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I the goal is to deduce the properties of mechanical models

violating the second law

I �nally we will see that:

violation of the second law requires noninvariance of

phase-space volume
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model 1:

P.A. Skordos: Compressible dynamics, time reversibility, Maxwell's

demon, and the second law
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I operation is

time-reversible

I speed and kinetic energy

are conserved

I membrane more

permeable from right than

from left ⇒ density

di�erence

I equilibrium reached

irreversibly when �uxes

from both sides become

equal

Figure: octants
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Estimate of density di�erence

I Assuming that the velocities of the disks are distributed

isotropically ⇒ (impact rate) ∝ |cosϑ|, ϑ=the impact

angle

I

⇒ NL ≈ 0.7 NR ≈ 0.3

Figure:
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model 1: P.A. Skordos

Compression of phase-space volume I

1. consider only one disk,characterized by (x , y , ϑ).Look at an

in�nitesimal phase volume ω(x1, y1, ϑ1) centred at a the point

(x1, y1, ϑ1).
Assume: membrane at x = 0, x1 > 0 near x = 0, ϑ1 ∈ (3π4 , π).
Also assume that after a time interval 1 that every point in

ω(x1, y1, ϑ1) has moved to the left side of the membrane.

2. let (x̃ , ỹ , ϑ̃) denote the image of the evolution map

x̃ = − sinϑ− x
sinϑ

cosϑ

ỹ = y − x(1 +
sinϑ

cosϑ
)− cosϑ

ϑ̃ =
3π

2
− ϑ
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Compression of phase-space volume II

3. ∣∣∣∣∣∣
− sinϑ

cosϑ 0 − cosϑ− x cosϑ2

−1− sinϑ
cosϑ 1 sinϑ− x cosϑ2

0 0 1

∣∣∣∣∣∣ =
sinϑ

cosϑ
= tanϑ

and since ϑ1 ∈ (3π4 , π) the Jacobian determinant is always less

than 1 and thus the volume ω(x1, y1, ϑ1) is compressed.

4. Phase-space volume is compressed when penetrating the

membrane form the right to the left and expanded when

penetrating from left to right.
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other membrane maps

Is there another membrane map that would result in a density

di�erence while preserving phase space volume?

1. We seek:f : ϑ→ f (ϑ) s. t. the Jacobian determinant equals 1.

⇒ f (ϑ) = arcsin(± sinϑ+ C ) C = constant

So the only thing left to do is to �nd a function f (ϑ), which
ful�lls P(L→R) 6= P(R→L)

2. We will fail to �nd one! There is no such map.

Therefore a membrane map(piecewise di�erentiable)
that obeys incompressible dynamics cannot create a
density di�erence.

We conclude

2nd law violation requires compressible microscopic dynamics.
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Maxwell's demon

I consider one-way-valve

Maxwell's

demon:(time-)irreversible

I membrane ←→ tennis demon.

but here trajectories evolve

bijectively, so no info erasure.

How to nullify Maxwell's demon

using information ideas?

I demon can only position the

racket at a discrete number of

locations, all separated by ∆x

⇒ many-to-one map

I ∆x → 0 has to operate with

in�nite info
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model 2:

Kechen and Kezhao Zhang: Mechanical models of Maxell's demon

with noninvariant phase volume
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mechanical models of Maxwell's demon I

I our starting point is a system of N interacting point particles:

mi ~̈ri = ~F (~r1, . . . , ~rN , ~̇r1, . . . , ~̇rN)

I we will use velocity-dependent force �elds to implement a

barrier which allows particles to pass through preferably only in

one direction.We also demand:~F⊥~v ⇒the total energy is

conserved.

~F (~v) = (~v × ~̂z)A(v)B(ϑ)

I ~F (~v) = (~v × ~̂z)A(v)B(ϑ) is time-reversible ⇔ ~F (~v) = ~F ( ~−v)

I phase volume conserved ⇔ B(ϑ) = const
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mechanical models of Maxwell's demon II

Figure: c)uniform �eld between
dashed lines, downward: attracting
direction, leakage caused by nearly
perpendicular impinging

Figure: in I:attracting direction is
upwards; in II: attracting direction is
downwards; barrier width w chosen such
that particles with speed v<1 pass
downward, v>1 pass upward
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is noninvariance of phase volume necessary for Maxwell's

demon I

I let us introduce SMF(spontaneous momentum �ow):

sustaining and robust momentum �ow inside an isolated

mechanical system.

I there is a SMF in the system if the long-term average

J̄ν = lim
τ→∞

1
τ

∫ τ
0 Jν(Ttζ)dt 6= 0 ∀ζ ∈ Σ(= energy surface) for

some spatial region V

(where Jν(ζ) = total momentum inside V at a given time =
N∑
i=1

piχV (ri ))
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is noninvariance of phase volume necessary for Maxwell's

demon II

Formulation of the second law by SMF

existence of perpetual motion machine of the second kind ⇔
existence of SMF

Figure: (a):⇒ (b)⇐
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is noninvariance of phase volume necessary for Maxwell's

demon III

Theorem: nonexistence of SMF

The point particle system mi ~̈ri = ~F (~r1, . . . , ~rN , ~̇r1, . . . , ~̇rN) cannot
exhibit SMF if

i) its energy function E is symmetric under momentum reversal,

namely, E (ζ) = E (ζ̃) where ζ = (q1, . . . , qs , p1, . . . , ps) and

ζ̃ = (q1, . . . , qs ,−p1, . . . ,−ps)

ii) phase volume dq1 · · · dqsdp1 · · · dps is invariant during time

evolution, and total phase volume is �nite for �nite energy
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is noninvariance of phase volume necessary for Maxwell's

demon IV

Theorem⇒ such a system cannot serve as Maxwell's demon,

because: suppose we can → contradiction to theorem
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summary and conclusion

model 1

I time-reversible microscopic dynamics

I violation of second law ⇒ compression of phase space

model 2

I time-reversible microscopic dynamics and purely mechanical

I In systems with symmetric energy wrt momentum reversal, 2nd

law violation requires noninvariance of phase volume.

ultimate result

The invariance of phase volume appears as a factor responsible for

the validity of the second law of thermodynamics
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