.
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Systems in Consideration
feYeleY }

Generalisations

@ In general we have some short range interaction /(x — x’) > 0
that vanishes for |x — x’| larger than some multiple of a.

o Local observables ¢/(x) are sums of products of nearby spins.
For example the local spin o%(x) itself or the energy density
e(x) = Lwes 1 (x = x)o*(x)o*(X').

o The correlation function {¢#*(x)¢5*(x")) falls off over the
same distance scale as the interaction. Close to the QCP it is
of the form (0%(x)o?(x)) o exp [—@}
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Systems in Consideration
°0

Scale Invariance

-V

@ The correlation length diverges at the QCP : £ « (g — g¢)
This implies that there is no length scale in the problem
anymore; the theory becomes scale invariant.

@ A Hamiltonian which is translational invariant for multiples of
a, is replaced by one with arbitrary translational invariance.

@ For the correlation function of scalar observables scale

invariance means: (¢1(bx)pa(bx")) = b=(M1th2) (4 (x)pa(x")),

where h; are called scaling dimensions.

@ Translational invariance then dictates:

($1(x)d2(x")) o [x — x| (Prhe),
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Systems in Consideration
oce

The continuum limit
Towards the quantum field theory

@ Consider the limit a — 0.

o The lattice observables will become fields ¢;(x) of a
continuous variable x.

@ This means that the limit
lima_o [a=(F1Fh2) (32t (x1 )2t (x,)...)] exists. It is denoted as
(#1(x1)P2(x2)--.)-

@ Together with translations and rotations, scale transformations
form a group...
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Introduction to CFT

@ Introduction to CFT
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Introduction to CFT

REMEIRS

e Conformal transformations leave angles invariant:
X -y = A2x -y, where the inner product is defined through the
metric on R™: x -y = x¥n,, y".

@ We will see that in two dimensions the symmetry algebra of an
euclidean CFT is infinite dimensional and can be represented
by analytic functions of a complex variable.

@ This will significantly restrict the form of the correlation
functions and their transformation properties, enabling us in
the end to calculate S, .
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Introduction to CFT
®0

Conformal symmetry transformations
The conformal group for a 1+1dim euclidean theory

o Let g : R? — R? and (x,y) — (%,7) a conformal
transformation, locally expressed as
dxt = Mdx", MY = 2|,

@ The linear map M has to preserve angles:

M1, MY = 95 0% 2(x)1op- (For Poincaré
transformations: A2 =1)

e For 1, = d,,, this means that, the condition
dx? + dy? = M2(x, y)(dx? + dy?) has to be fulfilled. This is
equivalent to the Cauchy-Riemann equations:
ox _ 0y 0% _ 0y o (&:_@ @:@>
ox dy’ Oy ox ox dy’ Oy ox

e = f =X+ iy is an (anti)analytic function of z = x + iy.
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Introduction to CFT
oce

Conformal symmetry transformations
Complex coordinates and infinite Lie Algebra

@ Since f can be any analytic function, the Lie Algebra is infinite
dimensional.

e Conformal field theories are quantum field theories for which
conformal transformations leave the action S invariant.

@ Let us now consider scalar field theory that can be described
by a Lagrangian density £(¢, 0*¢, x), with the corresponding
action S [¢] = [ dxdyL. The equations of motion follow from
demanding 65 = 0.
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Introduction to CFT
°0

Conformal field theory

Relevant facts for the computation of the entanglement entropy

e Consider an infinitesimal transformation g#(x) = x* + ea*(x).
Conformal invariance is equivalent to §S = 0.

® The stress tensor T, is defined by 0S5 = —%f Tt dxdy
and describes the response of S to a general infinitesimal
transformation.

@ Conformal symmetry implies that it is conserved, symmetric
and traceless.

@ In complex coordinates: T,z, T3, \ianish;
T(2) = Tor = 2(Tux + Txr) and T(2) = 3(Tox — Txr) are
holomorphic and antiholomorphic.
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Introduction to CFT
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Correlation functions in 2 dimensions
Primary fields and conformal weights

@ In general fields do not transform trivially. In the simplest case
the transformation is given by:

d(z,2) = |'(2)| P6(f(2), £(2))

@ In this case we call ¢ a primary field.

@ It can be shown that this implies:

($1(21,22), d2(21,22)) = C |z1 — 20| ~*

@ We see that primary fields are the simplest example of
continuum limits of lattice observables.
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The path integral formulation

© The path integral formulation
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The path integral formulation
0

Euclidean path integrals in quantum mechanics

@ To calculate Trp we need to consider matrix elements of

A e
p =
treat first one degree of freedom.

° % — T, suggests that e #" describes “evolution” in imaginary
time 0 <7 <p3

@ We can write p as a product of operators corresponding to
arbitrarily small intervals ¢ = %,:

(q"| e ﬁH‘q /HkoH (il e H g _y)
k=1

k=1

@ Where 74 = ke gqo = ¢', g0, = q"
@ At each time step 7, we insert the unity operator to “sum”
over all possible ways of evolution
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The path integral formulation
oe

Euclidean path integrals in quantum mechanics

@ Now we take the limit n — oo.

@ Omitting some technical steps we arrive at:

<q”‘e_m:l‘q/> lim m n/2/quke[ 5(q)]

n—oo 27Th€

@ Where S is just the euclidean action:
S = [ drima®(r) + V(q(7))
e Finally we write symbolically

1"

. q(
e PH gy = dq(7)] exp [-S
(o] Hg)= [ arlen-S(@)

=q
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The path integral formulation
0

Setup for the calculation

@ We now consider a lattice quantum theory in one space
(discrete variable x) and one continuous “time" dimension.
o T =0= p=10)(0|. which corresponds to
p= #, 8 — oo. Now the subsystem A consists of the
points x in an interval (u, v) of length /.

@ In order to quantify the entanglement between these systems
we can use CFT methods to calculate S4.

o Compute Trp} using CFT for n € N, then treat n as a
continuous variable and finally S4 = lim,_; %Trp’}\.
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The path integral formulation
oe

The Path integral expression

@ For any CFT the density matrix elements are given by a path
integral over some fundamental set of fields ¢(x, T):

(¢(x, B)| plo(x,0)) / [d(x, )] e 519!

@ The rows and columns of p are labeled by the values of the fields at
7 =0, and the path integral is over all histories (system
configurations) consistent with these initial and final values.

L3

-
Pk
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The path integral formulation
00

Integration structure 1

o The quantum partition function Z(3) = Tre %" ensures that
Trp = 1. It is found by setting ¢(x, 5) = ¢(x,0) and
integration [ [d¢(x,0)]. This has the effect of “sewing”
together the edges of the integration domain along 7 = 0 and
7 = [ to form a cylinder of circumference 3

@ The reduced density matrix p4 = Trgp is found by sewing
together the points x outside of A and integration over the
environment B.

(4] 91 16) = [ [0n0x.O) (0a(x. D08 plos) o 0a(x.0)

@ This will leave an open cut in the cylinder along the line 7 = 0.
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The path integral formulation

oeo

Integration structure 2

o Path integral representation of pa and p3 where
(DAl P24 |0a) = [ dpa (Dl alda) (Dal palds):

e By making n copies of the cylinder and sewing them together
cyclically along the cuts so that ¢(x)] = ¢(x) k41 for all
x € A we can compute the quantity Trp;, which is a starting
point for the calculation of S4
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The path integral formulation
ooe

Final preparations

@ The path integral on this n-sheeted structure (R,), created by
the cyclical sewing procedure, is:

Tr(p3) = Z"(A) =[d [¢A] ST d¢A ¢A‘ PA )¢k+1>, with

On= ¢A(x,0) =on

@ In the limit T — 0, (8 — o0) the n-sheeted integration
domain can be regarded as n-times the complex w-plain sewn
together, since the curvature of the cylinder also goes to zero.

1
Z%
S

o We won't calculate any path integral explicitly but will employ
results of CFT to actually receive a value for Tr(p7}).

Nikolaus Buchheim Explicit thermalisation models |



o e t e pat e f t Calculation of Sy

@ Calculation of Sx
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Calculation of Sy
.

Calculation of Sy

o Write 25 as f(n) = Trp} = 2 Ay Aj €[0,1) where the A;
are the eigenvalues of pa4

e = f(n) converges and is € C! for Re(n) > 1. If Sa exists:

lim (9, (n)) = i mIn(). gn( -In(
n[)nl(@,, (n) = lim Ze n( Z)\ n( —5Sa
@ = Sp=—lim,_1 [%%}
@ We need to find a way to calculate the path integral expression
Zpn
ﬁ.
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Calculation of Sy
©00000

Remarks again

@ It is possible to map R, in a conformal way to C where
translational and rotational invariance (6S = 0) yields
(T(w))e = 0.

@ Two things will now be used and not derived: The explicit map
and the transformation law for the stress tensor T(w) under
conformal transformation.
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Calculation of Sy
000000

The conformal map

o We use the transformatior)ulelnw ofHCZFT
T(w) = (2"2T(2) + 5522 for w s z(w) = (2=4),
which maps the n-sheeted w-surface R, to the z-plane C.

o w— (= =% maps (u,v) to (0, —00); this is then combined

with ¢ — ¢1/". (Pictures on the o.p.)

o Calculating the three derivatives we get
(v—u)?

<T(W)>§R,, = ﬁ(l - %)m
@ c is called the central charge. For the Ising model ¢ = 1/2, for
the free boson ¢ = 1.

1
n
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Calculation of Sy
000000

Infinitesimal transformation and the stress tensor

@ Change the length / = |v — u] slightly by an infinitesimal
transformation g : x — x 4+ §10(x — xp), where u < xg < v.

@ This leads to a discontinuity, giving rise to a non-vanishing
modification of S according to
0S = f%f TwatVdxdr = 15/ %% Ta(xo, 7)dT,
T = T(w) + T(w),

@ Inserted in the path integral expression for
Z,(S) — Zn(S + 0S) and expanded up to first order
exp(—S[¢p] —3S) = (1 —6S)exp(—S [¢]) resulting in a change
0Z, of the partition function Z, .
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Calculation of Sy
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Contour integration

@ Interchanging the order of integration and inserting a factor n
to consider the insertion on each of the n sheets, w = xg + iT:

oo

0Zn =dIn(Z,) = —n—él <T(W)>9%n dr

n 2T

@ Treating w as complex variable, it can be solved by a contour
integration around v in (T(w))g_

8/n(§lzn) _ z%.% _ (C/6)(n 1n) o 7 W/ Z" o I~ (c/6)(n—1/n)

o Finally: Trp% =c,(I)” (C/ﬁ)(" 1/n)

Sa= 0 Trph(n=1) = %/n(/) + In(cn)

an
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Calculation of Sy
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Finite Temperature

o Take two primary fields ¢,(v) and qﬁ,,(v) which have the same
scaling dimension h, = h, = 27(1— 2)

e From the CFT section we know that
(Dn(u)dn(v)) e = |1|7/%0=7) This implies that

Trp = cp ( ) €/0)(n=1/n) transforms as the correlation
function of two primary fields: w — w = z(w)

(@(w1)d(wa)) = |2/(wa) " |2/ (w2)|*" (d(21)(22))

@ The map w — w = (3/2m)In(w) maps each sheet of R, into
an infinite long cylinder of circumference 3. The result for a
thermal mixed state at 5~ = T < oo is then:

Sa= (c/3)/n(§)sinh(7;/) +a

@ For | <« f3 this is the previous result, for / > 3 S becomes
extensive and equals the Gibbs entropy for an isolated system
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Calculation of Sy
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Conclusion

@ Close to a QCP (T=0) where the correlation length is much
larger than the lattice spacing, 1d lattice models are believed
to be described by a CFT in 141 dimensions.

@ In this case the quantity Trp}, is represented by a path integral
expression over some set of fundamental fields.

e By slightly changing the length of the subsystem A, Trp} can
be computed up to constant using the transformation property
of the conformal stress tensor and complex analysis
respectively.

@ These method hay also been used to get more general results
for similar situations: Finite system with boundary, several
distinct intervals and for finite correlation length.
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