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Chapter 1

Introduction

1.1 General

For physics students the computational quantum physics courses is a recommended
prerequisite for any computationally oriented semester thesis, proseminar, diploma the-
sis or doctoral thesis.

For computational science and engineering (RW) students the computa-
tional quantum physics courses is part of the “Vertiefung” in theoretical physics.

1.1.1 Lecture Notes

All the lecture notes, source codes, applets and supplementary material can be found
on our web page http://www.itp.phys.ethz.ch/education/lectures fs09/cqp.

1.1.2 Exercises

Programming Languages

Except when a specific programming language or tool is explicitly requested you are
free to choose any programming language you like. Solutions will often be given either
as C++ programs or Mathematica Notebooks.

Computer Access

The lecture rooms offer both Linux workstations, for which accounts can be requested
with the computer support group of the physics department in the HPR building, as
well as connections for your notebook computers.
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1.1.3 Prerequisites

As a prerequisite for this course we expect knowledge of the following topics. Please
contact us if you have any doubts or questions.

Computing

• Basic knowledge of UNIX

• At least one procedural programming language such as C, C++, Pascal, Java or
FORTRAN. C++ knowledge is preferred.

• Knowledge of a symbolic mathematics program such as Mathematica or Maple.

• Ability to produce graphical plots.

Numerical Analysis

• Numerical integration and differentiation

• Linear solvers and eigensolvers

• Root solvers and optimization

• Statistical analysis

Quantum Mechanics

Basic knowledge of quantum mechanics, at the level of the quantum mechanics taught
to computational scientists, should be sufficient to follow the course. If you feel lost at
any point, please ask the lecturer to explain whatever you do not understand. We want
you to be able to follow this course without taking an advanced quantum mechanics
class.

1.1.4 References

1. J.M. Thijssen, Computational Physics, Cambridge University Press (1999) ISBN
0521575885

2. Nicholas J. Giordano, Computational Physics, Pearson Education (1996) ISBN
0133677230.

3. Harvey Gould and Jan Tobochnik, An Introduction to Computer Simulation Meth-
ods, 2nd edition, Addison Wesley (1996), ISBN 00201506041

4. Tao Pang, An Introduction to Computational Physics, Cambridge University Press
(1997) ISBN 0521485924
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1.2 Overview

In this class we will learn how to simulate quantum systems, starting from the simple
one-dimensional Schrödinger equation to simulations of interacting quantum many body
problems in condensed matter physics and in quantum field theories. In particular we
will study

• The one-body Schrödinger equation and its numerical solution

• The many-body Schrödinger equation and second quantization

• Approximate solutions to the many body Schrödinger equation

• Path integrals and quantum Monte Carlo simulations

• Numerically exact solutions to (some) many body quantum problems

• Some simple quantum field theories

3



Chapter 2

Quantum mechanics in one hour

2.1 Introduction

The purpose of this chapter is to refresh your knowledge of quantum mechanics and
to establish notation. Depending on your background you might not be familiar with
all the material presented here. If that is the case, please ask the lecturers and we
will expand the introduction. Those students who are familiar with advanced quantum
mechanics are asked to glance over some omissions and are encouraged to help us
improve this quick introduction.

2.2 Basis of quantum mechanics

2.2.1 Wave functions and Hilbert spaces

Quantum mechanics is nothing but simple linear algebra, albeit in huge Hilbert spaces,
which makes the problem hard. The foundations are pretty simple though.

A pure state of a quantum system is described by a “wave function” |Ψ〉, which is
an element of a Hilbert space H:

|Ψ〉 ∈ H (2.1)

Usually the wave functions are normalized:

|| |Ψ〉 || =
√

〈Ψ|Ψ〉 = 1. (2.2)

Here the “bra-ket” notation
〈Φ|Ψ〉 (2.3)

denotes the scalar product of the two wave functions |Φ〉 and |Ψ〉.
The simplest example is the spin-1/2 system, describing e.g. the two spin states

of an electron. Classically the spin ~S of the electron (which can be visualized as an
internal angular momentum), can point in any direction. In quantum mechanics it is
described by a two-dimensional complex Hilbert space H = C

2. A common choice of
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basis vectors are the “up” and “down” spin states

| ↑〉 =

(

1
0

)

(2.4)

| ↓〉 =

(

0
1

)

(2.5)

This is similar to the classical Ising model, but in contrast to a classical Ising spin
that can point only either up or down, the quantum spin can exist in any complex
superposition

|Ψ〉 = α| ↑〉+ β| ↓〉 (2.6)

of the basis states, where the normalization condition (2.2) requires that |α|2+ |β|2 = 1.
For example, as we will see below the state

| →〉 =
1√
2

(| ↑〉+ | ↓〉) (2.7)

is a superposition that describes the spin pointing in the positive x-direction.

2.2.2 Mixed states and density matrices

Unless specifically prepared in a pure state in an experiment, quantum systems in
Nature rarely exist as pure states but instead as probabilistic superpositions. The most
general state of a quantum system is then described as a density matrix ρ, with unit
trace

Trρ = 1. (2.8)

The density matrix of a pure state is just the projector onto that state

ρpure = |Ψ〉〈Ψ|. (2.9)

For example, the density matrix of a spin pointing in the positive x-direction is

ρ→ = | →〉〈→ | =
(

1/2 1/2
1/2 1/2

)

. (2.10)

Instead of being in a coherent superposition of up and down, the system could also
be in a probabilistic mixed state, with a 50% probability of pointing up and a 50%
probability of pointing down, which would be described by the density matrix

ρmixed =

(

1/2 0
0 1/2

)

. (2.11)

2.2.3 Observables

Any physical observable is represented by a self-adjoint linear operator acting on the
Hilbert space, which in a final dimensional Hilbert space can be represented by a Hermi-
tian matrix. For our spin-1/2 system, using the basis introduced above, the components

5



Sx, Sy and Sz of the spin in the x-, y-, and z-directions are represented by the Pauli
matrices

Sx =
~

2
σx =

~

2

(

0 1
1 0

)

(2.12)

Sy =
~

2
σy =

~

2

(

0 −i
i 0

)

(2.13)

Sz =
~

2
σz =

~

2

(

1 0
0 −1

)

(2.14)

The spin component along an arbitrary unit vector ê is the linear superposition of
the components, i.e.

ê · ~S = exSx + eySy + ezSz =
~

2

(

ez ex − iey
ex + iey −ez

)

(2.15)

The fact that these observables do not commute but instead satisfy the non-trivial
commutation relations

[Sx, Sy] = SxSy − SySx = i~Sz, (2.16)

[Sy, Sz] = i~Sx, (2.17)

[Sz, Sx] = i~Sy, (2.18)

will have important consequences.

2.2.4 The measurement process

The outcome of a measurement in a quantum system is usually intrusive and not deter-
ministic. After measuring an observable A, the new wave function of the system will be
an eigenvector of A and the outcome of the measurement the corresponding eigenvalue.
The state of the system is thus changed by the measurement process!

For example, if we start with a spin pointing up with wave function

|Ψ〉 = | ↑〉 =

(

1
0

)

(2.19)

or alternatively density matrix

ρ↑ =

(

1 0
0 0

)

(2.20)

and we measure the x-component of the spin Sx, the resulting measurement will be
either +~/2 or −~/2, depending on whether the spin after the measurement points in
the + or − x-direction, and the wave function after the measurement will be either of

| →〉 =
1√
2

(| ↑〉+ | ↓〉) =

(

1/2
1/2

)

(2.21)

| ←〉 =
1√
2

(| ↑〉 − | ↓〉) =

(

1/2
−1/2

)

(2.22)
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Either of these states will be picked with a probability given by the overlap of the initial
wave function by the individual eigenstates:

p→ = ||〈→ |Ψ〉||2 = 1/2 (2.23)

p← = ||〈← |Ψ〉||2 = 1/2 (2.24)

The final state is a probabilistic superposition of these two outcomes, described by the
density matrix

ρ = p→| →〉〈→ |+ p←| ←〉〈← | =
(

1/2 0
0 1/2

)

. (2.25)

which differs from the initial density matrix ρ↑.
If we are not interested in the result of a particular outcome, but just in the average,

the expectation value of the measurement can easily be calculated from a wave function
|Ψ〉 as

〈A〉 = 〈Ψ|A|Ψ〉 (2.26)

or from a density matrix ρ as
〈A〉 = Tr(ρA). (2.27)

It is easy to convince yourself that for pure states the two formulations are identical.

2.2.5 The uncertainty relation

If two observables A and B do not commute [A,B] 6= 0, they cannot be measured
simultaneously. If A is measured first, the wave function is changed to an eigenstate of
A, which changes the result of a subsequent measurement of B. As a consequence the
values of A and B in a state Ψ cannot be simultaneously known, which is quantified by
the famous Heisenberg uncertainty relation which states that if two observables A and
B do not commute but satisfy

[A,B] = i~ (2.28)

then the product of the root-mean-square deviations ∆A and ∆B of simultaneous mea-
surements of A and B has to be larger than

∆A∆B ≥ ~/2 (2.29)

For more details about the uncertainty relation, the measurement process or the inter-
pretation of quantum mechanics we refer interested students to an advanced quantum
mechanics class or text book.

2.2.6 The Schrödinger equation

The time-dependent Schrödinger equation

After so much introduction the Schrödinger equation is very easy to present. The wave
function |Ψ〉 of a quantum system evolves according to

i~
∂

∂t
|Ψ(t)〉 = H|Ψ(t)〉, (2.30)

where H is the Hamilton operator. This is just a first order linear differential equation.
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The time-independent Schrödinger equation

For a stationary time-independent problem the Schrödinger equation can be simplified.
Using the ansatz

|Ψ(t)〉 = exp(−iEt/~)|Ψ〉, (2.31)

where E is the energy of the system, the Schrödinger equation simplifies to a linear
eigenvalue problem

H|Ψ〉 = E|Ψ〉. (2.32)

The rest of the semester will be spent solving just this simple eigenvalue problem!

The Schrödinger equation for the density matrix

The time evolution of a density matrix ρ(t) can be derived from the time evolution of
pure states, and can be written as

i~
∂

∂t
ρ(t) = [H, ρ(t)] (2.33)

The proof is left as a simple exercise.

2.2.7 The thermal density matrix

Finally we want to describe a physical system not in the ground state but in thermal
equilibrium at a given inverse temperature β = 1/kBT . In a classical system each mi-
crostate i of energy Ei is occupied with a probability given by the Boltzman distribution

pi =
1

Z
exp(−βEi), (2.34)

where the partition function

Z =
∑

i

exp(−βEi) (2.35)

normalizes the probabilities.
In a quantum system, if we use a basis of eigenstates |i〉 with energy Ei, the density

matrix can be written analogously as

ρβ =
1

Z

∑

i

exp(−βEi)|i〉〈i| (2.36)

For a general basis, which is not necessarily an eigenbasis of the Hamiltonian H , the
density matrix can be obtained by diagonalizing the Hamiltonian, using above equation,
and transforming back to the original basis. The resulting density matrix is

ρβ =
1

Z
exp(−βH) (2.37)

where the partition function now is

Z = Tr exp(−βH) (2.38)

Calculating the thermal average of an observable A in a quantum system is hence
very easy:

〈A〉 = Tr(Aρβ) =
TrA exp(−βH)

Tr exp(−βH)
. (2.39)
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2.3 The spin-S problem

Before discussing solutions of the Schrödinger equation we will review two very simple
systems: a localized particle with general spin S and a free quantum particle.

In section 2.2.1 we have already seen the Hilbert space and the spin operators for the
most common case of a spin-1/2 particle. The algebra of the spin operators given by the
commutation relations (2.12)-(2.12) allows not only the two-dimensional representation
shown there, but a series of 2S + 1-dimensional representations in the Hilbert space
C2S+1 for all integer and half-integer values S = 0, 1

2
, 1, 3

2
, 2, . . .. The basis states {|s〉}

are usually chosen as eigenstates of the Sz operator

Sz|s〉 = ~s|s〉, (2.40)

where s can take any value in the range −S,−S + 1,−S + 2, . . . , S− 1, S. In this basis
the Sz operator is diagonal, and the Sx and Sy operators can be constructed from the
“ladder operators”

S+|s〉 =
√

S(S + 1)− s(s+ 1)|s+ 1〉 (2.41)

S−|s〉 =
√

S(S + 1)− s(s− 1)|s− 1〉 (2.42)

which increment or decrement the Sz value by 1 through

Sx =
1

2

(

S+ + S−
)

(2.43)

Sy =
1

2i

(

S+ − S−
)

. (2.44)

The Hamiltonian of the spin coupled to a magnetic field ~h is

H = −gµB~h · ~S, (2.45)

which introduces nontrivial dynamics since the components of ~S do not commute. As
a consequence the spin precesses around the magnetic field direction.

Exercise: Derive the differential equation governing the rotation of a spin starting
along the +x-direction rotating under a field in the +z-direction

2.4 A quantum particle in free space

Our second example is a single quantum particle in an n-dimensional free space. Its
Hilbert space is given by all twice-continuously differentiable complex functions over
the real space Rn. The wave functions |Ψ〉 are complex-valued functions Ψ(~x) in n-
dimensional space. In this representation the operator x̂, measuring the position of the
particle is simple and diagonal

x̂ = ~x, (2.46)

while the momentum operator p̂ becomes a differential operator

p̂ = −i~∇. (2.47)
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These two operators do not commute but their commutator is

[x̂, p̂] = i~. (2.48)

The Schrödinger equation of a quantum particle in an external potential V (~x) can be
obtained from the classical Hamilton function by replacing the momentum and position
variables by the operators above. Instead of the classical Hamilton function

H(~x, ~p) =
~p2

2m
+ V (~x) (2.49)

we use the quantum mechanical Hamiltonian operator

H =
p̂2

2m
+ V (x̂) = − ~

2

2m
∇2 + V (~x), (2.50)

which gives the famous form

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V (~x)ψ (2.51)

of the one-body Schrödinger equation.

2.4.1 The harmonic oscillator

As a special exactly solvable case let us consider the one-dimensional quantum harmonic
oscillator with mass m and potential K

2
x2. Defining momentum p̂ and position operators

q̂ in units where m = ~ = K = 1, the time-independent Schrödinger equation is given
by

H|n〉 = 1

2
(p̂2 + q̂2)|n〉 = En|n〉 (2.52)

Inserting the definition of p̂ we obtain an eigenvalue problem of an ordinary differential
equation

−1

2
φ′′n(q) +

1

2
q2φn(q) = Enφn(q) (2.53)

whose eigenvalues En = (n+ 1/2) and eigenfunctions

φn(q) =
1

√

2nn!
√
π

exp

(

−1

2
q2

)

Hn(q), (2.54)

are known analytically. Here the Hn are the Hermite polynomials and n = 0, 1, . . ..
Using these eigenstates as a basis sets we need to find the representation of q̂ and

p̂. Performing the integrals

〈m|q̂|n〉 and 〈m|p̂|n〉 (2.55)

it turns out that they are nonzero only for m = n± 1 and they can be written in terms
of “ladder operators” a and a†:

q̂ =
1√
2
(a† + a) (2.56)

p̂ =
1

i
√

2
(a† − a) (2.57)

(2.58)
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where the raising and lowering operators a† and a only have the following nonzero
matrix elements:

〈n+ 1|a†|n〉 = 〈n|a|n+ 1〉 =
√
n+ 1. (2.59)

and commutation relations

[a, a] = [a†, a†] = 0 (2.60)

[a, a†] = 1. (2.61)

It will also be useful to introduce the number operator n̂ = a†a which is diagonal with
eigenvalue n: elements

n̂|n〉 = a†a|n〉 =
√
na†|n− 1〉 = n||n〉. (2.62)

To check this representation let us plug the definitions back into the Hamiltonian to
obtain

H =
1

2
(p̂2 + q̂2)

=
1

4

[

−(a† − a)2 + (a† + a)2
]

=
1

2
(a†a + aa†)

=
1

2
(2a†a + 1) = n̂ +

1

2
, (2.63)

which has the correct spectrum. In deriving the last lines we have used the commutation
relation (2.61).
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Chapter 3

The quantum one-body problem

3.1 The time-independent 1D Schrödinger equation

We start the numerical solution of quantum problems with the time-indepent one-
dimensional Schrödinger equation for a particle with mass m in a Potential V (x). In
one dimension the Schrödinger equation is just an ordinary differential equation

− ~2

2m

∂2ψ

∂x2
+ V (x)ψ(x) = Eψ(x). (3.1)

We start with simple finite-difference schemes and discretize space into intervals of
length ∆x and denote the space points by

xn = n∆x (3.2)

and the wave function at these points by

ψn = ψ(xn). (3.3)

3.1.1 The Numerov algorithm

After rewriting the second order differential equation to a coupled system of two first
order differential equations, any ODE solver such as the Runge-Kutta method could be
applied, but there exist better methods. For the special form

ψ′′(x) + k(x)ψ(x) = 0, (3.4)

of the Schrödinger equation, with k(x) = 2m(E−V (x))/~2 we can derive the Numerov
algorithm by starting from the Taylor expansion of ψn:

ψn±1 = ψn ±∆xψ′n +
∆x2

2
ψ′′n ±

∆x3

6
ψ(3)
n +

∆x4

24
ψ(4)
n ±

∆x5

120
ψ(5)
n + O(∆x6) (3.5)

Adding ψn+1 and ψn−1 we obtain

ψn+1 + ψn−1 = 2ψn + (∆x)2ψ′′n +
(∆x)4

12
ψ(4)
n . (3.6)
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Replacing the fourth derivatives by a finite difference second derivative of the second
derivatives

ψ(4)
n =

ψ′′n+1 + ψ′′n−1 − 2ψ′′n
∆x2

(3.7)

and substituting −k(x)ψ(x) for ψ′′(x) we obtain the Numerov algorithm

(

1 +
(∆x)2

12
kn+1

)

ψn+1 = 2

(

1− 5(∆x)2

12
kn

)

ψn

−
(

1 +
(∆x)2

12
kn−1

)

ψn−1 + O(∆x6), (3.8)

which is locally of sixth order!

Initial values

To start the Numerov algorithm we need the wave function not just at one but at two
initial values and will now present several ways to obtain these.

For potentials V (x) with reflection symmetry V (x) = V (−x) the wave functions
need to be either even ψ(x) = ψ(−x) or odd ψ(x) = −ψ(−x) under reflection, which
can be used to find initial values:

• For the even solution we use a half-integer mesh with mesh points xn+1/2 =
(n + 1/2)∆x and pick initial values ψ(x−1/2) = ψ(x1/2) = 1.

• For the odd solution we know that ψ(0) = −ψ(0) and hence ψ(0) = 0, specifying
the first starting value. Using an integer mesh with mesh points xn = n∆x we
pick ψ(x1) = 1 as the second starting value.

In general potentials we need to use other approaches. If the potentials vanishes for
large distances: V (x) = 0 for |x| ≥ a we can use the exact solution of the Schrödinger
equation at large distances to define starting points, e.g.

ψ(−a) = 1 (3.9)

ψ(−a−∆x) = exp(−∆x
√

2mE/~). (3.10)

Finally, if the potential never vanishes we need to begin with a single starting value
ψ(x0) and obtain the second starting value ψ(x1) by performing an integration over the
first time step ∆τ with an Euler or Runge-Kutta algorithm.

3.1.2 The one-dimensional scattering problem

The scattering problem is the numerically easiest quantum problem since solutions
exist for all energies E > 0, if the potential vanishes at large distances (V (x) → 0 for
|x| → ∞). The solution becomes particularly simple if the potential is nonzero only
on a finite interval [0, a]. For a particle approaching the potential barrier from the left
(x < 0) we can make the following ansatz for the free propagation when x < 0:

ψL(x) = A exp(−iqx) +B exp(iqx) (3.11)
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where A is the amplitude of the incoming wave and B the amplitude of the reflected
wave. On the right hand side, once the particle has left the region of finite potential
(x > a), we can again make a free propagation ansatz,

ψR(x) = C exp(−iqx) (3.12)

The coefficients A, B and C have to be determined self-consistently by matching to a
numerical solution of the Schrödinger equation in the interval [0, a]. This is best done
in the following way:

• Set C = 1 and use the two points a and a+ ∆x as starting points for a Numerov
integration.

• Integrate the Schrödinger equation numerically – backwards in space, from a to
0 – using the Numerov algorithm.

• Match the numerical solution of the Schrödinger equation for x < 0 to the free
propagation ansatz (3.11) to determine A and B.

Once A and B have been determined the reflection and transmission probabilities R
and T are given by

R = |B|2/|A|2 (3.13)

T = 1/|A|2 (3.14)

3.1.3 Bound states and solution of the eigenvalue problem

While there exist scattering states for all energies E > 0, bound states solutions of the
Schrödinger equation with E < 0 exist only for discrete energy eigenvalues. Integrating
the Schrödinger equation from −∞ to +∞ the solution will diverge to ±∞ as x→∞
for almost all values. These functions cannot be normalized and thus do not constitute
solutions to the Schrödinger equation. Only for some special eigenvalues E, will the
solution go to zero as x→∞.

A simple eigensolver can be implemented using the following shooting method, where
we again will assume that the potential is zero outside an interval [0, a]:

• Start with an initial guess E

• Integrate the Schrödinger equation for ψE(x) from x = 0 to xf ≫ a and determine
the value ψE(xf )

• use a root solver, such as a bisection method (see appendix A.1), to look for an
energy E with ψE(xf) ≈ 0

This algorithm is not ideal since the divergence of the wave function for x ± ∞ will
cause roundoff error to proliferate.

A better solution is to integrate the Schrödinger equation from both sides towards
the center:

• We search for a point b with V (b) = E

14



• Starting from x = 0 we integrate the left hand side solution ψL(x) to a chosen point
b and obtain ψL(b) and a numerical estimate for ψ′L(b) = (ψL(b)−ψL(b−∆x))/∆x.

• Starting from x = a we integrate the right hand solution ψR(x) down to the same
point b and obtain ψR(b) and a numerical estimate for ψ′R(b) = (ψR(b + ∆x) −
ψR(b))/∆x.

• At the point b the wave functions and their first two derivatives have to match,
since solutions to the Schrödinger equation have to be twice continuously differen-
tiable. Keeping in mind that we can multiply the wave functions by an arbitrary
factor we obtain the conditions

ψL(b) = αψR(b) (3.15)

ψ′L(b) = αψ′R(b) (3.16)

ψ′′L(b) = αψ′′R(b) (3.17)

The last condition is automatically fulfilled since by the choice V (b) = E the
Schrödinger equation at b reduces to ψ′′(b) = 0. The first two conditions can be
combined to the condition that the logarithmic derivatives vanish:

d logψL
dx

|x=b =
ψ′L(b)

ψL(b)
=
ψ′R(b)

ψR(b)
=
d logψR
dx

|x=b (3.18)

• This last equation has to be solved for in a shooting method, e.g. using a bisection
algorithm

Finally, at the end of the calculation, normalize the wave function.

3.2 The time-independent Schrödinger equation in

higher dimensions

The time independent Schrödinger equation in more than one dimension is a partial
differential equation and cannot, in general, be solved by a simple ODE solver such as
the Numerov algorithm. Before employing a PDE solver we should thus always first try
to reduce the problem to a one-dimensional problem. This can be done if the problem
factorizes.

3.2.1 Factorization along coordinate axis

A first example is a three-dimensional Schrödinger equation in a cubic box with potential
V (~r) = V (x)V (y)V (z) with ~r = (x, y, z). Using the product ansatz

ψ(~r) = ψx(x)ψy(y)ψz(z) (3.19)

the PDE factorizes into three ODEs which can be solved as above.
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3.2.2 Potential with spherical symmetry

Another famous trick is possible for spherically symmetric potentials with V (~r) = V (|~r|)
where an ansatz using spherical harmonics

ψl,m(~r) = ψl,m(r, θ, φ) =
u(r)

r
Ylm(θ, φ) (3.20)

can be used to reduce the three-dimensional Schrödinger equation to a one-dimensional
one for the radial wave function u(r):

[

− ~2

2m

d2

dr2
+

~2l(l + 1)

2mr2
+ V (r)

]

u(r) = Eu(r) (3.21)

in the interval [0,∞[. Given the singular character of the potential for r → 0, a
numerical integration should start at large distances r and integrate towards r = 0, so
that the largest errors are accumulated only at the last steps of the integration.

3.2.3 Finite difference methods

The simplest solvers for partial differential equations, the finite difference solvers can
also be used for the Schrödinger equation. Replacing differentials by differences we
convert the Schrödinger equation to a system of coupled inear equations. Starting from
the three-dimensional Schrödinger equation (we set ~ = 1 from now on)

∇2ψ(~x) + 2m(V − E(~x))ψ(~x) = 0, (3.22)

we discretize space and obtain the system of linear equations

1

∆x2
[ψ(xn+1, yn, zn) + ψ(xn−1, yn, zn)

+ψ(xn, yn+1, zn) + ψ(xn, yn−1, zn) (3.23)

+ψ(xn, yn, zn+1) + ψ(xn, yn, zn−1)]

+

[

2m(V (~x)− E)− 6

∆x2

]

ψ(xn, yn, zn) = 0.

For the scattering problem a linear equation solver can now be used to solve the
system of equations. For small linear problems Mathematica can be used, or the dsysv

function of the LAPACK library. For larger problems it is essential to realize that the
matrices produced by the discretization of the Schrödinger equation are usually very
sparse, meaning that only O(N) of the N2 matrix elements are nonzero. For these
sparse systems of equations, optimized iterative numerical algorithms exist1 and are
implemented in numerical libraries such as in the ITL library.2

1R. Barret, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C.
Romine, and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods (SIAM, 1993)

2J.G. Siek, A. Lumsdaine and Lie-Quan Lee, Generic Programming for High Performance Numerical
Linear Algebra in Proceedings of the SIAM Workshop on Object Oriented Methods for Inter-operable
Scientific and Engineering Computing (OO’98) (SIAM, 1998); the library is availavle on the web at:
http://www.osl.iu.edu/research/itl/
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To calculate bound states, an eigenvalue problem has to be solved. For small prob-
lems, where the full matrix can be stored in memory, Mathematica or the dsyev eigen-
solver in the LAPACK library can be used. For bigger systems, sparse solvers such as
the Lanczos algorithm (see appendix A.2) are best. Again there exist efficient imple-
mentations3 of iterative algorithms for sparse matrices.4

3.2.4 Variational solutions using a finite basis set

In the case of general potentials, or for more than two particles, it will not be possible to
reduce the Schrödinger equation to a one-dimensional problem and we need to employ
a PDE solver. One approach will again be to discretize the Schrödinger equation on a
discrete mesh using a finite difference approximation. A better solution is to expand
the wave functions in terms of a finite set of basis functions

|φ〉 =
N
∑

i=1

ai|ui〉. (3.24)

To estimate the ground state energy we want to minimize the energy of the varia-
tional wave function

E∗ =
〈φ|H|φ〉
〈φ|φ〉 . (3.25)

Keep in mind that, since we only chose a finite basis set {|ui〉} the variational estimate
E∗ will always be larger than the true ground state energy E0, but will converge towards
E0 as the size of the basis set is increased, e.g. by reducing the mesh size in a finite
element basis.

To perform the minimization we denote by

Hij = 〈ui|H|uj〉 =

∫

d~rui(~r)
∗
(

− ~2

2m
∇2 + V

)

uj(~r) (3.26)

the matrix elements of the Hamilton operator H and by

Sij = 〈ui|uj〉 =

∫

d~rui(~r)
∗uj(~r) (3.27)

the overlap matrix. Note that for an orthogonal basis set, Sij is the identity matrix δij .
Minimizing equation (3.25) we obtain a generalized eigenvalue problem

∑

j

Hijaj = E
∑

k

Sikak. (3.28)

or in a compact notation with ~a = (a1, . . . , aN)

H~a = ES~a. (3.29)

3http://www.comp-phys.org/software/ietl/
4Z. Bai, J. Demmel and J. Dongarra (Eds.), Templates for the Solution of Algebraic Eigenvalue

Problems: A Practical Guide (SIAM, 2000).
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If the basis set is orthogonal this reduces to an ordinary eigenvalue problem and we can
use the Lanczos algorithm.

In the general case we have to find orthogonal matrices U such that UTSU is the
identity matrix. Introducing a new vector~b = U−1~a. we can then rearrange the problem
into

H~a = ES~a

HU~b = ESU~b

UTHU~b = EUTSU~b = E~b (3.30)

and we end up with a standard eigenvalue problem for UTHU . Mathematica and
LAPACK both contain eigensolvers for such generalized eigenvalue problems.

Example: the anharmonic oscillator

The final issue is the choice of basis functions. It is advantageous to make use of known
solutions to a similar problem as we will illustrate in the case of an anharmonic oscillator
with Hamilton operator

H = H0 + λq4

H0 =
1

2
(p2 + q2), (3.31)

where the harmonic oscillator H0 was already discussed in section 2.4.1. It makes sense
to use the N lowest harmonic oscillator eigenvectors |n〉 as basis states of a finite basis
and write the Hamiltonian as

H =
1

2
+ n̂ + λq̂4 =

1

2
+ n̂+

λ

4
(a† + a)4 (3.32)

Since the operators a and a† are nonzero only in the first sub or superdiagonal, the
resulting matrix is a banded matrix of bandwidth 9. A sparse eigensolver such as the
Lanczos algorithm can again be used to calculate the spectrum. Note that since we
use the orthonormal eigenstates of H0 as basis elements, the overlap matrix S here is
the identity matrix and we have to deal only with a standard eigenvalue problem. A
solution to this problem is provided in a Mathematica notebook on the web page.

The finite element method

In cases where we have irregular geometries or want higher precision than the lowest
order finite difference method, and do not know a suitable set of basis function, the
finite element method (FEM) should be chosen over the finite difference method. Since
explaining the FEM can take a full semester in itself, we refer interested students to
classes on solving partial differential equations.

3.3 The time-dependent Schrödinger equation

Finally we will reintroduce the time dependence to study dynamics in non-stationary
quantum systems.
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3.3.1 Spectral methods

By introducing a basis and solving for the complete spectrum of energy eigenstates we
can directly solve the time-dependent problem in the case of a stationary Hamiltonian.
This is a consequence of the linearity of the Schrödinger equation.

To calculate the time evolution of a state |ψ(t0)〉 from time t0 to t we first solve
the stationary eigenvalue problem H|φ〉 = E|φ〉 and calculate the eigenvectors |φn〉 and
eigenvalues ǫn. Next we represent the initial wave function |ψ〉 by a spectral decompo-
sition

|ψ(t0)〉 =
∑

n

cn|φn〉. (3.33)

Since each of the |φn〉 is an eigenvector of H , the time evolution e−i~H(t−t0) is trivial
and we obtain at time t:

|ψ(t)〉 =
∑

n

cne
−i~ǫn(t−t0)|φn〉. (3.34)

3.3.2 Direct numerical integration

If the number of basis states is too large to perform a complete diagonalization of
the Hamiltonian, or if the Hamiltonian changes over time we need to perform a direct
integration of the Schrödinger equation. Like other initial value problems of partial
differential equations the Schrödinger equation can be solved by the method of lines.
After choosing a set of basis functions or discretizing the spatial derivatives we obtain a
set of coupled ordinary differential equations which can be evolved for each point along
the time line (hence the name) by standard ODE solvers.

In the remainder of this chapter we use the symbol H to refer the representation of
the Hamiltonian in the chosen finite basis set. A forward Euler scheme

|ψ(tn+1)〉 = |ψ(tn)〉 − i~∆tH|ψ(tn)〉 (3.35)

is not only numerically unstable. It also violates the conservation of the norm of the
wave function 〈ψ|ψ〉 = 1. Since the exact quantum evolution

ψ(x, t+ ∆t) = e−i~H∆tψ(x, t). (3.36)

is unitary and thus conserves the norm, we want to look for a unitary approximant as
integrator. Instead of using the forward Euler method (3.35) which is just a first order
Taylor expansion of the exact time evolution

e−i~H∆t = 1− i~H∆t + O(∆2
t ), (3.37)

we reformulate the time evolution operator as

e−i~H∆t =
(

ei~H∆t/2
)−1

e−i~H∆t/2 =

(

1 + i~H
∆t

2

)−1(

1− i~H∆t

2

)

+ O(∆3
t ), (3.38)

which is unitary!
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This gives the simplest stable and unitary integrator algorithm

ψ(x, t+ ∆t) =

(

1 + i~H
∆t

2

)−1(

1− i~H∆t

2

)

ψ(x, t) (3.39)

or equivalently

(

1 + i~H
∆t

2

)

ψ(x, t+ ∆t) =

(

1− i~H∆t

2

)

ψ(x, t). (3.40)

Unfortunately this is an implicit integrator. At each time step, after evaluating the
right hand side a linear system of equations needs to be solved. For one-dimensional
problems the matrix representation of H is often tridiagonal and a tridiagonal solver
can be used. In higher dimensions the matrix H will no longer be simply tridiagonal
but still very sparse and we can use iterative algorithms, similar to the Lanczos algo-
rithm for the eigenvalue problem. For details about these algorithms we refer to the
nice summary at http://mathworld.wolfram.com/topics/Templates.html and es-
pecially the biconjugate gradient (BiCG) algorithm. Implementations of this algorithm
are available, e.g. in the Iterative Template Library (ITL).

3.3.3 The split operator method

A simpler and explicit method is possible for a quantum particle in the real space picture
with the “standard” Schrödinger equation (2.51). Writing the Hamilton operator as

H = T̂ + V̂ (3.41)

with

T̂ =
1

2m
p̂2 (3.42)

V̂ = V (~x) (3.43)

it is easy to see that V̂ is diagonal in position space while T̂ is diagonal in momentum
space. If we split the time evolution as

e−i~∆tH = e−i~∆tV̂ /2e−i~∆tT̂ e−i~∆tV̂ /2 + O(∆3
t ) (3.44)

we can perform the individual time evolutions e−i~∆tV̂ /2 and e−i~∆tT̂ exactly:

[

e−i~∆tV̂ /2|ψ〉
]

(~x) = e−i~∆tV (~x)/2ψ(~x) (3.45)
[

e−i~∆tT̂ /2|ψ〉
]

(~k) = e−i~∆t||~k||2/2mψ(~k) (3.46)

in real space for the first term and momentum space for the second term. This requires
a basis change from real to momentum space, which is efficiently performed using a Fast
Fourier Transform (FFT) algorithm. Propagating for a time t = N∆t, two consecutive
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applications of e−i~∆tV̂ /2 can easily be combined into a propagation by a full time step
e−i~∆tV̂ , resulting in the propagation:

e−i~∆tH =
(

e−i~∆tV̂ /2e−i~∆tT̂ e−i~∆tV̂ /2
)N

+ O(∆2
t )

= e−i~∆tV̂ /2
[

e−i~∆tT̂ e−i~∆tV̂
]N−1

e−i~∆tT̂ e−i~∆tV̂ /2 (3.47)

and the discretized algorithm starts as

ψ1(~x) = e−i~∆tV (~x)/2ψ0(~x) (3.48)

ψ1(~k) = Fψ1(~x) (3.49)

where F denotes the Fourier transform and F−1 will denote the inverse Fourier trans-
form. Next we propagate in time using full time steps:

ψ2n(~k) = e−i~∆t||~k||2/2mψ2n−1(~k) (3.50)

ψ2n(~x) = F−1ψ2n(~k) (3.51)

ψ2n+1(~x) = e−i~∆tV (~x)ψ2n(~x) (3.52)

ψ2n+1(~k) = Fψ2n+1(~x) (3.53)

except that in the last step we finish with another half time step in real space:

ψ2N+1(~x) = e−i~∆tV (~x)/2ψ2N (~x) (3.54)

This is a fast and unitary integrator for the Schrödinger equation in real space. It could
be improved by replacing the locally third order splitting (3.44) by a fifth-order version
involving five instead of three terms.
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Chapter 4

Introduction to many-body
quantum mechanics

4.1 The complexity of the quantum many-body prob-

lem

After learning how to solve the 1-body Schrödinger equation, let us next generalize to
more particles. If a single body quantum problem is described by a Hilbert space H
of dimension dimH = d then N distinguishable quantum particles are described by the
tensor product of N Hilbert spaces

H(N) ≡ H⊗N ≡
N
⊗

i=1

H (4.1)

with dimension dN .
As a first example, a single spin-1/2 has a Hilbert space H = C2 of dimension 2,

but N spin-1/2 have a Hilbert space H(N) = C2N

of dimension 2N . Similarly, a single
particle in three dimensional space is described by a complex-valued wave function ψ(~x)
of the position ~x of the particle, while N distinguishable particles are described by a
complex-valued wave function ψ(~x1, . . . , ~xN ) of the positions ~x1, . . . , ~xN of the particles.
Approximating the Hilbert space H of the single particle by a finite basis set with d
basis functions, the N -particle basis approximated by the same finite basis set for single
particles needs dN basis functions.

This exponential scaling of the Hilbert space dimension with the number of particles
is a big challenge. Even in the simplest case – a spin-1/2 with d = 2, the basis forN = 30
spins is already of of size 230 ≈ 109. A single complex vector needs 16 GByte of memory
and will not fit into the memory of your PC anymore.
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This challenge will be to addressed later in this course by learning about

1. approximative methods, reducing the many-particle problem to a single-particle
problem

2. quantum Monte Carlo methods for bosonic and magnetic systems

3. brute-force methods solving the exact problem in a huge Hilbert space for modest
numbers of particles

4.2 Indistinguishable particles

4.2.1 Bosons and fermions

In quantum mechanics we assume that elementary particles, such as the electron or
photon, are indistinguishable: there is no serial number painted on the electrons that
would allow us to distinguish two electrons. Hence, if we exchange two particles the
system is still the same as before. For a two-body wave function ψ(~q1, ~q2) this means
that

ψ(~q2, ~q1) = eiφψ(~q1, ~q2), (4.2)

since upon exchanging the two particles the wave function needs to be identical, up to
a phase factor eiφ. In three dimensions the first homotopy group is trivial and after
doing two exchanges we need to be back at the original wave function1

ψ(~q1, ~q2) = eiφψ(~q2, ~q1) = e2iφψ(~q1, ~q2), (4.3)

and hence e2iφ = ±1:
ψ(~q2, ~q1) = ±ψ(~q1, ~q2) (4.4)

The many-body Hilbert space can thus be split into orthogonal subspaces, one in which
particles pick up a − sign and are called fermions, and the other where particles pick
up a + sign and are called bosons.

Bosons

For bosons the general many-body wave function thus needs to be symmetric under
permutations. Instead of an arbitrary wave function ψ(~q1, . . . , ~qN) of N particles we
use the symmetrized wave function

Ψ(S) = S+ψ(~q1, . . . , ~qN) ≡ NS
∑

p

ψ(~qp(1), . . . , ~qp(N)), (4.5)

where the sum goes over all permutations p of N particles, and NS is a normalization
factor.

1As a side remark we want to mention that in two dimensions the first homotopy group is Z and not
trivial: it matters whether we move the particles clock-wise or anti-clock wise when exchanging them,
and two clock-wise exchanges are not the identity anymore. Then more general, anyonic, statistics are
possible.
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Fermions

For fermions the wave function has to be antisymmetric under exchange of any two
fermions, and we use the anti-symmetrized wave function

Ψ(A)S−ψ(~q1, . . . , ~qN) ≡ NA
∑

p

sgn(p)ψ(~qp(1), . . . , ~qp(N)), (4.6)

where sgn(p) = ±1 is the sign of the permutation and NA again a normalization factor.
A consequence of the antisymmetrization is that no two fermions can be in the same

state as a wave function
ψ(~q1, ~q2) = φ(~q1)φ(~q2) (4.7)

since this vanishes under antisymmetrization:

Ψ(~q1, ~q2) = ψ(~q1, ~q2)− ψ(~q2, ~q1) = φ(~q1)φ(~q2)− φ(~q2)φ(~q1) = 0 (4.8)

Spinful fermions

Fermions, such as electrons, usually have a spin-1/2 degree of freedom in addition
to their orbital wave function. The full wave function as a function of a generalized
coordinate ~x = (~q, σ) including both position ~q and spin σ.

4.2.2 The Fock space

The Hilbert space describing a quantum many-body system with N = 0, 1, . . . ,∞
particles is called the Fock space. It is the direct sum of the appropriately symmetrized
single-particle Hilbert spaces H:

∞
⊕

N=0

S±H⊗n (4.9)

where S+ is the symmetrization operator used for bosons and S− is the anti-symmetrization
operator used for fermions.

The occupation number basis

Given a basis {|φ1〉, . . . , |φL〉} of the single-particle Hilbert space H, a basis for the
Fock space is constructed by specifying the number of particles ni occupying the single-
particle wave function |f1〉. The wave function of the state |n1, . . . , nL〉 is given by the
appropriately symmetrized and normalized product of the single particle wave functions.
For example, the basis state |1, 1〉 has wave function

1√
2

[φ1(~x1)φ2(~x2)± φ1(~x2)φ2(~x1)] (4.10)

where the + sign is for bosons and the − sign for fermions.
For bosons the occupation numbers ni can go from 0 to ∞, but for fermions they

are restricted to ni = 0 or 1 since no two fermions can occupy the same state.
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The Slater determinant

The antisymmetrized and normalized product of N single-particle wave functions φi
can be written as a determinant, called the Slater determinant

S−
N
∏

i1

φi(~xi) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

φ1(~x1) · · · φN(~x1)
...

...
φ1(~xN ) · · · φN(~xN)

∣

∣

∣

∣

∣

∣

∣

. (4.11)

Note that while the set of Slater determinants of single particle basis functions forms
a basis of the fermionic Fock space, the general fermionic many body wave function is a
linear superposition of many Slater determinants and cannot be written as a single Slater
determinant. The Hartee Fock method, discussed below, will simplify the quantum
many body problem to a one body problem by making the approximation that the
ground state wave function can be described by a single Slater determinant.

4.2.3 Creation and annihilation operators

Since it is very cumbersome to work with appropriately symmetrized many body wave
functions, we will mainly use the formalism of second quantization and work with
creation and annihilation operators.

The annihilation operator ai,σ associated with a basis function |φi〉 is defined as the
result of the inner product of a many body wave function |Ψ〉 with this basis function
|φi〉. Given an N -particle wave function |Ψ(N)〉 the result of applying the annihilation
operator is an N − 1-particle wave function |Ψ̃(N)〉 = ai|Ψ(N)〉. It is given by the
appropriately symmetrized inner product

Ψ̃(~x1, . . . , ~xN−1) = S±
∫

d~xNf
†
i (~xN )Ψ(~x1, . . . , ~xN). (4.12)

Applied to a single-particle basis state |φj〉 the result is

ai|φj〉 = δij |0〉 (4.13)

where |0〉 is the “vacuum” state with no particles.
The creation operator a†i is defined as the adjoint of the annihilation operator ai.

Applying it to the vacuum “creates” a particle with wave function φi:

|φi〉 = a†i |0〉 (4.14)

For sake of simplicity and concreteness we will now assume that the L basis functions
|φi〉 of the single particle Hilbert space factor into L/(2S + 1) orbital wave functions
fi(~q) and 2S + 1 spin wave functions |σ〉, where σ = −S,−S + 1, ..., S. We will write
creation and annihilation operators a†i,σ and ai,σ where i is the orbital index and σ the
spin index. The most common cases will be spinless bosons with S = 0, where the spin
index can be dropped and spin-1/2 fermions, where the spin can be up (+1/2) or down
(−1/2).
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Commutation relations

The creation and annihilation operators fulfill certain canonical commutation relations,
which we will first discuss for an orthogonal set of basis functions. We will later gener-
alize them to non-orthogonal basis sets.

For bosons, the commutation relations are the same as that of the ladder operators
discussed for the harmonic oscillator (2.61):

[ai, aj ] = [a†i , a
†
j] = 0 (4.15)

[ai, a
†
j] = δij . (4.16)

For fermions, on the other hand, the operators anticommute

{a†jσ′ , aiσ} = {a†iσ, ajσ′} = δσσ′δij

{aiσ, ajσ′} = {a†iσ, a†jσ′} = 0. (4.17)

The anti-commutation implies that

(a†i )
2 = a†ia

†
i = −a†ia†i (4.18)

and that thus
(a†i)

2 = 0, (4.19)

as expected since no two fermions can exist in the same state.

Fock basis in second quantization and normal ordering

The basis state |n1, . . . , nL〉 in the occupation number basis can easily be expressed in
terms of creation operators:

|n1, . . . , nL〉 =

L
∏

i=1

(a†i )
ni|0〉 = (a†1)

n1(a†2)
n2 · · · (a†L)nL |0〉 (4.20)

For bosons the ordering of the creation operators does not matter, since the operators
commute. For fermions, however, the ordering matters since the fermionic creation
operators anticommute: and a†1a

†
2|0〉 = −a†1a†2|0〉. We thus need to agree on a specific

ordering of the creation operators to define what we mean by the state |n1, . . . , nL〉.
The choice of ordering does not matter but we have to stay consistent and use e.g. the
convention in equation (4.20).

Once the normal ordering is defined, we can derive the expressions for the matrix
elements of the creation and annihilation operators in that basis. Using above normal
ordering the matrix elements are

ai|n1, . . . , ni, . . . , nL〉 = δni,1(−1)
Pi−1

j=1 ni |n1, . . . , ni − 1, . . . , nL〉 (4.21)

a†i |n1, . . . , ni, . . . , nL〉 = δni,0(−1)
Pi−1

j=1 ni |n1, . . . , ni + 1, . . . , nL〉 (4.22)

where the minus signs come from commuting the annihilation and creation operator to
the correct position in the normal ordered product.
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4.2.4 Nonorthogonal basis sets

In simulating the electronic properties of atoms and molecules below we will see that
the natural choice of single particle basis functions centered around atoms will nec-
essarily give a non-orthogonal set of basis functions. This is no problem, as long as
the definition of the annihilation and creation operators is carefully generalized. For
this generalization it will be useful to introduce the fermion field operators ψ†σ(~r) and
ψσ(~r), creating and annihilating a fermion localized at a single point ~r in space. Their
commutation relations are simply

{ψ†σ′(~r), ψσ(~r′)} = {ψ†σ(~r), ψσ′(~r′)} = δσσ′δ(~r − ~r′)
{ψσ(~r), ψσ′(~r′)} = {ψ†σ(~r), ψ†σ′(~r′)} = 0. (4.23)

The scalar products of the basis functions define a matrix

Sij =

∫

d3~rf ∗i (~r)fj(~r), (4.24)

which is in general not the identity matrix. The associated annihilation operators aiσ
are again defined as scalar products

aiσ =
∑

j

(S−1)ij

∫

d3~rf ∗j (~r)ψσ(~r). (4.25)

The non-orthogonality causes the commutation relations of these operators to differ
from those of normal fermion creation- and annihilation operators:

{a†iσ, ajσ′} = δσσ′(S
−1)ij

{aiσ, ajσ′} = {a†iσ, a†jσ′} = 0. (4.26)

Due to the non-orthogonality the adjoint a†iσ does not create a state with wave function
fi. This is done by the operator â†iσ, defined through:

â†iσ =
∑

j

Sjia
†
iσ, (4.27)

which has the following simple commutation relation with ajσ:

{â†iσ, ajσ} = δij . (4.28)

The commutation relations of the â†iσ and the âjσ′ are:

{â†iσâjσ′} = δσσ′Sij

{âiσ, âjσ′} = {â†iσ, â†jσ′} = 0. (4.29)

We will need to keep the distinction between a and â in mind when dealing with
non-orthogonal basis sets.
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Chapter 5

Density Matrix Renormalization
Group

5.1 Introduction

The density matrix renormalization group (DMRG) method is a variational method
which allows to obtain accurate ground state wave functions of one-dimensional quan-
tum systems. The adaptation of this technique to higher dimensions is a very active
area of research. Following White and Noack1 we will present the DMRG method as
it was originally invented. To understand the insights which led to the development
of DMRG, it is useful to briefly discuss the failure of “real-space RG” for the simple
problem of a particle in a box.

5.2 Real-space RG for the “particle in a box”

We would like to compute the ground state energy and wave function of a 1-dimensional
electron in an infinitely deep, flat potential well (particle in a box). After discretization
of space, and in appropriate units the Hamiltonian of this system (Laplacian) becomes

H =









2 −1
−1 2 −1

−1 2 . . .
. . . . . .









. (5.1)

One might be tempted to try the following real-space RG procedure:

1. Isolate a block of length L → matrices HL and TL such that

H =









HL TL
TL HL TL

TL HL . . .
. . . . . .









. (5.2)

1R. Noack and S. White, Lecture notes in physics, Vol. 538 (Springer, 1999), Chapter 2.
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Figure 5.1: Sketch of the ground state wave function (solid line) of the “particle in a
box”. This ground state wave function cannot be adequately reproduced by joining
low-energy wave functions for a box of half the size (dashed lines).

2. Diagonalize HL → basis transformation matrix O which contains as columns the
eigenvectors v1, v2, . . . corresponding to eigenenergies E1 < E2 < . . .. Define
the (dimHL) × m matrix OL by keeping only the m eigenvectors with lowest
eigenenergy.

3. Compute the m×m matrices

H̄L = O†LHLOL, (5.3)

T̄L = O†LTLOL. (5.4)

4. Double the size of the system by combining two blocks of size L̄ to form a block
of size 2L:

H2L =

(

H̄L T̄L
T̄L H̄L

)

, T2L =

(

0 0
T̄L 0

)

. (5.5)

Repeat step 2 with 2L→ L.

This procedure gives very poor results for the ground state energy. The reason for
this is that the wave function of the block of length 2L is constructed from low-energy
wave functions for a block of length L. In particular, these wave functions will have
a “node” in the middle, unlike the true ground state wave function which is node-less
(see Fig. 5.1).

To fix this problem of wrong boundary conditions, one could

• keep low energy wave functions for different combinations of boundary conditions
(fixed-fixed, fixed-free, free-fixed, free-free),

• embed the block into a larger “environment” which can provide appropriate
boundary conditions.

The latter idea led to the development of DMRG, an RG type algorithm which is
based on the truncation of a reduced density matrix.
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RH Hl l

H l+1

Figure 5.2: Linear growth procedure of the infinite-size DMRG algorithm. H̄l denotes
the system block in the reduced basis and H̄R

l the environment block. Hl+1 is the new
system block obtained by adding one site.

5.3 Density matrix renormalization group

Suppose we have a “superblock” consisting of a “system” with states |i〉 and an “envi-
ronment” with states |j〉. Let the ground state of the superblock be

|ψ〉 =
∑

ij

ψij |i〉|j〉. (5.6)

The corresponding density matrix is ρsuperblock = |ψ〉〈ψ|, and the reduced density matrix
of the system is

ρred
system = Trenvironment[ρsuperblock] =

∑

i,i′

(

∑

j

ψijψ
∗
i′j

)

|i〉〈i′|. (5.7)

That is, the elements of the reduced density matrix are given by (ρred
system)i,i′ =

∑

j ψijψ
∗
i′j.

If A is an operator which acts only on the system block, then the expectation value
of this operator is given by

〈A〉 = Trsystem

(

ρred
systemA

)

. (5.8)

Let {|uα〉} be the eigenbasis of ρred
system corresponding to eigenvalues ωα ≥ 0,

∑

αwα = 1.
Since

〈A〉 =
∑

α

wα〈uα|A|uα〉 (5.9)

one can expect that the effect of neglecting a state with weight wα ≈ 0 will be small.
White therefore suggested that a good description of the system can be obtained by
keeping the m eigenstates of ρred

system with the largest eigenvalues wα.

5.3.1 Infinite-size DMRG

The infinite-size algorithm is illustrated in Fig. 5.2. H̄l denotes the system block in the
reduced basis and H̄R

l the environment block obtained by mirroring the system block.
The algorithm is based on a linear growth procedure and proceeds by iterating the
following steps:

1. Form a superblock of size L = 2l + 2 by combining H̄l, two single sites and H̄R
l .
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2. Diagonalize the superblock Hamiltonian Hsuperblock
L → ground state |ψ〉 → density

matrix ρ = |ψ〉〈ψ|.
3. Compute the reduced density matrix for the new system block of length l + 1:
ρred

system(l+1) = Trenvironment(l+1)ρ. Obtain the m eigenvectors corresponding to the
largest eigenvalues and from these the transformation matrix OL to the reduced
basis.

4. Transform Hl+1 and other operators of the new system block to the reduced
density matrix eigenbasis: H̄l+1 = O†LHl+1OL, Āl+1 = O†LAl+1OL.

Repeat with l → l + 1.

The main differences to the real-space RG are (i) that the diagonalization of the
superblock and the reduction of the basis in the system block take place in systems of
different size, and (ii) that the new basis states are determined from a diagonalization
of the reduced density matrix, not the Hamiltonian.

5.3.2 Finite-size DMRG

To study finite systems, one runs the infinite-size algorithm until the system size is
reached. From that point on the environment block is chosen such that the size of the
superblock remains constant. If the system block is grown by one site, the environment
block is reduced by one site. Once the minimum size for the environment block is
reached, the “sweeping direction” is reversed (system block shrinks, environment block
grows). In this algorithm, at each step, we have to store the operators for the block
which has grown. An illustration is shown in Fig. 5.3.

5.4 Example: S = 1/2 Heisenberg chain

The Hamiltonian of the Heisenberg spin chain is given by

H = −J
∑

〈i,j〉

~Si · ~Sj = −J
∑

〈i,j〉

{

Szi S
z
i+1 +

1

2
(S+

i S
−
i+1 + S−i S

+
i+1)

}

, (5.10)

and for spin-1/2 the operators in the “Sz” basis are

Sz =
1

2

(

1
−1

)

, S+ =

(

1
0

)

, S− =

(

0
1

)

. (5.11)

To treat this Hamiltonian, one has to store m×m representations of Szl and S+
l (S−l =

(S+
l )†) for l the right or left end site of the block. Two blocks B1 and B2 are then joined

together as follows:

[HB1B2
]ij,i′j′ = [HB1

]ii′δjj′ +[HB2
]δii′ +[Szl ]ii′[S

z
l+1]jj′ +

1

2
[S+
l ]ii′[S

−
l+1]jj′ +

1

2
[S−l ]ii′ [S

+
l+1]jj′.

(5.12)
Here, B1 can be the system block H̄l and B2 the additional site, or B1 can represent the
system block (with additional site) and B2 the environment block (also with additional
site).
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Figure 5.3: Illustration of a finite-system DMRG “sweep”. The rectangles on the left
and right represent stored configurations for the system and environment, respectively.

5.4.1 Measurements

Measurements are made using the superblock ground state |ψ〉. If A is defined on the
system block and we have updated [A]ii′ at every step (A← O†LAOL), then the ground
state expectation value of A is approximated by

〈ψ|A|ψ〉 =
∑

ii′j

ψ∗ijψi′j [A]ii′ . (5.13)

5.5 DMRG for the “particle in a box”

We started this chapter by analyzing the failure of real-space RG for the simple problem
of a particle in a box. DMRG yields very accurate ground state energies for this
problem. However, the application of the DMRG procedure to the particle in a box
is not entirely straightforward. In this simple problem, the dimension of the Hilbert
space grows linearly, rather than exponentially with the size L of the system (number
of discretization steps).

Let us introduce the zero particle state |0〉 and the 1 particle states {|i〉}i=1,...,L,
where |i〉 represents a particle localized at position i. Dividing the box into a system
(k = 1, . . . , l) and an environment (k = l + 1, . . . , L) we can write the (ground state)
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wave function |ψ〉 =
∑L

k=1 ψ(k)|k〉 in the following product form:

|ψ〉 =
l
∑

i,j=0

ψij |i〉|j〉, (5.14)

ψij =









0 ψ(l + 1) . . . ψ(L)
ψ(1)
. . . 0
ψ(l)









. (5.15)

Here, the upper left block corresponds to the zero particle state and the lower right
block to two particle states. The reduced density matrix (ρred

system)ii′ =
∑

j ψijψ
∗
ji′ for the

system (i, i′ = 1, . . . , l) becomes

ρred
system =









ψ1ψ
∗
1 ψ1ψ

∗
2 . . . ψ1ψ

∗
l

ψ2ψ
∗
1 ψ2ψ

∗
2 . . .

. . . . . .
ψlψ

∗
1 ψlψ

∗
l









. (5.16)

The eigenvector of this matrix corresponding to the (only) non-zero eigenvalue is

|u〉 =
1√
wl









ψ1

ψ2

. . .
ψl









, (5.17)

with wl =
∑l

k=1 |ψk|2, and thus simply corresponds to the projection of the ground state
wave function onto the left block. Since we keep only this one state for the system, we
don’t need to compute a density matrix at all.

In the “site” basis, we denote the one (normalized) state representing the sys-
tem by {Lj}j=1,...,l, and the one (normalized) state representing the environment by
{Rj}j=l+3,...,L, while the two explicitly treated sites between the left and right blocks
have basis states |l〉 and |l + 1〉. A wave function in the reduced basis can be encoded
by four coefficients a1, a2, a3 and a4:

ψ = {ψj}j=1,...,L = {{a1Lj}j=1,...,l, a2, a3, {a4Rj}j=l+3,...,L}. (5.18)

The Hamiltonian matrix element between two states ψ and ψ′ becomes

〈ψ|H|ψ′〉 =
(

a1 a2 a3 a4

)









H11 T12

T12 2 −1
−1 2 T34

T34 H44

















a1

a2

a3

a4









, (5.19)

with H11 = 〈L|H|L〉, H44 = 〈R|H|R〉, T12 = 〈L|H|l+1〉 = −Ll and T34 = 〈l+2|H|R〉 =
−Rl+3.

The procedure for growing the left block (computing an improved estimate for L(l+1)

given L(l) and R(l+3)) requires the following steps:
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1. Diagonalize the 4 × 4 superblock Hamiltonian defined in Eq. (5.19) → ground
state wave function 〈ψ| = (a1, a2, a3, a4).

2. The new basis state L(l+1)′ is given by the properly normalized projection onto
{|L(l)〉, |l + 1〉}:

L(l+1)′ =
1

√

a2
1 + a2

2

(

a1

a2

)

≡
(

a′1
a′2

)

. (5.20)

3. Construct the new 4× 4 Hamiltonian

H ′11 = 〈L(l+1)′|H|L(l+1)′〉 = a′1
2
H11 + 2a′2

2
+ 2a′1a

′
2T12, (5.21)

T ′12 = −L(l+1)′. (5.22)

Then repeat with l → l + 1.

Note that a′2 is the value of the updated wave function at site l + 1, and thus can
be used to plot ψ while sweeping back and forth.
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Chapter 6

Path integrals and quantum Monte
Carlo

6.1 Introduction

In this chapter, we continue the numerical study of a quantum many-body system. The
system is described by its wave-function ψ(~r1, ~r2, .., ~rN), which is a mapping RN → C.
Finding the exact wave-function is not practically feasible unless N is very small. The
previous chapter used a spectral approach, i.e. decomposed the wave-function onto
a carefully chosen set of basis functions, and found the best approximate solution of
the Schrödinger equation in the corresponding vector space. In this chapter, we use the
technique of Monte Carlo to obtain a noisy but unbiased estimator of the wave-function.
This strategy goes by the general name of Quantum Monte Carlo, which covers many
variants. I will describe the two main ones, called Diffusion Monte Carlo (or Green’s
function Monte Carlo) and Path integral Monte Carlo. Diffusion Monte Carlo has
developed into a precise tool to compute the groundstate properties of systems with
O(103) particles. Path integral Monte Carlo is technically similar, but gives finite-
temperature properties. The path integral formalism carries over to the relativistic
case, and forms an essential basis for the study of quantum field theory (to be reviewed
in Chapter 8). Although some familiarity with Monte Carlo algorithms is desirable, the
necessary basic facts about Monte Carlo are summarized in the first section.

6.2 Recall: Monte Carlo essentials

• Monte Carlo is a powerful stochastic technique to estimate ratios of high-dimensional
integrals.
- Simple example: how much is π ? See Fig.6.1.
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f = 1

f = 0

Figure 6.1: Elementary Monte Carlo experiment: draw two random numbers x, y uni-
formly distributed in [0, 1]. If x2 + y2 < 1, then f = 1, otherwise f = 0. 〈f〉 = π/4.

- Complicated example: 〈W 〉 =
∑

states iWi exp(−βEi)/
∑

states i exp(−βEi)
In this latter case, the sum is over all states, but most states have a high energy and

contribute negligibly. Therefore, it is efficient to use importance sampling, namely to
sample all states with a probability ∝ exp(−βE(state)). The expectation value above
becomes 〈W 〉 =

∑

sampled states iWi/
∑

sampled statesi 1, ie. 〈W 〉 = limN→∞
1
N

∑N
i=1Wi.

Statistical errors around the exact value shrink as N−1/2 thanks to the
• Central limit theorem:

1

N

N
∑

i=1

xi = x̄+ δx (noisy) (6.1)

〈δx〉 = 0 (unbiased) (6.2)

δx ∼ O(
1√
N

) (6.3)

More precisely, 〈(δx)2〉 = 〈(x−x̄)2〉
N

. Variance reduction techniques reduce the prefactor
in the 1√

N
error.

• A Monte Carlo simulation is a Markov chain, ie. a Markov process in discrete
time.
At each step, the system may change from state i to state j with probability Pij fixed.
The matrix elements of the Markov matrix P satisfy:

Pij ≥ 0 (6.4)
∑

j

Pij = 1 (6.5)

At each step, the probability distribution V of the possible states is multiplied by P T :
V k+1 = P TV k = (P k)TV 0. Eq.(6.5) shows that P has a right eigenvector (Vk = 1 ∀k)
with eigenvalue 1. Under assumption of ergodicity (∀i, j ∃k s.t. (P k)ij > 0) (and
regularity: ∃k s.t. ∀i, j (P k)ij > 0), a Markov matrix has a unique left eigenvector with
eigenvalue 1, i.e. a stationary distribution V ∗. All other eigenvalues are < 1, ensuring
exponential convergence to V ∗.
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• How to design a Markov matrix with stationary distribution V ∗ ?
A sufficient condition is detailed balance:

Pij
Pji

=
V ∗j
V ∗i

(6.6)

• A simple algorithm which satisfies detailed balance is the Metropolis algorithm:
Step 1. Starting from state Sold, choose a candidate state Scand by taking a random
step: Scand = R ◦ Sold, drawn from an even distribution: Prob(R−1) = Prob(R).
Step 2. Accept the candidate state Scand as the next state Snew in the Markov chain
with probability

Prob(Snew = Scand) = min(1, V ∗(Scand)/V
∗(Sold)) (6.7)

If Scand is rejected, set Snew = Sold in the Markov chain.

6.3 Notation and general idea

For simplicity of notation, I consider a single particle in one dimension. The wave-
function ψ(x, t) is a mapping R ×R → C. The ket |ψ(t)〉 =

∫

dxψ(x, t)|x〉 is a state
vector in the Hilbert space. |x〉 is an eigenstate of the position operator X: X|x〉 = x|x〉,
with the completeness relation

∫

dx|x〉〈x| = 1.
The time-dependent Schrödinger equation i~ d

dt
|ψ〉 = H|ψ〉 has for solution

|ψ(t)〉 = exp(− i
~
Ht)|ψ(0)〉 (6.8)

Now change the time to pure imaginary, τ = it (also called performing a Wick rotation
to Euclidean time), so that

|ψ(τ)〉 = exp(−τ
~
H)|ψ(0)〉 (6.9)

and expand in eigenstates of H : H|ψk〉 = Ek|ψk〉, k = 0, 1, .., E0 ≤ E1 ≤ ...

|ψ(τ)〉 =
∑

k

exp(−τ
~
Ek)〈ψk|ψ(0)〉|ψk〉 (6.10)

It is apparent that τ
~

acts as an inverse temperature, and that |ψ(τ)〉 will become
proportional to the groundstate |ψ0〉 as τ → +∞, provided |ψ(0)〉 is not orthogonal to
it. Diffusion and path integral Monte Carlo both simulate an imaginary time evolution
to obtain information on low-energy states.

Moreover, in both approaches, the time evolution is performed as a sum over histo-
ries, each history having a different probability. Note that the same description is used
for financial predictions, so you might learn something really useful here...
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6.4 Expression for the Green’s function

As a starting point, notice that the Schrödinger equation is linear, so that its solution
|ψ(t)〉 = exp(− i

~
Ht)|ψ(0)〉 is equivalent to

ψ(x, t) =

∫

dx0G(x, t; x0, 0)ψ(x0, 0) (6.11)

where

G(x, t; x0, 0) ≡ 〈x| exp(− i
~
Ht)|x0〉 (6.12)

is the Green’s function, i.e. the solution of the Schrödinger equation for ψ(x, 0) =
δ(x− x0) (also called transition amplitude, or matrix element). Check:

|ψ(t)〉 =

∫

dxψ(x, t)|x〉

=

∫

dx|x〉
∫

dx0G(x, t; x0, 0)ψ(x0, 0)

=

∫

dx

∫

dx0|x〉〈x| exp(− i
~
Ht)|x0〉ψ(x0, 0)

= exp(− i
~
Ht)|ψ(0)〉

• Important property of Green’s function:
∫

dx1G(x, t; x1, t1)G(x1, t1; x0, 0) = G(x, t; x0, 0) (6.13)

On its way from x0 at t = 0 to x at time t, the particle passes somewhere at time t1.
Check:

∫

dx1〈x| exp(− i
~
H(t− t1))|x1〉〈x1| exp(− i

~
Ht1)|x0〉 = 〈x| exp(− i

~
Ht)|x0〉

• Divide t into N intervals δt = t/N ; take N →∞ at the end.

〈x| exp(− i
~
Ht)|x0〉 =

∫

dx1dx2..dxN−1

N
∏

k=1

〈xk| exp(−iδt
~
H)|xk−1〉 (6.14)

with xN ≡ x. The task is to evaluate an elementary matrix element 〈xk| exp(− iδt
~
H)|xk−1〉.

• Evaluation of 〈xk| exp(− iδt
~
H)|xk−1〉:

Problem: the Hamiltonian H = p2

2m
+ V (x) is an operator made of two pieces which

do not commute. The potential energy operator V (x) is diagonal in position space

|x〉. The kinetic energy operator p2

2m
is diagonal in momentum space |p〉. The change

of basis position ↔ momentum is encoded in the matrix elements 〈x|p〉 = exp( i
~
px).

Normally, eAeB = eA+B+ 1
2
[A,B]+... (Baker-Campbell-Hausdorff). Here, we neglect com-

mutator terms which are O(δt2) since we consider δt → 0, and write

exp(−iδt
~
H) ≈ exp(−iδt

~

V

2
) exp(−iδt

~

p2

2m
) exp(−iδt

~

V

2
)
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then insert a complete set of momentum states
∫

dp
2π
|p〉〈p| = 1 between successive fac-

tors. 〈xk| exp(− iδt
~
H)|xk−1〉 becomes

exp

[

−iδt
~

V (xk) + V (xk−1)

2

]
∫

dpk
2π

∫

dpk−1

2π
〈xk|pk〉〈pk| exp(−iδt

~

p2

2m
)|pk−1〉 〈pk−1|xk−1〉

= · · · exp(
i

~
pkxk)δ(pk − pk−1) exp(−iδt

~

p2
k

2m
) exp(− i

~
pk−1xk−1)

= · · ·
∫

dpk
2π

exp

(

i

~
pk(xk − xk−1)

)

exp

(

−iδt
~

p2
k

2m

)

The last expression is a Gaussian integral. It can be evaluated by completing the square:

∫

dpk
2π

exp



−i



pk

√

δt

2m~
− xk − xk−1

2~

√

δt
2m~





2

 exp

[

+i
(xk − xk−1)

2

4~2( δt
2m~

)

]

= constant C × exp

[

iδt

~

1

2
m(

xk − xk−1

δt
)2

]

Putting everything together, one obtains

〈xk| exp(−iδt
~
H)|xk−1〉 ≈ C exp

[

−iδt
~

(

−1

2
m(

xk − xk−1

δt
)2 +

V (xk) + V (xk−1)

2

)]

(6.15)
Finally, rotate to imaginary time τ = it:

〈xk| exp(−δτ
~
H)|xk−1〉 ≈ C exp

[

−δτ
~

(

+
1

2
m(

xk − xk−1

δτ
)2 +

V (xk) + V (xk−1)

2

)]

(6.16)
The exponent is just what one would expect for the Hamiltonian: (1

2
mv2 + V ). The

constant C is independent of xk, xk−1 and drops out of all observables. Eq.(6.16) is at
the core of the simulation algorithms. It becomes exact as δτ → 0.

6.5 Diffusion Monte Carlo

The idea of DMC is to evolve in imaginary time a large number m of ”walkers” (aka
”replicas”, ”particles”), each described by its position xj , j = 1, .., m at time τ = kδτ .
The groundstate wave-function ψ0(x) is represented by the average density of walkers
at large time: ψ0(x) = limk→∞〈δ(xj − x)〉.

For this to be possible, the groundstate wave-function must be real positive every-
where. One always has the freedom to choose a global (indep. of x) phase. It turns out
that, for a bosonic system, the groundstate wave-function can be chosen real positive.
Excited states wave-functions (e.g. with angular momentum) have nodes; fermionic
groundstate wave-functions also have nodes. These difficulties are discussed in 6.5.2.

The simplest form of DMC assigns to each walker j, at timestep k, a position xjk
and a weight wjk. A convenient starting configuration is ψ(x, τ = 0) = δ(x − x0), so
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that all the walkers are in the same state: xj0 = x0, w
j
0 = 1 ∀j. The time evolution of

the wave-function ψ(x, τ), described by Eq.(6.11), simplifies to

ψ(x, τ) = G(x, τ ; x0, 0) (6.17)

and G(x, τ ; x0, 0) is a product of elementary factors Eq.(6.16). Each elementary factor
is factorized into its kinetic part and its potential part, which are applied in succession
to each walker. Namely, given a walker j at position xk−1 with weight wk−1, the new
position xk and weight wk are obtained as follows:
• Step 1. The kinetic part gives for xk a Gaussian distribution centered around xk−1.
This distribution can be sampled stochastically, by drawing (xk−xk−1) from a Gaussian
distribution with variance ~δτ

m
. This step corresponds to diffusion around xk−1, and gives

its name to the algorithm. The formal reason is that the time-dependent Schrödinger
equation for a free particle, in imaginary time, is identical to the heat equation:
dψ
dτ

= ~

2m
∇2ψ.

• Step 2. The potential part modifies the weight: wk = wk−1 exp(− δτ
~

V (xk)+V (xk−1)

2
).

Both factors together allow for a stochastic representation of ψ(x, kδτ):

ψ(x, kδτ) = 〈wkδ(xk − x)〉 (6.18)

where 〈..〉 means averaging over the m walkers.
One problem with this algorithm is that the weights wj will vary considerably from

one walker to another, so that the contribution of many walkers to the average Eq.(6.18)
will be negligible, and the computer effort to simulate them will be wasted. All walkers
should maintain identical weights for best efficiency if possible. This can be achieved by
”cloning” the important walkers and ”killing” the negligible ones, again stochastically,
by Step 3:
• Step 3. Compute the nominal weight w∗ ≡ 1

m

∑

j w
j. Replace each walker j by a

number of clones (all with weight w∗) equal to int(w
j

w∗ + r), where r is a random number
distributed uniformly in [0, 1[. You can check that the average over r of this expression

is wj

w∗ , so that each walker is replaced, on average, by its appropriate number of equal-
weight clones. Note that the total number m of walkers will fluctuate by O(

√
m).

With these 3 very simple steps, one can already obtain interesting results. Two
technical modifications are customary:
- One limits the maximum number of clones at step 3. As can be seen from Eq.(6.16),
the number of clones increases when the walker reaches a region of small potential.
Since DMC is often used for Coulombic systems where the potential is unbounded from
below, this seems like a wise precaution. In any case, if this maximum number of clones
is reached, it indicates that the variation in the weight over a single step is large, and
thus that the stepsize δτ is too large.
- As formulated, the nominal weight w∗ varies as exp(−E0

~
τ) for large τ . To avoid

overflow or underflow, one introduces a trial energy ET , and multiplies all the weights
wj by exp(+ET

~
δτ) after each step. Stability of the weights is achieved when ET = E0,

which gives a simple means to compute the groundstate energy.
Let me now describe two powerful modifications of this simple algorithm.
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6.5.1 Importance sampling

Fluctuations in the estimated wave-function come mostly from Step 2. The variation of
the weight of a single walker signals a waste of computer effort: a weight which tends
to 0 indicates that the walker approaches a forbidden region (e.g. for a particle in a
box, at the edge of the box); a weight which diverges occurs at a potential singularity
(e.g. at the location of the charge in a Coulomb potential). In both cases, it would be
advantageous to incorporate prior knowledge of the wave-function in the diffusion step,
so that walkers would be discouraged or encouraged to enter the respective regions, and
the weights would vary less.

This can be accomplished by choosing a ”guiding” or ”trial” wave-function ψT (x),
and evolving in imaginary time the product Φ(x, τ) ≡ ψT (x)ψ(x, τ). From the Schrödinger
equation obeyed by ψ(x, τ):

−~
d

dτ
ψ = (− ~2

2m
∇2 + V )ψ (6.19)

one obtains the equation obeyed by Φ(x, τ):

−~
d

dτ
Φ = ψT (− ~2

2m
∇2 + V )ψ (ψT is time− independent) (6.20)

= (− ~
2

2m
∇2 + V )Φ +

~
2

2m
(2~∇ψT · ~∇ψ + ψ∇2ψT ) (6.21)

=

[

− ~
2

2m
∇2 +

~
2

m
(
~∇ψT
ψT

) · ~∇+

(

V − ~
2

2m

∇2ψT
ψT

)

]

Φ (6.22)

The first two terms define a new diffusion, with a drift term which can be simply added
to the diffusion in Step 1. The last two terms define a new potential, to be used in the
update of the weights in Step 2.

Let us check the effect of a good trial wave-function on the walkers’ weight, by
choosing for ψT the groundstate ψ0 (assuming ψ0 is known). In that case, the last term
in Eq.(6.22) is equal to (V − (V − E0))Φ. The new potential is simply E0, which is a
constant independent of x. In Step 2, the weights of all walkers are multiplied by the
same factor. As a result, in Step 3, no walker is either cloned or killed.

6.5.2 Fermionic systems

A major application of Diffusion Monte Carlo is to compute the energy of electrons in a
molecule or a crystal, given some positions for the atomic nuclei. However, the electrons
are indistinguishable fermions, and the wave-function should be anti-symmetric under
interchange of any two of them. Thus, if it is positive when electrons 1 and 2 are at
positions (~r1, ~r2), it must be negative when they are at (~r2, ~r1). Configuration space
(which has dimension 3N for N electrons) has nodal surfaces separating positive and
negative regions. If the location of these nodal surfaces was known, then one could
perform distinct simulations (as many as there are disconnected regions), in each region
of definite sign: If ψ0 is positive, then apply the above algorithm, with a potential
barrier preventing the walkers to cross the nodal surface. If ψ0 is negative, apply the
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same algorithm with the substitution ψ ← −ψ. Usually, the location of the nodal
surfaces is not known, and some ansatz is made. This strategy is called the fixed node
approximation.

It is clear that fixing the nodal surface away from its groundstate location can only
increase the energy, so that the fixed node approximation gives a variational upper
bound to the groundstate energy. One can try to relax the constraint, and move the
nodal surface in the direction which most lowers the energy. The gradient of the wave-
function, which must be continuous across the nodal surface, can help in this relaxation
strategy. It is unclear to me how well this approach works.

This difficulty is one avatar of the infamous ”sign problem” usually associated with
fermions.

6.5.3 Useful references

• Introduction to the Diffusion Monte Carlo Method, by I. Kosztin, B. Faber and
K. Schulten, arXiv:physics/9702023.

• Monte Carlo methods, by M. H. Kalos and P. A. Whitlock, Wiley pub., 1986. See
Chapter 8.

• A Java demonstration of DMC by I. Terrell can be found at
http://camelot.physics.wm.edu/ ian/dmcview/dmcview.php

6.6 Path integral Monte Carlo

6.6.1 Main idea

To go from Diffusion Monte Carlo to Path integral Monte Carlo, all that is necessary is
a simple change of viewpoint, associated in practice with a different usage of computer
memory, as illustrated Fig. 6.2.
• Diffusion Monte Carlo considers many walkers {xj} at one imaginary time τ = kδτ .
• Path integral Monte Carlo considers one walker at many times, i.e. one path x(τ).

One practical advantage is that the weights of the walkers, with their undesirable
fluctuations, can now be eliminated. Importance sampling can be implemented exactly,
using e.g. the Metropolis algorithm. To see this, rewrite the transition amplitude
Eq.(6.14) in imaginary time τ = it:

〈x| exp(−τ
~
H)|x0〉 =

∫

dx1dx2..dxN−1

N
∏

k=1

〈xk| exp(−δτ
~
H)|xk−1〉

≈ CN

∫

dx1dx2..dxN−1

N
∏

k=1

exp

[

−δτ
~

(

+
1

2
m(

xk − xk−1

δτ
)2 +

V (xk) + V (xk−1)

2

)]

= CN

∫

dx1dx2..dxN−1 exp

[

−δτ
~

(

+
1

2
m
∑

k

(
xk − xk−1

δτ
)2 +

∑

k

V (xk) + V (xk−1)

2

)]

(6.23)
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Figure 6.2: Comparison between Diffusion Monte Carlo (left) and Path integral Monte
Carlo (right): many paths or many time-steps.

This represents the desired stationary distribution of the Markov chain corresponding
to our Monte Carlo process. To converge to this distribution, starting from an arbitrary
configuration (e.g. xk = 0 ∀k), perform many sweeps, where one sweep consists of up-
dating once each xk0 , keeping all xk, k 6= k0 fixed. The induced probability distribution
for xk0 is, up to an irrelevant proportionality constant:

Prob(xk0) ∝ exp

[

−δτ
~

(

+
1

2
m

(

(

xk0+1 − xk0
δτ

)2

+

(

xk0 − xk0−1

δτ

)2
)

+ V (xk0)

)]

(6.24)
Therefore, a Metropolis update of xk0 is implemented as:
Step 1. Propose a candidate xnew = xk0 + δx, where δx is drawn from an even distri-
bution (e.g. uniform in [−∆,+∆]).
Step 2. Accept xnew as the new value of xk0 with the Metropolis probability

min (1,Prob(xnew)/Prob(xk0))

and Prob(x) given by Eq.(6.24). Note that the irrelevant proportionality constant in
Eq.(6.24) cancels in the ratio. As usual, the optimal step-size, governed by ∆, is the
result of a trade-off: a large step causes large variations in Eq.(6.24), and thereby a
small average acceptance probability; a small step causes a slow evolution in Monte
Carlo time, resulting in a large auto-correlation between successive path configurations
{xk}. A rough rule of thumb is to adjust the step size so that the average acceptance
is around 1/2.

6.6.2 Finite temperature

There is no need to keep the initial and final states |x0〉 and |x〉 fixed. They prevent
the system from approaching the groundstate except in the middle ∼ τ/2. A simple
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x

τ

Figure 6.3: After compactification of the Euclidean time direction, the paths become
closed loops, and the path integral becomes identical to the partition function of the
quantum mechanical system, where the inverse temperature is (proportional to) the
Euclidean time-extent.

and far-reaching modification improves the situation.
Impose that the initial and final states be identical, and let them be any state |x〉.

Then the amplitude 〈x| exp(− τ
~
H)|x0〉 becomes

∑

x

〈x| exp(−τ
~
H)|x〉 = Tr exp(−τ

~
H) (6.25)

This expression looks like a statistical mechanics partition function, at temperature
kBT = ~/τ . Indeed, it can be expanded in an eigenbasis of H :

Z ≡ Tr exp(−τ
~
H) =

∑

k

〈ψk| exp(−τ
~
H)|ψk〉 =

∑

k

exp(
τ

~
Ek) (6.26)

which is identical to the partition function for our 1-d quantum-mechanical system at
temperature kBT = ~/τ .

Geometrically, the identity of |x〉 and |x0〉 can be ensured by making the imaginary
time direction compact, as in Fig. 6.3. The paths are loops drawn on a cylinder. The
perimeter of the cylinder is (up to a factor ~/kB) the inverse temperature. The T → 0
limit is obtained when the imaginary time extent is made infinite.

Again, the partition function of our 1-d quantum mechanical system at temperature
T is identical to the partition function of a classical gas of loops x(τ ′), τ ′ ∈ [0, τ = ~

kBT
],

distributed according to the probability

1

Z
exp

[

−1

~

∫ τ

0

dτ ′
(

1

2
m(

dx

dτ ′
)2 + V (x)

)]

(6.27)
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which is the δτ → 0 limit of Eq.(6.23) for periodic paths, and

Z =

∫

x(τ)=x(0)

Dx(τ ′) exp

[

−1

~

∫ τ

0

dτ ′
(

1

2
m(

dx

dτ ′
)2 + V (x)

)]

(6.28)

Now, the expression “path integral” is clear: Z is an integral over paths x(τ ′). Since
the integral is over functions of τ ′, Z is called a functional integral. The exponent
∫

dτ ′
(

1
2
m( dx

dτ ′
)2 + V (x)

)

is called the Euclidean action.
Furthermore, notice the role of ~ in the exponent of Eq.(6.27): it governs the magni-

tude of the fluctuations, and therefore plays a role similar to a temperature. In the limit
~→ 0, all fluctuations are suppressed and the only path surviving in the path integral
is that which minimizes the exponent: this is the classical limit, where the path from
(x0, 0) to (x, τ) is deterministic, and we recover the minimal action principle. When
~ 6= 0, fluctuations are allowed around this special path: these fluctuations are quantum
fluctuations.

We will consider the path integral more formally again when discussing field theories
in Chapter 7.

6.6.3 Observables

Since one can identify the Euclidean time-extent τ of the system and its inverse tem-
perature, let us use the standard notation β = 1/(kBT ) = τ/~. The expectation value
of an observable W is given by

〈W 〉 =
1

Z
Tr (W exp(−βH)) (6.29)

which gives, when expanded in an eigenbasis of H

〈W 〉 =

∑

k〈ψk|W |ψk〉 exp(−βEk)
∑

k〈ψk|ψk〉 exp(−βEk)
(6.30)

=
β→∞

〈ψ0|W |ψ0〉
〈ψ0|ψ0〉

(6.31)

so that groundstate properties can be obtained for large Euclidean time extent.
A simple example is the position projector W = |x0〉〈x0| = δ(x0). Substituting

above gives
〈δ(x0)〉 =

β→∞
|〈ψ0|x0〉|2 = |ψ0(x0)|2 (6.32)

so that the number of paths going through x0 (at any Euclidean time) is proportional
to the square of the wave-function.

Let us compare with Diffusion Monte Carlo: there, one had 〈δ(x0)〉 ∝ ψ0(x0), or
∝ ψT (x0)ψ0(x0) when using a guiding wave-function ψT . For the optimal choice ψT = ψ0

where all walkers have weight 1, one recovers the Path integral result.
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One can also measure unequal-time correlations, like the two-point correlator
δ(x,∆β)δ(x, 0):

〈δ(x,∆β)δ(x, 0)〉 =

∑

k〈ψk| exp(−(β −∆β)H) δ(x) exp(−∆βH) δ(x)|ψk〉
∑

k〈ψk| exp(−βH)|ψk〉

=

∑

k,l |〈ψk|δ(x)|ψl〉|2 exp(−(β −∆β)Ek) exp(−∆βEl)
∑

k exp(−βEk)
≈

∆β≪β→∞
|〈ψ0|δ(x)|ψ0〉|2 + |〈ψ1|δ(x)|ψ0〉|2 exp(−∆β(E1 − E0)) + · · ·

(6.33)

where a complete set of states
∑

l |ψl〉〈ψl| was inserted to go from the first to the second
line. The final expression shows that the connected correlator 〈δ(x,∆β)δ(x, 0)〉−〈δ(x)〉2
approaches 0 exponentially fast, and that the rate of decay (in Euclidean time ∆β) gives
the energy gap (E1 −E0) between the groundstate and the first excited state.

The groundstate energy itself is more delicate to obtain, for the following reason.
Consider the kinetic energy part of Eq.(6.23). It defines a Gaussian distribution for
(xk−xk−1), with variance 〈(xk−xk−1)

2〉 ∼ O(δτ), as appropriate for Brownian motion:
the mean-square distance grows linearly with time. However, this implies that the
mean-sqare velocity 〈(xk−xk−1

δτ
)2〉, i.e. the kinetic energy, grows as 1/δτ . This is, again,

expected from Brownian motion: a Brownian path is continuous, but not differentiable
(it is full of kinks). As a result, the reference groundstate energy is infinite when δτ → 0.

A way around this problem is to adopt a different definition of the kinetic energy,
replacing (xk−xk−1)

2 by a “split-point” alternative (xk+1−xk)(xk−xk−1). Alternatively,

one can make use of the virial theorem which gives for the kinetic energy 〈 p2
2m
〉 = 1

2
〈xdV

dx
〉.

See exercises.

6.6.4 Monte Carlo simulation

The Monte Carlo simulation samples paths x(τ), discretized at N points. Thus, the
configuration of the system at any step of the Markov chain is defined by the positions
{xk, k = 1, .., N}. To manipulate dimensionless numbers, set ~ = kB = 1 and use the
conventional notation a ≡ δτ . a, which is called the lattice spacing has the dimension
of time (equivalently, of length). Dimensionless variables are

m̂ = am

x̂ = x/a

V̂ (x̂) = aV (x)

T̂ = aT = 1/N

The probability of a path {x̂k, k = 1, .., N} is given by Eq.(6.23):

1

Z
exp

[

−
(

1

2
m̂
∑

k

(x̂k − x̂k−1)
2 +

∑

k

V̂ (x̂k)

)]

(6.34)

and can be sampled with the Metropolis algorithm, as already outlined. Two require-
ments must be kept in mind:
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• For the groundstate to dominate the partition function, the temperature must be
small enough that the excited states have decayed away, namely β(E1 − E0) ≫ 1. In
dimensionless units, this translates into

N ≫ (Ê1 − Ê0)
−1 (6.35)

In other words, a clear exponential decay of the connected correlation Eq.(6.33) must
be observed. Violation of this requirement can be interpreted as a finite-size effect.
• For discretization errors O(a2) to be small, all correlation lengths must be large
compared to a. This translates into

(Ê1 − Ê0)
−1 ≫ 1 (6.36)

For the harmonic oscillator V̂ (x̂) = 1
2
ω2x̂2, these two requirements become 1≪ ω−1 ≪

N . The idea is to choose ω small enough that a continuum extrapolation a → 0 can
be performed, while keeping a constant, low enough temperature. While decreasing a,
the computer requirements increase for two reasons: N increases, and the number of
Monte Carlo sweeps required to obtain a statistically uncorrelated path increases too.
The latter phenomenon is called critical slowing down. It can be largely alleviated, in
the quantum-mechanical case, by cluster or loop algorithms.

6.6.5 Useful references

• A statistical approach to Quantum Mechanics, by M. Creutz and B. Freedman,
Annals of Physics 132 (1981) 427.

• A Java demonstration of Path integral Monte Carlo by A. Santamaria can be
found at http://fisteo12.ific.uv.es/∼santamar/qapplet/metro.html. Note that the
parameters of the quartic potential can be adjusted interactively.
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Chapter 7

An Introduction to Quantum Field
Theory

7.1 Introduction

This chapter is a generalization of Sec. 6.6 on Path Integral Monte Carlo. Instead of
considering one (or N) quantum-mechanical particles as was done there, the idea is
now to consider a quantum field, which contains infinitely many degrees of freedom.
However, in practice, we are going to simulate a large but finite number of degrees
of freedom, and extrapolate at the end. So there really is not much difference with
Sec. 6.6.

The formal basis for Quantum Field Theory is an important subject, which will not
be covered here. The goal of this chapter is to convey some understanding of simulations
of quantum field theories, by appealing to intuition rather than rigor.

7.2 Path integrals: from classical mechanics to field

theory

Consider first the case of a single, classical particle with Hamiltonian H = p2

2m
+ V .

Hamilton’s equations describe the time-evolution of this particle:

dq

dt
= +

∂H

∂p
−→ q̇ =

p

m
(7.1)

dp

dt
= −∂H

∂q
−→ ṗ = −∇V (7.2)

The usual point of view is to start from initial conditions (q, q̇) at time t = 0, and
evolve q and q̇ according to the coupled ODEs above. Note, however, that the boundary
conditions can instead be split between the beginning and the end of the evolution. In
particular, one can specify the beginning and ending coordinates (q(0), q(t)). There
is a unique path q(t′), t′ ∈ [0, t], which satisfies the above equations, and specifies the
initial and final velocities. To find this path, it is convenient to change viewpoint and
consider the action S =

∫ t

0
dt′L(q, q̇), where L is the Lagrangian 1

2
mq̇2 − V (q). One
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Figure 7.1: A field configuration q(x, y), discretized on a square grid of spacing a.

then invokes the principle of stationary (or least) action, from which can be derived the
Euler-Lagrange equations

∂L
∂qi

= ∂µ
∂L

∂(∂µqi)
. (7.3)

Note that the notion of action is more general than the notion of Hamiltonian: some
systems have an action, but no Hamiltonian. This was in fact the original motivation for
Feynman to develop the path integral formalism in his Ph.D. thesis: he was interested
in systems having non-local interactions in time (with an interaction term q(t)q(t′)).

Consider now many particles interacting with each other, with Lagrangian L =
∑

i
1
2
mq̇2

i − V ({qi}) and take qi to represent the z-coordinate of particle i, whose x
and y coordinates are fixed on a square grid of spacing a. Furthermore, take the
interaction between particles to be of the form

∑

〈ij〉(qi − qj)
2, where 〈ij〉 stands for

nearest-neighbours on the grid, as if springs were connecting i and j. Low-energy
configurations will then have almost the same q-value at neighbouring grid points, so
that the configuration {qi} will be smooth and look like a “mattress” as in Fig. 7.1.

When the grid spacing a is reduced to zero, the configuration {qi} becomes a classical
field q(~x) (~x ∈ R2 in this example), with infinitely many degrees of freedom. The
action of this field is specified by its Lagrangian density L = 1

2
∂µq∂

µq − 1
2
m2

0q
2 −

V (q) where the first term is the continuum version of (qi − qj)2 (with ∂µq∂
µq = q̇2 −

|~∇q|2), the second one is a harmonic term corresponding to a mass, and the last term
describes the local (anharmonic) interaction, e.g. ∝ q4 1. The action is then S =
∫ t

0
dt′dxdyL(q(x, y, t′)). Note that the Lagrangian density L satisfies several symmetries:

it is invariant under translations and rotations in the (x, y) plane, and under the sign
flip q(~x)→ −q(~x) ∀~x, at least for an interaction ∝ q4. Each continuous symmetry leads
to a conserved quantity: energy-momentum for translations, angular momentum for
rotations. We will see the importance of the discrete symmetry q ↔ −q later.

1One could think of additional interaction terms, constructed from higher derivatives of the field.
They are not considered here because they lead to non-renormalizable theories.
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Now we can consider quantum effects on the above system. As a result of quantum
fluctuations, the path from q(t = 0) to q(t) is no longer unique. As in quantum mechan-
ics, all paths contribute with an amplitude ∝ exp(+ i

~

∫ t

0
dt′L), from which it becomes

clear that the magnitude of relevant fluctuations in the action is ~. One can then follow
the strategy of Sec. 6.6 and make time purely imaginary, by introducing τ = it ∈ R.
The immediate result is that idt′ above becomes dτ ′, so that the amplitude becomes
real. The other change is q̇2 → −(∂τq)

2, so that an overall minus sign can be taken out,
leading to the amplitude

exp(−1

~
SE) (7.4)

where SE =
∫

dτ ′d~xLE is the Euclidean action, and

LE =
1

2
(∂µφ)2 +

1

2
m2

0φ
2 + V (φ) (7.5)

is the Euclidean Lagrangian density, and the field q is now denoted by φ as is customary.
The first term (∂µφ)2 = (∂τφ)2 + |~∇φ|2 is now symmetric between space and time, so
that the metric is Euclidean in (d+1) dimensions (d spatial dimensions, plus Euclidean
time).

It is worth summarizing the sign flips which occurred in the kinetic energy T and
the potential energy U during the successive steps we have just taken. We started with
the Hamiltonian H = T + U , then considered the Lagrangian L = T − U . Going to
imaginary time changes the sign of T . Finally, we take out an overall minus sign in the
definition of LE , so that paths with the smallest action are the most likely. This leads
to the Euclidean Lagrangian density LE = T +U , which is identical to the Hamiltonian
we started from, except that the momentum p is replaced by the derivative ∂0φ.

It is also useful to perform some elementary dimensional analysis. Since it appears
in the exponent of the amplitude Eq.(7.4), the Euclidean action SE is dimensionless (we
set ~ = 1). Hence the Euclidean Lagrangian density has mass dimension (d + 1), and
therefore the field φ has mass dimension d−1

2
. This is interesting, because if we take the

“normal” number of spatial dimensions d = 3 and the interaction term V (φ) = g0
4!
φ4,

then g0 is a dimensionless number. It makes sense then to perform a Taylor expansion of
this theory in powers of g0 about the free case g0 = 0: this is the scope of perturbation
theory. Here, we will try to obtain non-perturbative results, by directly simulating the
theory at some large value of g0.

We have so far considered a field φ(~x, τ) which takes values in R. It is easy to
generalize the Lagrangian density Eq.(7.5) to cases when φ takes values in C, or has

several components forming a vector ~φ ≡





φ1

..
φN



, perhaps with a constraint
∑

N φ
2
k =

1, depending on the desired symmetries. Typically, the Euclidean Lagrangian density
is the starting, defining point of a quantum field theory.

Finally, we can introduce a finite temperature T , exactly as we did in the quantum-
mechanical case: we make the Euclidean time direction compact: τ ∈ [0, β = 1

T
], and

impose periodic boundary conditions on the field φ: φ(~x, β) = φ(~x, 0) ∀~x. This works
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for the same reason as in quantum mechanics: the partition function

Z =

∫

periodic

Dφ exp(−
∫ β

0

dτ ′d~xLE(φ)) (7.6)

is a weighted sum of eigenstates of the Hamiltonian: Z =
∑

i exp(−βEi). We will be
concerned here with the T = 0 situation. In that case, the two-point correlator provides
a means to measure the mass gap (E1 − E0):

〈φ(~x, τ)φ(~x, 0)〉 − 〈φ〉2 =
τ→∞

c2 exp(−(E1 −E0)τ) (7.7)

or equivalently the correlation length ξ = (E1 − E0)
−1. The lowest energy state, with

energy E0, is the vacuum, which contains particle-antiparticle pairs because of quantum
fluctuations, but whose net particle number is zero. The first excited state, with energy
E1, contains one particle at rest. Call its mass mR = E1 − E0. Then this mass can
be obtained from the decay of the two-point correlator, as mR = 1/ξ. This is the
“true”, measurable mass of the theory, and it is not equal to the mass m0 used in the
Lagrangian density. mR is called the renormalized mass, while m0 is the bare mass.
Similarly, the “true” strength gR of the interaction can be measured from 4-correlators
of φ, and it is not equal to the coupling g0 used in the Lagrangian density: g0 is the
bare coupling, gR the renormalized coupling.

7.3 Numerical study of φ4 theory

Here, we show that very important results in Quantum Field Theory can be extracted
from simulations of the 4d Ising model. Our starting point is the continuum Euclidean
action:

SE =

∫

dτd3x

[

1

2
(∂µφ0)

2 +
1

2
m2

0φ
2
0 +

g0

4!
φ4

0

]

(7.8)

where the subscript 0 is to emphasize that we are dealing with bare quantities (field,
mass and coupling), and the coupling normalization 1/4! is conventional. We discretize
the theory on a hypercubic (4d) lattice with spacing a 2. After the usual replacements
∫

dτd3x → a4
∑

sites x and ∂µφ0 → φ0(x+µ̂)−φ0(x)
a

, we end up with the lattice action

SL =
∑

x

[

−2κ
∑

µ

φ(x)φ(x+ µ̂) + φ(x)2 + λ(φ(x)2 − 1)2 − λ
]

(7.9)

where we use the new variables φ, κ and λ defined by

aφ0 =
√

2κ φ (7.10)

a2m2
0 =

1− 2λ

κ
− 8 (7.11)

g0 =
6λ

κ2
(7.12)

2The lattice spacing is taken to be the same in space and in time for simplicity; one could consider
different values as and aτ .
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Figure 7.2: Phase diagram of the lattice theory defined by Eq.(7.9). The two phases
are separated by a line of second-order phase transitions.

Note in particular the multiplication of φ0 by a to form a dimensionless variable, since
φ0 has mass dimension 1. The original formulation had two bare parameters, m0 and
g0. They have been mapped into two bare parameters, κ and λ. This discretized theory
can be simulated by standard Monte Carlo algorithms like Metropolis, on a hypercubic
lattice of L sites in each direction. To minimize finite-size effects, periodic boundary
conditions are usually imposed in each direction.

The behaviour of our system is easy to understand qualitatively in the two limits
λ = 0 and λ = +∞.
• When λ = 0, the interaction is turned off. This is the free theory, which has two
phases depending on the value of κ: a disordered or symmetric phase 〈φ〉 = 0 when κ
is small, and an ordered phase 〈φ〉 6= 0 when κ is large. Thus, the symmetry φ ↔ −φ
is spontaneously broken when κ > κc = 1

8
, which corresponds to the vanishing of the

mass m0.
• When λ = +∞, fluctuations of φ away from the values ±1 cost an infinite amount of
energy. Thus, φ is restricted to ±1, and our theory reduces to the 4d Ising model with
coupling 2κ. As in lower dimensions, the Ising model undergoes a second-order phase
transition corresponding to the spontaneous breaking of the symmetry φ ↔ −φ, for a
critical value κc ≈ 0.075.
For intermediate values of λ, again a second-order transition takes place, leading to the
phase diagram depicted Fig. 7.2.

The existence of a second-order phase transition is crucial: it allows us to define a
continuum limit of our lattice theory. Remember that the “true”, renormalized mass
mR can be extracted from the exponential decay of the 2-point correlator

〈φ(x)φ(y)〉 − 〈φ〉2 ∝
|x−y|→∞

exp(−mR|x− y|) = exp(−|x− y|
ξ

) (7.13)
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2nd order P.T. 2nd order P.T.

Solid State QFT

Figure 7.3: Two different viewpoints on a second-order phase transition: in solid-state
physics (left), the crystal is “real” and the physical correlation length diverges; in quan-
tum field theory (right), the correlation length is “real”, and the lattice spacing shrinks
to zero.

(see Eq.(7.7)). On the lattice, we can only measure the dimensionless combination

amR = 1
ξ/a

, and the separation |x− y| can only be measured in lattice units, i.e. |x−y|
a

.

Taking the continuum limit a→ 0 (while keeping mR fixed) forces the correlation length
measured in lattice units, i.e. ξ/a, to diverge. This only occurs when the lattice theory
has a second-order phase transition (or higher order).

Therefore, the interpretation of a second-order phase transition is different between
solid-state physics and lattice field theory. In the first case, the lattice spacing has a
physical meaning, like the distance between two ions in a crystal: the lattice is “for
real”, and the correlation length really diverges at a second-order critical point. In the
lattice field theory, the correlation length is “for real”, and the lattice spacing a shrinks
to zero at the critical point. This is illustrated in Fig. 7.3.

In this latter case, one must be careful that the physical box size (La) also shrinks
as a→ 0. In order to obtain a controlled continuum limit at constant physical volume,
one must increase the number of lattice points L in each direction keeping (La) fixed.

Going back to our φ4 theory, one sees that a continuum limit can be defined for
any value of the bare coupling λ ∈ [0,+∞], by tuning κ to its critical value κc(λ).
An interesting question is: what is the value of the “true”, renormalized coupling as a
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function of λ ? The answer is clear when λ = 0: the theory is free, and the coupling
is zero, whether bare or renormalized. To obtain a non-zero answer, a reasonable
strategy is to maximize the bare coupling, and thus to consider the Ising limit λ = +∞.
The renormalized coupling is extracted from the strength of the 4-spin correlation,
normalized as explained in the Exercises. The rather surprising answer is that the
renormalized coupling is zero, just like for λ = 0. In fact, the renormalized coupling is
always zero for any choice of λ. In other words, the renormalized φ4 theory is free, no
matter the value of the bare coupling! The formal statement is that the φ4 theory is
“trivial”. Note that this is only true in (3 + 1) dimensions. In lower dimensions, the
renormalized coupling is non-zero.

Now, why is this finding important? The Standard Model of particle interactions
contains a Higgs particle, which gives a mass to all other particles by coupling to them.
The field theory describing the Higgs particle is very much like the φ4 theory we have

just studied, except that the field φ is now a complex doublet

(

φ1 + iφ2

φ3 + iφ4

)

. The bare

parameters are chosen so that the system is in the broken-symmetry phase, where φ
has a non-zero expectation value. The masses of all particles are proportional to 〈φ〉,
therefore it is crucial that 〈φ〉 6= 0. In turn, this symmetry breaking is only possible if
the coupling λ is non-zero. But, as we have seen, the “true”, renormalized value of λ is
zero. Therefore, we have a logical inconsistency. The consequence is that the Standard
Model cannot be the final, exact description of particle interactions. Some new physics
beyond the Standard Model must exist, and from the numerical study of the lattice
theory near κc(λ), one can set the energy scale for this new physics to become visible at
around 600-800 GeV. This argument is so powerful that it has been used in the design
of the Large Hadron Collider (LHC), to be turned on imminently at CERN, and which
will study collisions up to about 1000 GeV only.

7.4 Monte Carlo algorithms for the Ising model

It is most efficient to perform numerical simulations of the φ4 theory in its Ising limit.
The partition function to sample is then simply

Z =
∑

σx=±1

exp(+J
∑

〈xy〉
σxσy) (7.14)

with a homogeneous ferromagnetic interaction J = 2κ > 0 between pairs of spins σx, σy
at nearest-neighbour sites 〈xy〉. This partition function can be sampled by the general
Metropolis algorithm reviewed in Chapter 6. However, the autocorrelation (Monte
Carlo) time necessary to produce statistically independent configurations grows with the
correlation length ξ as ξz, where the dynamic critical exponent z is about 2. Simulations
near the second-order phase transition, where ξ diverges, become very demanding in
computer resources. This phenomenon is called critical slowing down.

Two alternatives to the Metropolis algorithm have been discovered, the cluster al-
gorithm (Swendsen & Wang, 1987) and the worm algorithm (Prokof’ev & Svistunov,
2001), which give z ∼ 0 to 0.5 (z varies with the dimensionality of the system) for the
Ising model. They have revolutionized the numerical study of the systems where they
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work efficiently. We now describe them briefly. In both cases, new degrees of freedom
bxy are introduced, associated with bonds, i.e. nearest-neighbour pairs of lattice sites
xy.

7.4.1 Cluster algorithm

The idea is to rewrite the Boltzmann weight for each single spin pair as

exp(+Jσxσy) = e−J + (e+J − e−J)δσx,σy
(7.15)

=
∑

bxy=0,1

[

e−Jδbxy ,0 + (e+J − e−J)δσx,σy
δbxy,1

]

(7.16)

The combined system of spins σx and bond variables bxy can be updated by two alter-
nating kinds of updates:
1. Heatbath on the bonds, keeping the spins frozen:
The probabilities of assigning 0 or 1 to bxy can be read off eq.(7.16). They depend
whether the two spins are aligned or not.
- If σx 6= σy, only the first term in eq.(7.16) survives, and the only option is to set bxy
to zero.
- If σx = σy, then the normalized probabilities of assigning values 0 and 1 are e−J

e−J+(e+J−e−J)
=

e−2J and e+J−e−J

e−J+(e+J−e−J)
= 1− e−2J respectively.

2. Heatbath on the spins, keeping the bonds frozen:
Again from eq.(7.16), the value bxy = 0 does not constrain the spins σx and σy. On the
contrary, the value bxy = 1 comes with δσx,σy

, so that the two spins must have the same
orientation. This applies to all spins connected by b = 1 bonds, which form clusters.
Thus, all spins in a cluster must flip together. And spins in different clusters do not
interact. Therefore, the new orientation ± of each cluster can be chosen independently
of the others with probability 1/2.3

As a bonus, the correlation of two arbitrarily distant spins σx1
, σx2

can easily be
estimated: it is zero if they belong to different clusters (C(x1) 6= C(x2)), one if they
belong to the same cluster (C(x1) = C(x2)). Hence, an improved estimator can be
formed for the spin-spin correlation and for the magnetic susceptibility:

〈σx1
σx2
〉 = 〈δC(x1),C(x2)〉 (7.17)

χ ≡ 〈
∑

x

σ0σx〉 =
1

V
〈
∑

x1

σx1

∑

x2

σx2
〉 (7.18)

=
1

V
〈
∑

C

|C|σxC

∑

C′

|C ′|σxC′ 〉 (7.19)

=
1

V
〈
∑

C

|C|2〉 (7.20)

where |C| is the size of cluster C. The tremendous variance reduction offered by these
improved estimators is clear: a small expectation value for the spin-spin correlation

3A single-cluster variant (Wolff, 1989) is even more efficient.

55



results from measurements giving mostly 0 or rarely 1, instead of resulting from the
cancellation of +1 and −1 measurements. Also, the connection between the suscep-
tibility and the cluster size guarantees that the cluster size will diverge at the phase
transition, very much like real magnetization domains.

It is this latter connection which is delicate to enforce when formulating a cluster
algorithm for a more complicated statistical model. Ising-type variables can often be
embedded as partial reflections in more complicated spin variables. A valid cluster
algorithm can be implemented, which samples the correct partition function. But its
efficiency is not necessarily as hoped for. Such limitations appear to apply, in particular,
to lattice gauge theories.

7.4.2 Worm algorithm

The idea is to rewrite the Boltzmann weight for each single spin pair as

exp(+Jσxσy) = cosh J + sinh J (σxσy) (7.21)

=
∑

bxy=0,1

[

cosh J δbxy ,0 + sinh J (σxσy)δbxy ,1

]

(7.22)

Note that a more general strategy consists of Taylor-expanding the exponential into
∑+∞

l=0
(Jσxσy)l

l!
. The simpler expansion eq.(7.22) is appropriate for the Ising model. This

expansion can be substituted for every term in the partition function, after which one
carries the summation over spins σx:

Z =
∑

{σx}

∏

〈xy〉
e+Jσxσy =

∑

{bxy}

∑

{σx}

∏

〈xy〉

[

cosh J δbxy ,0 + sinh J (σxσy)δbxy ,1

]

(7.23)

= (cosh J)V d
′
∑

{bxy=0,1}
(tanh J)

P

bxy (7.24)

where the constant factor (cosh J)V d, with V d the total number of bonds, is irrele-
vant, and where

∑′ includes only the bond configurations which satisfy the constraint
∑

y bxy = 0 mod 2 ∀x. This constraint results from the ± summation over each spin

σx: only even powers of σx survive, all contributing the same factor4. Thus, in the final
expression, one has traded spin for bond variables which can take value 0 or 1 with
probability 1

1+tanh J
and tanh J

1+tanh J
respectively. The difficulty is to update them while re-

specting the “tight-packing” constraint, which forces the non-zero bonds to form closed
loops. The beautiful idea of the worm algorithm consists of enlarging the space of con-
figurations sampled by Monte Carlo, by cleverly relaxing the constraint (i.e. “cutting
the loops”).

First, notice that a similar expression to eq.(7.24) can be obtained for the modified

4It is most instructive to derive the equivalent algorithm when a magnetic field h is turned on,
contributing h

∑

x σx to the energy.
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partition function with two sources σx1
and σx2

:

Zx1,x2
≡

∑

{σx}
σx1

σx2

∏

〈xy〉
e+Jσxσy (7.25)

= (cosh J)V d
′′
∑

{bxy=0,1}
(tanh J)

P

bxy (7.26)

where now the constraint
∑′′ means that

∑

y bxy = 1 mod 2 for x = x1 or x2, 0
otherwise. Instead of a gas of closed loops, we now have 2 “dangling ends”. Furthermore,
when x1 and x2 coincide, Zx1,x2

= Z. Thus, it makes sense to sample Zx1,x2
: a bond

configuration contributing to Z will be produced every time x1 = x2. In-between
configurations are not wasted, since they sample Zx1,x2

, which is (up to a normalization
factor 1/Z) the spin-spin correlation 〈σx1

σx2
〉.

A simple algorithm sampling
∑

x1,x2
Zx1,x2

works as follows, starting from a closed-
loop configuration contributing to Z (e.g. all bond variables set to zero):
1. Select at random a site x1, and set x2 = x1.
2. Select at random one of the 2d links touching x2, and call its other end xc.
3. Propose a change of bx2,xc

, from 0 to 1 or from 1 to 0, and accept it with the Metropolis
probability min(1, tanhJ) = tanh J or min(1, 1/ tanhJ) = 1 respectively. If the change
is accepted, set x2 = xc.
4. Increment Zx1,x2

by 1.
5. If x2 = x1 increment Z by 1 and go back to (1); else go back to (2).
This algorithm moves around the “head” x2 and the “tail” x1 of a “worm”, hence
the name. Two successive contributions to Z differ by a global change in the loop
configuration, obtained by a sequence of local steps. The spin-spin correlation and the
susceptibility can be extracted as

〈σx1
σx2
〉 =

1

Z
Zx1,x2

(7.27)

χ =
1

V

1

Z

∑

x1,x2

Zx1,x2
(7.28)

The efficiency of the worm algorithm is comparable to that of the best, single-cluster
variant of the cluster algorithm. Moreover, the same algorithm applies straightforwardly
to the φ4 theory away from its Ising limit, or to a complex |φ|4 theory. Its limitations
are not completely known yet, and its further application, e.g. to fermionic systems, is
the subject of current research.

7.5 Gauge theories

Of the four forces known in Nature, at least three (the strong, the weak and the electro-
magnetic forces) are described by gauge theories. In addition to the usual “matter” fields
(electrons, quarks), these theories contain “gauge” fields (photons, W and Z bosons,
gluons) which “mediate” the interaction: the interaction between, say, two electrons is
caused by the exchange of photons between them. This is analogous to the exchange
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Figure 7.4: Graphical representation (left) of the gauge-invariant nearest-neighbour
interaction: φ∗(x)φ(x + µ̂) becomes φ∗(x)Uµ(x)φ(x + µ̂); (middle) an example of a
gauge-invariant 4-point correlation; (right) the smallest closed loop is the plaquette,
with associated matrix Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν(x).

of momentum which occurs when one person throws a ball at another, and the other
catches it. In this way, two particles interact when they are far apart, even though
the Lagrangian contains only local interactions. Moreover, gauge theories are invariant
under a larger class of symmetries, namely local (x-dependent) symmetries.

7.5.1 QED

As an example, let us consider here a variant of Quantum ElectroDynamics (QED),
called scalar QED, where electrons are turned into bosons. A simple modification of
the previous φ4 theory is required: in order to represent charged bosons, the field φ,
instead of being real, is made complex, φ(x) ∈ C. The continuum Euclidean action
becomes

SE =

∫

dτd3x
[

|∂µφ0|2 +m2
0|φ0|2 +

g0

4!
|φ0|4

]

(7.29)

and, after discretization on the lattice:

SL =
∑

x

[

−κ
∑

µ

(φ∗(x)φ(x+ µ̂) + h.c.) + |φ(x)|2 + λ(|φ(x)|2 − 1)2 − λ
]

(7.30)

SL is invariant under the global (x-independent) rotation φ(x)→ exp(iα)φ(x) ∀x. The
idea is now to promote this symmetry to a local one, where α may depend on x. It is
clear that the derivative term φ∗(x)φ(x+ µ̂) is not invariant under this transformation.
Invariance is achieved by introducing new degrees of freedom, namely complex phases
(elements of U(1)) which live on the links between nearest-neighbours. Call Uµ(x) =
exp(iθµ(x)) the link variable starting at site x in direction µ, and give it the initial value
1, i.e. θµ(x) = 0 ∀x, µ. Modify the derivative term as follows:

φ∗(x)φ(x+ µ̂) → φ∗(x)Uµ(x)φ(x+ µ̂) (7.31)
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This term is now invariant under a local transformation φ(x) → exp(iα(x))φ(x), with
α(x) 6= α(x+ µ̂), provided that Uµ(x) also transforms:

φ(x) → exp(iαx)φ(x) (7.32)

Uµ(x) → exp(iα(x))Uµ(x) exp(−iα(x+ µ̂)) (7.33)

The significance of the new variables Uµ(x) and of the new expression for the discretized
derivative can be elucidated by expressing θµ(x) = eaAµ(x), and considering the con-
tinuum limit a → 0. To lowest order in a, the derivative ∂µ becomes the covariant
derivative Dµ ≡ ∂µ + ieAµ, and the transformation eq.(7.33) is a gauge transformation
for Aµ: Aµ(x) → Aµ(x) − e∂µα(x). Thus, our link variables Uµ(x) represent the
gauge potential Aµ(x) associated with the electromagnetic field, and eq.(7.31) describes
the interaction of our bosonic electrons with the photon. To complete the lattice dis-
cretization of QED, what is missing is the energy of the electromagnetic field, namely
1
2

∫

d~xdτ(| ~E|2(x) + | ~B|2(x)). We identify its lattice version below.
It becomes simple to construct n-point correlators of φ which are invariant under

the local transformation eq.(7.33): all the fields φ need to be connected by “strings”
of gauge fields, made of products of gauge links Uµ as in Fig. 7.4. Under a local
gauge transformation, the phase changes α(x) will always cancel out between φ and the
attached U , or between two successive U ’s.

There also exists another type of gauge-invariant object. Consider the product of
links

∏

x→x U around a closed loop, starting and ending at x. It transforms as

∏

x→x
U → exp(iα(x))

∏

x→x
U exp(−iα(x)) (7.34)

which is invariant since all the U ’s are complex phase factors which commute with each
other. Thus, another valid term to add to the [real] lattice action is the real part of
any closed loop, summed over translations and rotations to preserve the other desired
symmetries. The simplest version of such a term is to take elementary square loops of
size a, made of 4 links going around a plaquette: Pµν(x) ≡ Uµ(x)Uν(x+µ̂)U †µ(x+ν̂)U †ν(x).
Thus, the complete action of our scalar QED theory is

∑

x

|φ(x)|2 − κ
∑

x

∑

µ

(φ∗(x)Uµ(x)φ(x+ µ̂) + h.c.)− β
∑

x

∑

µ6=ν
Re(Pµν(x)) (7.35)

The plaquette term looks geometrically like a curl. Indeed, substituting Uµ(x) =
exp(ieaAµ(x)) and expanding to leading-order in a yields Re(Pµν(x)) ≈ exp(iea(Aµ(x)+
Aν(x+ µ̂)− Aµ(x+ ν̂)− Aν(x))), so that

Re(Pµν(x)) ≈ 1− 1

2
e2a4(∂µAν − ∂νAµ)2 (7.36)

so that the last term in eq.(7.35) becomes, up to an irrelevant constant, −βe2 1
2

∫

d~xdτ(| ~E|2+
| ~B|2), where one has expressed the electric and magnetic fields ~E and ~B in terms of
the gauge potential Aµ. It suffices then to set β = 1/e2 to recover the energy of an
electro-magnetic field.
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Note that it is our demand to preserve invariance under the local transformation
eq.(7.33) which has led us to the general form of the action eq.(7.35). We could have
considered larger loops instead of plaquettes. But in the continuum limit a → 0,
these loops would yield the same continuum action. So the form of the QED action is
essentially dictated by the local gauge symmetry.

One can now study the scalar QED theory defined by eq.(7.35) using Monte Carlo
simulations, for any value of the bare couplings (κ, β). Contrary to continuum pertur-
bation theory, one is not limited to small values of e (i.e. large β).

7.5.2 QCD

Other gauge theories have basically the same discretized action eq.(7.35). What changes
is the group to which the link variables Uµ(x) belong. For QCD, these variables represent
the gluon field, which mediates the interaction between quarks. Quarks come in 3
different colors and are thus represented by a 3-component vector at each site5. Hence,
the link variables are 3×3 matrices. The gauge-invariant piece associated with a closed
loop is the trace of the corresponding matrix, thanks to cyclic invariance of the trace
in eq.(7.34). No other changes are required to turn lattice QED into lattice QCD!

As emphasized in Sec. 7.3, the Euclidean Lagrangian density defines the lattice
theory. The continuum limit can be obtained by approaching a critical point. For
QCD, the critical point is β → +∞, i.e. g0 = 0 since β ∝ 1/g2

0 as in QED. As we
have seen, the vanishing of the bare coupling does not imply much about the true,
renormalized coupling.

7.6 Overview

The formulation of lattice QCD is due to K. Wilson (1974). First Monte Carlo simula-
tions were performed by M. Creutz in 1980, on a 44 lattice. A goal of early simulations
was to check whether quarks were confined. This can be demonstrated by considering
the potential V (r) between a quark and an anti-quark separated by distance r. Con-
trary to the case of QED where the potential ∝ 1/r saturates as r → ∞, in QCD the
potential keeps rising linearly, V (r) ∼ σr, so that it takes an infinite amount of energy
to completely separate the quark and anti-quark. Equivalently, the force between the
two objects goes to a constant σ. The energy of the quark-antiquark pair grows as if it
was all concentrated in a tube of finite diameter. In fact, describing the quark-antiquark
pair as an infinitely thin vibrating string is a very good approximation, as shown in the
state-of-the-art Monte Carlo data Fig. 7.5, now performed on 644 lattices. To control
discretization errors, the lattice spacing must be about 1/10th of the correlation length
or less. To control finite-volume effects, the lattice size must be about 3 times the
correlation length or more. This implies lattices of minimum size 304, which have only
become within reach of a reasonable computer budget in recent years.

The above simulations considered only the effect of gluons: since gluons carry a
color charge (in contrast to the photon which is electrically neutral), they can lead to

5This would be the full story if quarks were bosons. Because they are fermions, each color component
is in fact a 4-component complex vector, called Dirac spinor.
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Figure 7.5: Potential V (r) between a static quark and antiquark, as a function of their
separation r. Data obtained at 2 values of the lattice spacing (finite values of β) are
extrapolated to the continuum limit (β → ∞). At short distance, the potential is
Coulomb-like because the interaction becomes weak (the solid line shows the prediction
of perturbation theory). At large distance, the potential rises linearly, which shows that
it takes an infinite energy to separate the two objects: quarks are confined. A simple
model of a vibrating string (dotted line) gives a good description, down to remarkably
short distances.

complex effects like the confinement of charges introduced in the gluon system. But
to study QCD proper, quarks must be simulated also. This is more difficult because
quarks are fermions, i.e. non-commuting variables. The strategy is to integrate them
out analytically. This integration induces a more complicated interaction among the
remaining gluonic link variables. Actually, this interaction is non-local, which increases
the algorithmic complexity of the Monte Carlo simulation. An efficient, exact simulation
algorithm, called Hybrid Monte Carlo, was only discovered in 1987 (see bibliography).
Even so, the simulation of so-called “full QCD”, on lattices of size 304 or larger, requires
a computer effort O(1) Teraflop× year, which has forced the community to evolve into
large collaborations using dedicated computers.

Using these resources, one is now able to reproduce the masses of quark and anti-
quark bound states, i.e. mesons and baryons, to a few percent accuracy. The impact of
neglecting the effect of quarks or including them is nicely illustrated in Fig. 7.6. Some
predictions have also been made for the properties of mesons made of charm or bottom
quarks, currently being studied in particle accelerators.
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Figure 7.6: Comparison of lattice and experimental measurements of various quantities.
The left figure shows the ratios lattice/experiment, for a lattice model which neglects
quark effects (the number Nf of quark flavors is set to zero). The right figure shows
the same ratios, for a lattice model including 3 quark flavors, all with equal masses.

Another essential purpose of QCD simulations is to quantify QCD effects in exper-
imental tests of the electroweak Standard Model. By checking whether experimental
results are consistent with the Standard Model, one can expose inconsistencies which
would be the signature of new, beyond-the-standard-model physics. To reveal such in-
consistencies, one must first determine precisely the predictions of the Standard Model.
This entails the determination of QCD effects, which can only be obtained from lattice
QCD simulations.

Finally, another direction where QCD simulations have been playing a major role is
that of high temperature. The confinement of quarks, which is an experimental fact at
normal temperatures, is believed to disappear at very high temperatures O(100) MeV
∼ O(1012) K. This new state of matter, where quarks and gluons form a plasma, is
being probed by accelerator experiments which smash heavy ions against each other.
Lattice simulations provide an essential tool to predict the properties of this plasma.

7.7 Useful references

• Computational Physics, by J.M. Thijssen, Cambridge Univ. Press (2007), second
edition. See Chapter 15.

• Quantum Field Theory in a nutshell, by A. Zee, Princeton Univ. Press (2003).
This book reads like a thriller.
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• Hybrid Monte Carlo, by S. Duane, A. D. Kennedy, B. J. Pendleton and D. Roweth,
Phys. Lett. B 195 (1987) 216.

• Nonuniversal critical dynamics in Monte Carlo simulations, by R. H. Swendsen
and J. S. Wang, Phys. Rev. Lett. 58 (1987) 86.

• Collective Monte Carlo Updating for Spin Systems, by U. Wolff, Phys. Rev. Lett.
62 (1989) 361.

• Worm Algorithms for Classical Statistical Models, by N. Prokof’ev and B. Svis-
tunov, Phys. Rev. Lett. 87 (2001) 160601.
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Chapter 8

Electronic structure of molecules
and solids

8.1 Introduction

In this chapter we will discuss the arguably most important quantum many body prob-
lem – the electronic structure problem – relevant for almost all properties of matter
relevant in our daily life. With O(1023) atoms in a typical piece of matter, the exponen-
tial scaling of the Hilbert space dimension with the number of particles is a nightmare.
In this chapter we will discuss approximations used in quantum chemistry that reduce
the problem to a polynomial one, typically scaling like O(N4). These methods map the
problem to an effective single-particle problem and work only as long as correlations
between electrons are weak.

8.2 The electronic structure problem

For many atoms (with the notable exception of Hydrogen and Helium which are so
light that quantum effects are important), the nuclei of atoms are so much heavier than
the electrons that we can view them as classical particles and can consider them as
stationary for the purpose of calculating the properties of the electrons. Using this
Born-Oppenheimer approximation the Hamiltonian operator for the electrons becomes

H =
N
∑

i=1

(

− ~2

2m
∇2 + V (~ri)

)

+
∑

i<j

e2

|~ri − ~rj |
(8.1)

where the potential of the M atomic nuclei with charges Zi at the locations ~Ri is given
by

V (~r) = −e2
M
∑

i=1

Zi

|~Ri − ~r|
. (8.2)

Using a basis set of L orbital wave functions {fi}, the matrix elements of the one-
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body and two-body parts of the Hamilton operator (8.1) are

tij =

∫

d3~rf ∗i (~r)

(

~2

2m
∇2 + V (~r)

)

fj(~r) (8.3)

Vijkl = e2
∫

d3~r

∫

d3~r′f ∗i (~r)f
∗
j (~r
′)

1

|~r − ~r′|fk(~r)fl(~r
′) (8.4)

and the Hamilton operator can be written in second quantized notation as (a†iσ creates
an electron with spin σ in orbital fi)

H =
∑

ijσ

tija
†
iσajσ +

1

2

∑

ijklσσ′

Vijkla
†
iσa
†
jσ′alσ′akσ. (8.5)

8.3 Basis functions

Before attempting to solve the many body problem we will discuss basis sets for single
particle wave functions.

8.3.1 The electron gas

For the free electron gas with Hamilton operator

H = −
N
∑

i=1

~2

2m
∇2 + e2

∑

i<j

vee(~ri, ~rj) (8.6)

vee(~r, ~r
′) =

1

|~r − ~r′| (8.7)

the ideal choice for basis functions are plane waves

ψ~k(~r) = exp(−i~k~r). (8.8)

Such plane wave basis functions are also commonly used for band structure calculations
of periodic crystals.

At low density the electron gas forms a Wigner crystal. Then a better choice of
basis functions are eigenfunctions of harmonic oscillators centered around the classical
equilibrium positions.

8.3.2 Atoms and molecules

Which functions should be used as basis functions for atoms and molecules? We can let
ourselves be guided by the exact solution of the Hydrogen atom and use the so-called
Slater-Type-Orbitals (STO):

finlm(r, θ, φ) ∝ rn−1e−ζirYlm(θ, φ). (8.9)

These wave functions have the correct asymptotic radial dependence and the correct
angular dependence. The values ζi are optimized so that the eigenstates of isolated
atoms are reproduced as accurately as possible.
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The main disadvantage of the STOs becomes apparent when trying to evaluate
the matrix elements in equation (8.4) for basis functions centered around two different

nuclei at position ~RA and ~RB. There we have to evaluate integrals containing terms
like

1

|~r − ~r′|e
−ζi|~r−~RA|e−ζj |~r−

~RB | (8.10)

which cannot be solved in any closed form.

The Gauss-Type-Orbitals (GTO)

filmn(~r) ∝ xlymzne−ζir
2

(8.11)

simplify the evaluation of matrix elements, as Gaussian functions can be integrated
easily and the product of Gaussian functions centered at two different nuclei is again a
single Gaussian function:

e−ζi|~r−
~RA|2e−ζj |~r−

~RB |2 = Ke−ζ|~r−
~R|2 (8.12)

with

K = e
− ζiζj

ζi+ζj
|~RA− ~RB|2

, (8.13)

ζ = ζi + ζj, (8.14)

~R =
ζi ~RA + ζj ~RB

ζi + ζj
. (8.15)

Also the term 1
|~r−~r′| can be rewritten as an integral over a Gaussian function

1

|~r − ~r′| =
2√
π

∫ ∞

0

dte−t
2(~r−~r′)2 (8.16)

and thus all the integrals (8.4) reduce to purely Gaussian integrals which can be per-
formed analytically. The resulting speed-up more than outweighs the larger number of
GTO orbitals needed (compared to STO).

As there are O(L4) integrals of the type (8.4), quantum chemistry calculations typ-
ically scale as O(N4). Modern algorithms reduce the effort to approximately O(N),
since the overlap of basis functions at large distances becomes negligibly small.

Independent of whether one chooses STOs or GTOs, extra care must be taken to
account for the non-orthogonality of these basis functions.

8.3.3 Pseudo-potentials

The electrons in inner, fully occupied shells do not contribute to the chemical bindings.
To simplify the calculations they can be replaced by pseudo-potentials, modeling the
inner shells. Only the outer shells (including the valence shells) are then modeled using
basis functions. The pseudo-potentials are chosen such that calculations for isolated
atoms are as accurate as possible.
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8.4 The Hartree Fock method

8.4.1 The Hartree-Fock approximation

The Hartree-Fock approximation, developed in the early 1930s by D. R. Hartree, J. C.
Slater and V. A. Fock, is based on the assumption of independent electrons. It starts
from an ansatz for the N -particle wave function as a Slater determinant of N single-
particle wave functions:

Φ(~r1, σ1; . . . ;~rN , σN ) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

φ1(~r1, σ1) · · · φN(~r1, σ1)
...

...
φ1(~rN , σN ) · · · φN(~rN , σN )

∣

∣

∣

∣

∣

∣

∣

. (8.17)

The orthogonal single particle wave functions φµ are chosen so that the energy is
minimized.

For numerical calculations a finite basis has to be introduced, as discussed in the
previous section. Quantum chemists distinguish between the self-consistent-field (SCF)
approximation in a finite basis set and the Hartree-Fock (HF) limit, working in a com-
plete basis. In physics both are known as Hartree-Fock approximation.

8.4.2 The Hartree-Fock equations in nonorthogonal basis sets

It will be easiest to perform the derivation of the Hartree-Fock equations in a second
quantized notation. To simplify the discussion we assume closed-shell conditions, where
each orbital is occupied by both an electron with spin up and one with spin down. We
start by writing the Hartree Fock wave function (8.17) in second quantized form:

|Φ〉 =
∏

µ,σ

c†µσ|0〉, (8.18)

where c†µσ creates an electron in the orbital φµ(r, σ). As these wave functions are
orthogonal the c†µσ satsify the usual fermion anticommutation relations. Next we expand
the c†µσ in terms of the creation operators â†nσ of our finite basis set {fi} (Greek subscripts
refer to the Hartree-Fock single particle orbitals and Roman subscripts to the single
particle basis functions):

c†µσ =

L
∑

n=1

dµnâ
†
nσ (8.19)

and find that (up to permutation signs)

ajσ|Φ〉 = ajσ
∏

µ,σ′

c†µσ′ |0〉 =
∑

ν

dνj
∏

µσ′ 6=νσ
c†µσ′ |0〉. (8.20)

In order to evaluate the expectation value 〈Φ|H|Φ〉, which we want to minimize, we
introduce the bond-order matrix

Pij =
∑

σ

〈Φ|a†iσajσ|Φ〉 = 2
∑

ν

d∗νidνj, (8.21)
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where we have made use of the closed-shell conditions to sum over the spin degrees
of freedom. The one-body term of H is now simply

∑

ij Pijtij . Next we rewrite the

interaction part 〈Φ|a†iσa†kσ′alσ′ajσ|Φ〉 in terms of the Pij. We find that if σ = σ′

〈Φ|a†iσa†kσalσajσ|Φ〉 = 〈Φ|a†iσajσ|Φ〉〈Φ|a†kσalσ|Φ〉 − 〈Φ|a†iσalσ|Φ〉〈Φ|a†kσajσ|Φ〉 (8.22)

and if σ 6= σ′:
〈Φ|a†iσa†kσ′alσ′ajσ|Φ〉 = 〈Φ|a†iσajσ|Φ〉〈Φ|a†kσ′alσ′ |Φ〉 (8.23)

Then the energy is (again summing over the spin degrees of freedom):

E0 =
∑

ij

tijPij +
1

2

∑

ijkl

(

Vijkl −
1

2
Vilkj

)

PijPkl. (8.24)

We now need to minimize the energy E0 under the condition that the |φµσ〉 are
normalized:

2 =
∑

σ

〈φµσ|φµσ〉 = 2
∑

i,j

d∗µidµjSij . (8.25)

Using Lagrange multipliers ǫµ to enforce this constraint we have to minimize

∑

ij

tijPij +
1

2

∑

ijkl

(

Vijkl −
1

2
Vilkj

)

PijPkl −
∑

µ

ǫµ2
∑

i,j

d∗µidµjSij . (8.26)

Setting the derivative with respect to d∗µi to zero we end up with the Hartree-Fock
equations for a finite basis set:

L
∑

j=1

(ξij − ǫµSij)dµj = 0, (8.27)

where

ξij = tij +
∑

kl

(

Vijkl −
1

2
Vilkj

)

Pkl. (8.28)

This is again a generalized eigenvalue problem of the form Ax = λBx and looks like a
one-particle Schrödinger equation. However, since the ξij (via the Pkl) depend on the
solution it is a nonlinear and not a linear eigenvalue problem. The equation is solved
iteratively (always using the new solution to define ξij for the next iteration), until
convergence is reached.

The eigenvalues ǫµ of ξ do not directly correspond to energies of the orbitals, as the
Fock operator counts the V -terms twice. Thus we obtain the total ground state energy
from the Fock operator eigenvalues by subtracting the double counted part:

E0 =

N
∑

µ=1

ǫµ −
1

2

∑

ijkl

(

Vijkl −
1

2
Vilkj

)

PijPkl. (8.29)
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8.4.3 Configuration-Interaction

The Hartree-Fock calculation is based on a set of single-particle equations (T̂+V̂ [~ψ])~ψ =

E ~ψ in which each electron feels the presence of other electrons only in the “averaged”
form of an effective potential. It provides a mean-field solution, which does not cor-
rectly capture electron-electron correlations. To improve the method, and to allow the
calculation of excited states, often the “configuration-interaction” (CI) method is used.

Starting from the Hartree-Fock ground state

|ψHF 〉 =

N
∏

µ=1

c†µ|0〉 (8.30)

one or two of the c†µ are replaced by other orbitals c†i :

|ψ0〉 =

(

1 +
∑

i,µ

αiµc
†
icµ +

∑

i<j,µ<ν

αijµνc
†
ic
†
jcµcν

)

|ψHF 〉. (8.31)

Note that the wave function ψ0 can no longer be expressed as a single Slater determinant
and therefore contains correlations. The energy of the system is then minimized using
this variational ansatz. In a problem with N occupied and M empty orbitals this leads
to a matrix eigenvalue problem with dimension 1 +NM + N2M2. Using the Lanczos
algorithm the low lying eigenstates can then be calculated in O((N+M)2) steps. Further
improvements are possible by allowing more than only double-substitutions.

8.5 Thomas-Fermi theory

In 1927, shortly after the introduction of the Schrödinger equation, L. H. Thomas and
E. Fermi independently proposed a semi-classical theory for atoms or molecules with a
large number N of electrons. Their idea was to express the energy as a functional of
the electron density. This formulation in terms of a single, physically intuitive variable
n(r) avoids the complications (exponentially growing Hilbert space) associated with the
solution of the Schrödinger equation for 3N degrees of freedom.

The Thomas-Fermi energy functional for an electron in an external potential Vext(r)
is (~ = m = e = 1)

ETF [n] =
3

10
(3π2)2/3

∫

dr(n(r))5/3 −
∫

drVext(r)n(r) +
1

2

∫

drdr′
n(r)n(r′)

|r − r′| . (8.32)

The first term corresponds to ETF
kin , which is approximated as the kinetic energy of

a non-interacting electron gas with density n(r): ETF
kin =

∫

drn(r)enon-int
kin (n(r)), with

enon-int
kin (n) = 3

10
kF (n)2 = 3

10
(3π2n)2/3 the non-interacting kinetic energy per electron.

The second term describes the effect of an external potential and the third term the
classical electrostatic (Hartree) energy. The ground state density and energy are found
by minimizing ETF [n] subject to the constraint

∫

drn(r) = N. (8.33)
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This can be done by introducing a Lagrange multiplier (chemical potential) µ and
minimizing the functional

ΩTF [n] = ETF [n]− µ
{

∫

drn(r)−N
}

. (8.34)

One finds that the density and potential satisfy

1

2
(3π2)2/3n(r)2/3 − Vext(r) + VHartree(r)− µ = 0, (8.35)

with

VHartree(r) =

∫

dr
n(r′)

|r − r′| (8.36)

itself depending on the density. Solving this problem is much simpler than solving a
many-body Schrödinger equation. However, while the Thomas-Fermi theory correctly
reproduces certain trends, it gives poor predictions for most practical applications. In
particular, it cannot explain chemical bonding.

8.6 Density functional theory

8.6.1 Hohenberg-Kohn theorem

In 1963, P. Hohenberg and W. Kohn proved that the density n(r) completely charac-
terizes a quantum mechanical system, so that an exact description of the ground state
properties in terms of n(r) is, at least in principle, possible. Note that in Thomas-Fermi
theory, the density n(r), through Eqs. (8.36) and (8.35) fixes the external potential Vext

which defines the system. The general proof is remarkably simple. We present it here
for a non-degenerate ground state.1

Let n(r) be the ground state density for N electrons in the potential v1(r), corre-
sponding to the ground state wave-function ψ1 and ground state energy E1. Then

E1 = 〈ψ1|H1|ψ1〉 =

∫

drv1(r)n(r) + 〈ψ1|T + U |ψ1〉, (8.37)

where H1 is the total Hamiltonian corresponding to v1, T the kinetic energy operator
and U the interaction energy operator. Now assume that there exists a second potential
v2(r) 6= v1(r) + const with ground state wave function ψ2 6= eiφψ1 corresponding to the
same density n(r). Then

E2 = 〈ψ2|H2|ψ2〉 =

∫

drv2(r)n(r) + 〈ψ2|T + U |ψ2〉. (8.38)

Since ψ1 is assumed to be non degenerate,

E1 < 〈ψ2|H1|ψ2〉 =

∫

drv1(r)n(r) + 〈ψ2|T + U |ψ2〉 = E2 +

∫

dr(v1(r)− v2(r))n(r).

(8.39)

1This section is based on the 1996 nobel lecture of Walter Kohn, which provides a nice overview of
DFT (http://nobelprize.org/nobel prizes/chemistry/laureates/1998/kohn-lecture.pdf)
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Similarly (without assuming that ψ2 is non-degenerate)

E2 ≤ 〈ψ1|H2|ψ1〉 =

∫

drv2(r)n(r) + 〈ψ1|T + U |ψ1〉 = E1 +

∫

dr(v2(r)− v1(r))n(r).

(8.40)
Adding Eqs. (8.39) and (8.40) leads to the contradiction E1 + E2 < E2 + E1 and we
must conclude that the assumption of the existence of a second potential v2 6= v1+const
giving the same n(r) must be wrong.

Since n(r) determines both N and (up to an irrelevant constant) v(r) it provides the
Hamiltonian and particle number of the system. Therefore, n(r) implicitly determines
all the properties which can be derived from H via solution of the Schrödinger equation.

8.6.2 Hohenberg-Kohn variational principle

The ground state energy can be calculated from the Rayleigh Ritz minimal principle

E = min
ψ̃
〈ψ̃|H|ψ̃〉, (8.41)

where ψ̃ is a normalized trial wave function corresponding to N electrons. Following
Levy and Lieb, we can carry out this minimization in two stages. First, we fix a trial
density ñ(r) and denote by ψ̃αñ the trial functions corresponding to this ñ (every ψ̃α

corresponds to a density ñα obtained by integrating 〈ψ̃α|ψ̃α〉 over all variables except
the first and multiplying by N). The constrained energy minimum, with ñ fixed is then
defined as

ELL[ñ] ≡ min
α
〈ψ̃αñ |H|ψ̃αñ〉 =

∫

drv(r)ñ(r) + F [ñ], (8.42)

F [ñ] ≡ min
α
〈ψ̃αñ |T + U |ψ̃αñ〉. (8.43)

In a second step, ELL is minimized over all ñ:

E = min
ñ
ELL[ñ] = min

ñ

{

∫

drv(r)ñ(r) + F [ñ(r)]
}

. (8.44)

A few comments are in order. First, the formulation of Levy and Lieb avoids the issue
of “v-representability” (the question whether a density n(r) which integrates to N is a
possible ground state density for some v(r)). The functional F [ñ] requires no explicit
knowledge of v(r). Furthermore, Eq. (8.43) gives a definition of the universal functional
of the density F [ñ] as the sum of the kinetic and interaction energy associated with
ñ. While this definition involving 3N -dimensional trial wave functions leads back to
the unsolvable Schrödinger equation, important formal progress has nevertheless been
made. We now have an exact formulation of the ground state densities and energies
entirely in terms of the density distribution ñ(r) and of a unique, though not explicitly
known functional of the density F [ñ]. The practical relevance of this formulation will
depend on whether useful approximate forms of F [ñ] can be found.
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Thomas-Fermi theory corresponds to the approximations

T ≈
∫

drn(r)
3

10
kF (n)2, (8.45)

U ≈ 1

2

∫

drdr′
n(r)n(r′)

|r − r′| . (8.46)

The poor performance is largely due to the inadequate representation of the kinetic
energy as the integral of the mean kinetic energy per electron of a uniform electron gas
with density n(r) ( 3

10
kF (n)2). The relationship between density and kinetic energy is

very subtle. For example, a metal and a (Mott) insulator can have very similar n(r).
Hartree(-Fock) theory, which is based on single-particle equations for orbitals φj,

describes atomic ground states much better than Thomas-Fermi theory. A reformu-
lation of the Hohenberg-Kohn variational principle in terms of single-particle orbitals
should therefore provide a better starting point for approximations.

8.6.3 Kohn-Sham equations

In 1965 W. Kohn and his postdoc L. Sham extracted a set of Hartree-like, but formally
exact equations from the Hohenberg-Kohn variational principle. The Hartree(-Fock)
equations have the form of a Schrödinger equation for non-interacting particles moving
in an effective external potential veff. A simple derivation of the Kohn-Sham equations
makes use of the analogy to the non-interacting model to define veff. In the non-
interacting case, the ground state energy and density can be obtained by calculating
the eigenfunctions φj and eigenvalues ǫj of the non-interacting single-particle equation

(

− 1

2
∇2 + v(r)− ǫj

)

φj = 0. (8.47)

Taking into account the spin of electrons (and assuming a closed shell configuration)
we obtain the energy and density

E = 2

N/2
∑

j=1

ǫj, (8.48)

n(r) = 2

N/2
∑

j=1

|φj|2. (8.49)

On the other hand, for the non-ineracting system, the Hohenberg-Kohn variational
principle reads

E ≤ ELL[ñ] =

∫

drv(r)ñ(r) + T non-int[ñ], (8.50)

with T non-int[ñ] denoting the kinetic energy of the ground-state of non-interacting elec-
trons with density ñ. The minimum of ELL under the constraint

∫

drñ(r) = N can be
computed by introducing a Lagrange-multiplier ǫ. The stationary point with respect to
variations in ñ(r) satisfies

v(r) +
δ

δñ(r)
T non-int[ñ(r)]

∣

∣

∣

ñ=n
− ǫ = 0. (8.51)
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We now return to the interacting problem and express the universal functional F [ñ] in
the form

F [ñ(r)] ≡ T non-int[ñ(r)] +
1

2

∫

drdr′
n(r)n(r′)

|r − r′| + Exc[ñ(r)]. (8.52)

This equation, in which we have separated the kinetic energy functional for non-
interacting electrons and the Hartree energy, defines the so-called exchange-correlation
energy functional Exc[ñ]. The Hohenberg-Kohn variational principle for interacting
electrons then takes the form

E ≤ ELL[ñ] =

∫

drv(r)n(r) + T non-int[ñ] +
1

2

∫

drdr′
n(r)n(r′)

|r − r′| + Exc[ñ(r)], (8.53)

and the corresponding Euler-Lagrange equation is satisfied for

veff(r) +
δ

δñ(r)
T non-int[ñ(r)]

∣

∣

∣

ñ=n
− ǫ = 0, (8.54)

where

veff(r) = v(r) +

∫

dr′
n(r′)

|r − r′| + vxc(r), (8.55)

vxc(r) ≡
δ

δñ(r)
Exc[ñ(r)]

∣

∣

∣

ñ=n
. (8.56)

Since the form of Eq. (8.54) is identical to the non-interacting one (8.51), except that
the external potential v(r) is replaced by the effective potential (8.55), we conclude that
the ground state density n(r) can be obtained by solving the single-particle equation

(

− 1

2
∇2 + veff − ǫj

)

φj = 0, (8.57)

n(r) = 2

N/2
∑

j=1

|φj(r)|2, (8.58)

veff = v(r) +

∫

dr′
n(r′)

|r − r′| + vxc(r). (8.59)

Note that vxc(r), the local exchange-correlation potential defined in Eq. (8.56), depends
on the entire density distribution. The self-consistent equations (8.57), (8.58), (8.59)
are called the Kohn-Sham equations. They build the basis of density functional theory
as it is currently practiced.

Neither the wave-functions φj nor the eigenenergies ǫj have any obvious physical
interpretation, except that the φj give the true ground state energy via Eq. (8.58)
and that the highest occupied ǫj is related to the ionization energy. Nevertheless, in
solid-state physics the ǫj are used to obtain an approximate band structure.
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8.6.4 Local density approximation (LDA)

The real importance of the Kohn-Sham formulation of the many-body problem in terms
of an auxiliary independent particle problem lies in the fact that it enables useful
approximations. The kinetic energy term (of the non-interacting effective model) is
taken care of explicitly, so the approximations can be limited to the exchange-correlation
functional Exc[n] or the corresponding exchange-correlation potential vxc. The most
important approximations have a quasi-local form

Exc[n(r)] =

∫

drexc(r; [n(r̃)])n(r), (8.60)

where exc(r; [n(r̃)]) denotes an exchange-correlation energy per particle at r, which is a
functional of the density distribution ñ(r) in the vicinity of r.

The simplest approximation is the so-called local density approximation (LDA) which
was introduced in the original paper by Kohn and Sham. Here, one uses the exchange-
correlation energy of a uniform electron gas of density n, euniform

xc (n(r)), which is a
function (not a functional) of n(r):

ELDA
xc [n(r)] ≡

∫

dreuniform
xc (n(r))n(r). (8.61)

The exchange energy of the uniform electron gas can be calculated analytically and
evaluates to

euniform
x (n) = − 3

4π
kF (n) = − 3

4π

(9π

4

)1/3 1

rs
= −0.458

rs
, (8.62)

where the density is expressed in terms of the radius rs of a sphere containing one
electron: (4π/3)r3

s = 1/n. The correlation energy euniform
c (n) can be obtained by fitting

quantum Monte Carlo results for several values of n. A widely used form is due to
Perdew and Zunger,

euniform
c (n) ≈

{

−0.048 + 0.031 ln(rs)− 0.0116rs + 0.0002rs ln(rs), rs < 1
−0.142/(1 + 1.953

√
rs + 0.333rs), rs > 1

. (8.63)

LDA is exact for the uniform electron gas and one might naively expect that its applica-
tion might be restricted to systems characterized by a slowly varying density. However,
it turned out that this approximation works better than anyone, including the inven-
tors, could have imagined. It gives reasonable results even in atomic systems with large
density variations. Today, LDA is the basis of an entire industry spanning solid state
physics and quantum chemistry. The large practical impact of his work has earned
W. Kohn the 1996 Nobel prize in chemistry.

8.6.5 Beyond LDA

Improvements of the LDA have been an intense field of research in quantum chemistry.
The “local spin density approximation” (LSDA) uses separate densities for electrons
with spin up and down. The “generalized gradient approximation” (GGA) and its
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variants use functions depending not only on the density, but also on its derivatives:

ELDA
xc [n(r)] =

∫

dreuniform
xc (n(r))n(r), (8.64)

EGGA
xc [n(r)] =

∫

drf (1)(n(r), |∇n(r)|)n(r), (8.65)

E...
xc[n(r)] =

∫

drf (2)(n(r), |∇n(r)|,∇2n(r))n(r). (8.66)

Note that f (1)(n(r), |∇n(r)|)n(r) is a function, not a functional of n and |∇n|. The
GGA typically improves the bonding energies for small molecules by a factor 3-5.

Despite the success of LDA and its generalizations, one must keep in mind that
these approximations can fail completely in situations which lack any resemblance to a
non-interacting electron gas. This is the case for strongly correlated electrons systems
(transition metal oxides and actinide compounds where electrons occupy partially filled,
narrow d or f orbitals), which must be treated by other methods. One promising
approach for these materials is the combination of an LDA treatment of the weakly-
correlated orbitals with an explicit simulation of the strongly correlated d or f electrons
within the so-called dynamical mean field (DMFT) framework. This technique will be
discussed in Chapter 9.

8.7 Car-Parinello molecular dynamics

In the lecture on “Computational Statistical Physics” you have learned about the molec-
ular dynamics method, in which atoms move on classical trajectories under forces, such
as those derived from a Lennard-Jones potential, which have been previously calculated
in quantum mechanical simulations. It would be more accurate to use a full quantum
mechanical force calculation at every time step instead of using such static forces that
have been extracted from previous simulations.

Roberto Car (currently in Princeton) and Michele Parinello (currently at ETH) have
combined density functional theory with molecular dynamics to do just that. Their
method, Car-Parinello molecular dynamics (CPMD) allows much better simulations of
molecular vibration spectra and of chemical reactions.

The atomic nuclei are propagated using classical molecular dynamics, but the elec-
tronic forces which move them are estimated using density functional theory:

MnR̈n = −∂E[n(r, t), Rn(t)]

∂Rn

. (8.67)

Here Mn and Rn are the masses and locations of the atomic nuclei and E[n(r, t), Rn]
the energy functional (for example in the local density approximation).

As the solution of the full electronic problem at every time step is a very time
consuming task we do not want to start every time from scratch. Instead CPMD
uses the previous values of the noninteracting electron wave functions φj of the DFT
calculation (8.57) and evolves them to the ground state for the current positions of the
nuclei via an artificial molecular dynamics. Hence both the nuclei Rn and the wave
functions φj evolve in the same molecular dynamics scheme.
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Ignoring the constraint of orthogonality of the φj and remembering that the wave-
functions determine the density n(r) through Eq. (8.58), we can write the Lagrangian
for this auxiliary problem as

L′ =
∑

j

maux〈φ̇j|φ̇j〉 − Ẽ[φj, φ
∗
j , Rn], (8.68)

where meff is a “mass” associated with the Kohn-Sham wave functions. The constraint
of orthogonality of the wave functions is 〈φi|φj〉 = δij and can be enforced by introducing
Lagrange multipliers Λij:

L = L′ +
∑

ij

Λij〈φi|φj〉. (8.69)

The Euler-Lagrange equation then yields

meffφ̈i = −δẼ[φj, φ
∗
j , Rn]

δφ∗i
+
∑

j

Λijφi. (8.70)

The artificial mass maux needs to be chosen much lighter than the nuclear masses so
that the electronic structure adapts quickly to the movements of the nuclei. In actual
simulations one evolves the expansion coefficients dµn of an expansion in terms of the
basis functions as in equation (8.19) instead of evolving the wave functions. This gives
the equations of motion

meffd̈µn = − ∂Ẽ

∂d∗µn
+
∑

ν

Λµν

∑

l

Snldνl. (8.71)

There are various algorithms to determine the Λµν so that the wave functions stay
orthonormal during the time evolution. We refer to text books and special lectures on
CPMD for details.
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Chapter 9

Dynamical mean field theory

9.1 Introduction

In chapter 8 we discussed density functional theory, which “solves” the electronic struc-
ture problem by mapping it to an auxiliary single-particle problem. In the local density
approximation, this approach works well for materials with weak electron-electron corre-
lations. There are, however, classes of materials whose properties cannot be understood
on the LDA level, and for which a more accurate description of electron-electron inter-
actions is needed. Prominent examples are transition metal, lanthanide and actinide
compounds, which contain partially filled 3d, 4f and 5f orbitals. Electron-electron
correlations in these narrow orbitals are large and the competition between localiza-
tion (atomic-like behavior) and delocalization (band-like behavior) leads to complicated
phase diagrams and remarkable physical properties. For example, superconductivity
with high transition temperature occurs in cuprates and in the recently discovered iron
based materials. Manganites exhibit a very large change in the resistivity as a function
of applied magnetic field, whereas in cerium, an electronically driven phase transition
results in large volume changes. Theoretically, these phenomena are still poorly under-
stood. In part, this is due to the difficulty of deriving appropriate effective Hamiltoni-
ans, but in particular it reflects the difficulty of solving even the simplest models. The
development of powerful numerical tools to treat correlated fermionic lattice models is
currently one of the frontiers in theoretical condensed matter physics, and considerable
progress has been made over the past decade.

In this chapter, we will first discuss the Hubbard model, a simple fermionic lattice
model which captures the competition between localization and delocalization. We
will then discuss how this model can be approximately solved using dynamical mean
field theory (DMFT) and in the last section, we will show how the combination of
band structure calculations and dynamical mean field theory enables an “ab-initio”
simulation of strongly correlated materials.
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9.2 Hubbard model

The Hamiltonian of the electronic structure problem can be written in second quantized
notation as (see chapter 8)

H =
∑

kσ

ǫka
†
kσakσ +

1

2

∑

k1k2k′1k
′
2σσ

′

〈k1k2|V |k′1k′2〉a†k1σa
†
k2σ′

ak′2σ′ak′1σ (9.1)

=
∑

ijσ

tija
†
iσajσ +

1

2

∑

ii′jj′σσ′

〈ii′|V |jj′〉a†iσa†i′σ′aj′σ′ajσ. (9.2)

If a†iσ creates an electron of spin σ in the Wannier orbital φ(r − Ri) centered at lattice
site Ri, then the hopping parameters and matrix elements of the Coulomb interaction
are

tij =

∫

drφ∗(r − Ri)

(

− ~
2

2m
∇2 + Vext(r)

)

φ(r −Rj), (9.3)

〈ii′|V |jj′〉 = e2
∫

drdr′φ∗(r − Ri)φ
∗(r′ −Ri′)

1

|r − r′|φ(r − Rj)φ(r′ − Rj′). (9.4)

If the Wannier orbitals are very localized, as it is the case for narrow d- and f -bands,
then one can neglect all the matrix elements (9.4) except those with i = i′ = j = j′, and
all the hoppings in Eq. (9.3) except those between nearest neighbor sites 〈ij〉. Defining

U ≡ e2
∫

drdr′
|φ(r)|2|φ(r′)|2
|r − r′| (9.5)

we thus obtain the Hubbard model

HHubbard = t
∑

〈ij〉σ
a†iσajσ − µ

∑

iσ

niσ + U
∑

i

ni↑ni↓ (9.6)

in which the interaction U acts only locally on each lattice site and electrons only hop
between nearest neighbor sites with amplitude t. Note that the Hubbard interaction is
diagonal in real-space, while the hopping is not. In momentum space, the interaction
term is complicated, while the kinetic energy term is diagonal. Electrons of spin σ in
the Bloch states ψk(r) = 1√

N

∑

j e
ik·Rjφ(r − Rj) are created by the operators a†kσ =

1√
N

∑

j e
ik·Rja†jσ. In the Bloch basis, the matrix elements of the Coulomb interaction

become

〈k1k2|V |k′1k′2〉 = e2
∫

dr

∫

dr′ψ∗k1(r)ψ
∗
k2

(r′)
1

|r − r′|ψk′1(r)ψk′2(r
′), (9.7)

while the kinetic term is diagonal with dispersion ǫk given by the lattice Fourier trans-
form of the hoppings tij . On a hypercubic lattice with hopping t between nearest
neighbor sites only, the dispersion takes the form

ǫ1dk = 2t cos(k), (9.8)

ǫ2d square
k = 2t[cos(kx) + cos(ky)], (9.9)

ǫ3d square
k = 2t[cos(kk) + cos(ky) + cos(kz)]. (9.10)
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The one-band Hubbard model is not only applicable to s-orbitals, but depending
on filling and crystal field splittings also to d- and f -electron systems. While the five
d-levels are degenerate in a rotationally invariant environment, this degeneracy is lifted
in a crystalline solid. A cubic lattice splits the 5 levels into 3+2, while tetragonal and
orthorhombic distortions reduce the symmetries even further and lead to the splitting
of all five levels. Undoped cuprates, with 9 electrons in the Cu-d orbitals, may thus
be described by the half-filled 1-band Hubbard model. Hence the big interest in un-
derstanding the properties of this simple model Hamiltonian and in particular in the
question whether or not the repulsive Hubbard model becomes superconducting upon
doping. For other materials, such as the recently discovered iron-based superconduc-
tors (with 6 electrons in the Fe-d bands and apparently small crystal field splittings)
multi-band versions of the Hubbard model must be considered.

9.3 Dynamical mean field approximation

9.3.1 Single-site effective model

Despite its apparent simplicity, the 1-band Hubbard model is a complicated fermionic
many-body problem for which there is no known solution except in one dimension.
The most interesting physics (such as the metal-insulator transition) occurs in the
intermediate coupling regime where the kinetic and potential energy terms are both
important and where perturbative approaches (either starting from the non-interacting
or the atomic limit) fail. Even the numerical solution of this fermionic lattice problem
problem poses great challenges. The dimension of the Hilbert space grows as 4nsites,
so the exact diagonalization of finite clusters is limited to . 20 sites. Path integral
Monte Carlo simulations suffer from the fermionic sign problem, because paths which
exchange particles will come with minus signs. Variational approaches such as DMRG
are so far restricted to one-dimensional systems.

Thus in order to gain some insights into the properties of the Hubbard (and related)
models, approximate simulation methods are needed. One such approximate approach
which has proven to be very useful, is dynamical mean field theory (DMFT). Here, the
lattice problem is replaced by an effective single-site problem plus a self-consistency
condition. To appreciate this idea, it is useful to briefly recall the static mean-field
approximation of the classical Ising model, which is illustrated in the left hand panel
of Fig. 9.1. Here, one extracts one particular spin, S0, from the lattice and replaces all
the remaining degrees of freedom by an effective external magnetic field heff = zJm (z
is the coordination number and m the magnetization per site). The lattice system

H Ising = −J
∑

〈ij〉
SiSj (9.11)

is thus mapped to the single site effective model

H Ising
eff = −heffS0. (9.12)

From this single-site model we can easily compute the magnetization

meff = tanh(βheff), (9.13)

79



J t

effh

*Vp

Figure 9.1: Mapping of the classical Ising model to a single-site effective model in
static mean field theory (left panel) and mapping of the Hubbard model to a quantum
impurity model in dynamical mean field theory (right panel).

and identifying the magnetization m of the lattice problem with the magnetization meff

of the single site effective model gives the self-consistency condition

m ≡ meff = tanh(βzJm). (9.14)

Returning now to the Hubbard model we may pursue a similar strategy, illustrated
in the right hand panel of Fig. 9.1. We extract one particular site (the black one in
the figure) from the lattice and replace the remaining degrees of freedom of the model
by a bath of non-interaction fermions. The single-site effective problem in this case
then becomes a quantum impurity model and processes where an electron hops from
the black site into the lattice and after some excursion through the lattice returns to
its original place are represented in the single-site effective model by transitions from
the impurity into the bath and back. The amplitudes for such transitions are given by
the hybridiztation parameters V of the impurity model.

So, in the single-site dynamical mean field approximation, the lattice problem

HHubbard = −µ
∑

iσ

niσ + U
∑

i

ni↑ni↓ + t
∑

〈ij〉σ
a†iσajσ (9.15)

is mapped to the single-site effective problem

HHubbard
imp = −µ(n↑ + n↓) + Un↑n↓ +

∑

pσ

(V σ
p d
†
σapσ + h.c.) +

∑

pσ

ǫpa
†
pσapσ. (9.16)
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In this impurity Hamiltonian, the d† create electrons in the impurity orbital (which
represents a particular site of the lattice), n = d†d and the a†p create bath states labeled
by a quantum number p. The energy levels of the bath are ǫp.

9.3.2 Self-consistency condition

Solving the lattice problem essentially means computing the momentum-dependent
Green’s function G(k, ω). This function describes how electrons propagate through the
lattice and many observables can be expressed in terms ofG(k, ω). Similarly, solving the
impurity problem means computing the impurity Green’s function Gimp(ω), which has
no momentum-dependence, because a single-site impurity models is zero-dimensional.
The self-consistency condition, which fixes the parameters ǫp and Vp of the impurity
model, demands that the local (momentum averaged) lattice Green’s function is equal
to the impurity Green’s function,

∑

k

G(k, ω) ≡ Gimp(ω). (9.17)

The solution must be found iteratively and these DMFT iterations involve as the es-
sential approximation of the method a simplification of the momentum-dependence of
the lattice self-energy. The self-energy describes the effect of interactions on the propa-
gation of electrons. In the non-interacting model (U = 0) the Green’s function is given
by GU=0(k, ω) = [ω+µ− ǫk ]−1 whereas the Green’s function of the interacting model is
given by G(k, ω) = [ω+µ−ǫk−Σ(k, ω)]−1. Therefore Σ(k, ω) = G−1

U=0(k, ω)−G(k, ω)−1,
and similarly the impurity self-energy is given by Σimp(ω) = G−1

imp,U=0(ω)−Gimp(ω)−1.
The DMFT approximation amounts to identifying

Σ(k, ω) ≈ Σimp(ω), (9.18)

i.e. to ignoring the momentum dependence of the lattice self-energy. With this approx-
imation we can rewrite Eq. (9.17) as

∑

k

[ω + µ− ǫk − Σimp(ω)]−1 ≡ Gimp(ω). (9.19)

Since Gimp(ω) and Σimp(ω) depend on the impurity model parameters ǫp and Vp we
obtain a self-consistency condition for the impurity model.

9.3.3 DMFT self-consisteny loop

If a Monte Carlo method is used to solve the impurity model, then the bath degrees
of freedom are integrated out and the self-consistency fixes the hybridization function

Fσ(−iωn) =
∑

p

|V σ
p |2

iωn−ǫp (hybridization expansion solver) or the “bath Green’s function”

G0σ(iωn) = [iωn + µ − Fσ(−iωn)]−1 (weak-coupling solver). Here, we have switched to
Matsubara frequencies ωn = (2n + 1)π/β, because the Monte Carlo impurity solvers
work in imaginary time. To start the calculation, one can use for example the analyt-
ically known F or G0 corresponding to the non-interacting lattice model. The DMFT
self-consistency loop then contains the following steps:
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1. Solve the impurity problem, i. e. compute the Green’s function Gimp(iωn) for the
given “bath” G0(iωn).

2. Extract the self-energy of the impurity model: Σimp(iωn) = G−1
0 (iωn)−G−1

imp(iωn).

3. Identify the lattice self-energy with the impurity self-energy (Σ(k, iωn) = Σimp(iωn))
and compute the local lattice Green’s function Gloc(iωn) =

∑

k[iωn + µ − U/2−
Σimp(iωn)]

−1.

4. Apply the DMFT self-consistency condition (Gloc(iωn) = Gimp(iωn)) and use this
to define a new “bath” G−1

0,new(iωn) = G−1
loc(iωn) + Σimp(iωn).

The computationally expensive step in this procedure is the solution of the impurity
problem. Once the calculation has converged, the bath contains information about the
topology of the lattice and tries to emulate the lattice as well as it can. The impu-
rity, which exchanges electrons with the bath, will thus feel (at least to some extent)
as if it were a site of a lattice. Obviously, not all the physics can be captured by a
single-site impurity model. In particular spatial fluctuations, which become important
in low-dimensional systems (such as the two-dimensional planes of high-temperature su-
perconductors), are completely neglected. To remedy this deficiency, cluster extensions
of dynamical mean field theory have been developed. In these calculations, a cluster of
several sites is embedded in a self-consistently determined bath. Cluster DMFT allows
to describe spatial correlations on the cluster exactly, while longer range correlations
are treated on a mean-field level. However, the computational effort for solving the
impurity problem grows rapidly with the number of sites or orbitals (see Chapter 10).

9.4 LDA+DMFT

Dynamical mean field calculations become exact in the limit of infinite dimension or
coordination number, in the non-interacting limit (U = 0) and in the atomic limit
(t = 0). The DMFT formalism can describe band-like behavior (quasi-particle peaks)
and atomic-like behavior (Hubbard bands). It thus captures the competition between
localization and delocalization which is a crucial ingredient of the physics of strongly
correlated materials. In order to enable “ab-initio” simulations of real compounds, the
dynamical mean field framework has been combined with density functional theory in
the LDA approximation. The resulting machinery is called “LDA+DMFT”. The idea
is to use the Kohn-Sham eigenvalues ǫKSk in the self-consistency equation (9.19) instead
of the dispersion of some tight-binding model (for example Eqs. (9.8)-(9.10)). By doing
so one encounters a problem: while density functional theory in the LDA approximation
does not take into account all the interactions between d or f electrons it captures some
of them. If we now explicitly describe the local interaction in the strongly correlated
orbitals via some U -term in the impurity model, some interaction contribution appears
twice and this “double counting” of interaction energy must be compensated by adding
a double counting correction EDC to the self-energy of the correlated orbitals. The
self-consistency condition thus becomes

∑

k

[iωn + µ− ǫKSk − Σimp(iωn)− EDC ]−1 ≡ Gimp(iωn). (9.20)
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Nobody knows how to do this subtraction in a clean and consistent way. In practice,
one uses formulas like EDC = U〈n〉 with 〈n〉 the average occupancy.

In actual material simulations, many bands will be considered, so that the Kohn-
Sham eingenvalues form a matrix HLDA

k in orbital space. Only the d- or f -orbitals will
be explicitly treated in the impurity calculation and yield a self-energy. Thus Σimp will
be a matrix of the same size as HLDA

k , but the only non-zero elements will be in the
block corresponding to the strongly correlated orbitals. Similarly the double-counting
correction will be a diagonal matrix with non-zero elements only for the correlated
orbitals. In the multi-orbital case, one can use for example EDC = 〈U〉〈ncorr〉 with 〈U〉
the average of the interaction parameters of the (multiorbital) impurity problem and
〈ncorr〉 the average occupancy of the correlated orbitals. This orbital-independent shift
assures that the crystal-field splittings in the LDA band structure are preserved by
the double counting correction. The chemical potential is then adjusted such that the
correct total number of electrons in the correlated and uncorrelated orbitals is obtained.

For example in a LDA+DMFT simulation of Cerium, which has atomic configuration
[Xe]4f 15d16s2, one may want to consider the 4f , 5d, 6s and 6p bands, which gives a
HLDA
k matrix of dimension 14+10+2+6=32. Intra-orbital and inter-orbital interactions

are added to the 14 f -states and compensated by a “double-counting” shift of the
chemical potential. A 14-orbital impurity problem is solved at each DMFT iteration
yielding the self-energies for the f -orbitals. Correlations in the 5d, 6s and 6p bands are
treated on the LDA level and enter the calculation through the self-consistency loop

If
(

∑

k

[iωn + µ−HLDA
k − Σimp(iωn)If −EDCIf ]−1

)

If ≡ Gimp(iωn), (9.21)

which involves the inverse of 32×32 matrices. Here, If is a diagonal matrix which is 1
for the indices corresponding to correlated f -orbitals and zero otherwise.
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Chapter 10

Diagrammatic Monte Carlo
methods for impurity models

10.1 Introduction

An impurity model describes an atom or molecule embedded in some host or bath, with
which it can exchange electrons. This exchange of electrons allows the impurity to
make transitions between different quantum states, and leads to a non-trivial dynam-
ics. Therefore, despite the zero dimensional nature (which makes impurity problems
computationally much more tractable than fermionic lattice models), their numerical
simulation remains a challenging task. Methods such as exact diagonalization or nu-
merical RG, which explicitly treat a finite number of bath states, work well for single
orbital models. However, because the number of bath states must be increased pro-
portional to the number of orbitals, the computational effort grows exponentially with
system size, and requires severe truncations of the bath already for two orbitals. Monte
Carlo methods have the advantage that the bath is integrated out and thus the (infinite)
size of the bath Hilbert space does not affect the simulation. While restricted to finite
temperature, Monte Carlo methods are thus the method of choice for the solution of
large multi-orbital or cluster impurity problems.

Over the last few years, significant progress has been made (both in terms of effi-
ciency and flexibility) with the development of diagrammatic Monte Carlo techniques.
This chapter provides an overview over two recently developed, complementary meth-
ods: (i) the weak-coupling approach, which scales favorably with system size and allows
the efficient simulation of large impurity clusters, and (ii) the strong-coupling approach,
which can handle impurity models with strong interactions.

For simplicity, we will focus on the single orbital Anderson impurity model (Fig. 10.1)
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Figure 10.1: Schematic representation of a quantum impurity model. Spin up and down
electrons on the impurity (black dot) interact with a repulsive energy U and can hop
to non-interacting bath levels ǫp with transition amplitude V ∗p .

defined by the Hamiltonian H = H0 +HU +Hbath +Hmix with

H0 = −(µ− U/2)(n↑ + n↓), (10.1)

HU = U(n↑n↓ − (n↑ + n↓)/2), (10.2)

Hbath =
∑

σ,p

ǫpa
†
p,σap,σ, (10.3)

Hmix =
∑

σ,p

(V σ
p d
†
σap,σ + h.c.). (10.4)

Here, H0+HU ≡ Hloc describes the impurity with creation operators d†σ, Hbath a non-
interacting bath of electrons (labeled by quantum numbers p) with creation operators
a†p,σ, while Hmix controls the exchange of electrons between the impurity and the bath.
The transition amplitudes V σ

p are called hybridizations.
The impurity model partition function Z is given by

Z = Tr
[

e−βH
]

, (10.5)

with β the inverse temperature, and Tr = TrdTra the trace over the impurity and bath
states. By “solving the impurity model” we essentially mean computing the impurity
Green’s function (0 < τ < β)

g(τ) = 〈Td(τ)d†(0)〉 =
1

Z
Tr
[

e−(β−τ)Hde−τHd†
]

, (10.6)

which we choose to be positive.
Diagrammatic Monte Carlo simulation relies on an expansion of the partition func-

tion into a series of diagrams and the stochastic sampling of (collections) of these
diagrams. We represent the partition function as a sum (or, more precisely, integral) of
configurations c with weight wc,

Z =
∑

c

wc, (10.7)
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and implement a random walk c1 → c2 → c3 → . . . in configuration space in such a
way that each configuration can be reached from any other in a finite number of steps
(ergodicity) and that detailed balance is satisfied,

|wc1|p(c1 → cc2) = |w2|p(c2 → c1). (10.8)

This assures that each configuration is visited with a probability proportional to |wc|
and one can thus obtain an estimate for the Green’s function from a finite number N
of measurements:

g ≈
∑N

i=1wcigci
∑N

i=1wci
=

∑N
i=1 |wci|signcigci
∑N

i=1 |wci|signci
=
〈sign · g〉MC

〈sign〉MC
. (10.9)

The error on this estimate decreases like 1/
√
N . If the average sign of the configurations

is small and decreases exponentially with decreasing temperature, the algorithm suffers
from a sign problem.

10.2 General recipe

The first step in the diagrammatic expansion is to rewrite the partition function as a
time ordered exponential using some interaction representation. We split the Hamil-
tonian into two parts, H = H1 + H2 and define the time dependent operators in the
interaction picture as O(τ) = eτH1Oe−τH1. We furthermore introduce the operator
A(β) = eβH1e−βH and write the partition function as Z = Tr[e−βH1A(β)]. The opera-
tor A(β) satisfies dA/dβ = eβH1(H1−H)e−βH = −H2(β)A(β) and can be expressed as

A(β) = T exp[−
∫ β

0
dτH2(τ)].

In a second step, the time ordered exponential is expanded into a power series,

Z = Tr
[

e−βH1Te−
R β

0
dτH2(τ)

]

=
∞
∑

n=0

∫ β

0

dτ1 . . .

∫ β

τn−1

dτnTr
[

e−(β−τn)H1(−H2) . . . e
−(τ2−τ1)H1(−H2)e

−τ1H1

]

,(10.10)

which is a representation of the partition function of the form (10.7), namely the sum
of all configurations c = {τ1, . . . , τn}, n = 0, 1, . . ., τi ∈ [0, β) with weight

wc = Tr
[

e−(β−τn)H1(−H2) . . . e
−(τ2−τ1)H1(−H2)e

−τ1H1

]

dτn. (10.11)

In the following we will discuss in detail two complementary diagrammatic Monte
Carlo algorithms, namely

1. a weak-coupling approach, based on an expansion of Z in powers of the interaction
U , and on an interaction representation in which the time evolution is determined
by the quadratic part H0 +Hbath +Hmix of the Hamiltonian,

2. a “strong-coupling” approach, based on an expansion of Z in powers of the
impurity-bath hybridization V , and an interaction representation in which the
time evolution is determined by the local part H0 + HU + Hbath of the Hamilto-
nian.
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10.3 Weak-coupling approach

The first diagrammatic impurity solver, proposed by Rubtsov et al. three years ago,1

is based on an expansion in H2 = HU . Here, I we will consider a variant of the
weak coupling approach, worked out very recently by Gull et al.,2 which combines
the weak-coupling expansion with an auxiliary field decomposition. This “continuous-
time auxiliary field method” is an adaptation of an algorithm by Rombouts et al.3 for
lattice models (the first diagrammatic Monte Carlo algorithm for Fermions) and in some
respects similar to the time-honored Hirsch-Fye algorithm.4

10.3.1 Monte Carlo configurations

Following Rombouts and collaborators, we define H2 = HU −K/β and H1 = H−H2 =
H0 +Hbath +Hmix +K/β, with K some arbitrary constant. Equation (10.10) then gives
the expression for the partition function after expansion in H2, and (10.11) the weight of
a configuration of n “interaction vertices”. At this stage, we expand our configuration
space by decoupling each interaction vertex using the decoupling formula proposed by
Rombouts,

−H2 = K/β − U(n↑n↓ − (n↑ + n↓)/2) =
K

2β

∑

s=−1,1

eγs(n↑−n↓), (10.12)

cosh(γ) = 1 + (βU)/(2K). (10.13)

This formula can easily be verified by checking the four states |0〉, | ↑〉, | ↓〉, and | ↑↓〉.
The configuration space is now the collection of all possible Ising spin configurations on
the imaginary time interval [0, β): c = {{τ1, s1}, . . . , {τn, sn}}, n = 0, 1, . . ., τi ∈ [0, β),
si = ±1. These configurations have weight

wc = Tr
[

e−(β−τn)H1eγsn(n↑−n↓) . . . e−(τ2−τ1)H1eγs1(n↑−n↓)e−τ1H1

](Kdτ

2β

)n

. (10.14)

All the operators in the trace are quadratic in c and a, so we can first separate the spin
components and then proceed to the analytical calculation of the trace. Introducing
Hσ

1 = −µ(nσ−U/2)+
∑

p ǫpa
†
p,σap,σ+

∑

p(Vσ,pc
†
σap,σ+h.c.), which is the Hamiltonian of

the non-interacting impurity model, the trace in Eq. (10.14) becomes (Z0,σ = Tr[e−βH
σ
1 ])

Tr
[

. . .
]

= e−K
∏

σ

Tr
[

e−(β−τn)Hσ
1 eγsnσnσ . . . e−(τ2−τ1)Hσ

1 eγs1σnσe−τ1H
σ
1

]

. (10.15)

Using the identity eγsσnσ = eγsσc†σcσ + cσc
†
σ = eγsσ− (eγsσ−1)cσc

†
σ, the trace factors can

be expressed in terms of non-interacting impurity Green’s functions g0 and evaluated
using Wick’s theorem. For example, at first order, we find

Tr
[

e−(β−τ1)Hσ
1 (eγsσ − (eγsσ − 1)cσc

†
σ)e
−τ1H1

]

= Z0,σ(e
γsσ − g0σ(0+)(eγsσ − 1)). (10.16)

1A. N. Rubtsov, V. V. Savkin and A. I. Lichtenstein, Phys. Rev. B 72, 035122 (2005).
2E. Gull, P. Werner, O. Parcollet and M. Troyer, Europhys. Lett. 82 57003 (2008).
3S. M. A. Rombouts, K. Heyde, and N. Jachowicz, Phys. Rev. Lett. 82, 4155 (1999).
4J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521 (1986).
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For n spins, this expression generalizes to

Tr
[

e−(β−τn)Hσ
1 eγsnσnσ . . . e−(τ2−τ1)Hσ

1 eγs1σnσe−τ1H
σ
1

]

= Z0,σ detN−1
σ ({si, τi}), (10.17)

where Nσ is a (n × n) matrix defined by the location of the decoupled interaction
vertices, the spin orientations, and the non-interaction Green’s functions:

N−1
σ ({si, τi}) ≡ eΓσ −G0σ

(

eΓσ − I
)

. (10.18)

The notation is eΓσ ≡ diag(eγσs1 , . . . , eγσsn), (G0σ)i,j = g0σ(τi − τj) for i 6= j, (G0σ)i,i =
g0σ(0+). Combining Eqs. (10.14), (10.15), (10.17) and (10.18) we thus obtain the fol-
lowing weight for configuration c = {{τ1, s1}, . . . , {τn, sn}}:

wc = e−K
(Kdτ

2β

)n∏

σ

Z0σ detN−1
σ ({si, τi}). (10.19)

10.3.2 Sampling procedure and detailed balance

For ergodicity it is sufficient to insert/remove spins with random orientation at random
times, because this allows in principle to generate all possible configurations. Further-
more, the random walk in configuration space must satisfy the detailed balance condi-
tion (10.8). Splitting the probability to move from configuration ci to configuration cj
into a probability to propose the move and a probability to accept it,

p(ci → cj) = pprop(ci → cj)p
acc(ci → cj), (10.20)

we arrive at the condition

pacc(ci → cj)

pacc(cj → ci)
=
pprop(cj → ci)

pprop(ci → cj)

|w(cj)|
|w(ci)|

. (10.21)

There is some flexibility in choosing the proposal probabilities. A reasonable choice for
the insertion/removal of a spin is the following (illustrated in Fig. 10.2):

• Insertion
Pick a random time in [0, β) and a random direction for the new spin:
pprop(n→ n+ 1) = (1/2)(dτ/β),

• Removal
Pick a random spin: pprop(n+ 1→ n) = 1/(n+ 1).

For this choice, the ratio of acceptance probabilities becomes

pacc(n→ n+ 1)

pacc(n+ 1→ n)
=

K

n+ 1

∏

σ=↑,↓

| det(N
(n+1)
σ )−1|

| det(N
(n)
σ )−1|

, (10.22)

and the random walk can thus be implemented for example on the basis of the Metropo-
lis algorithm, i.e. the proposed move from n to n± 1 is accepted with probability

min

[

1,
pacc(n→ n± 1)

pacc(n± 1→ n)

]

. (10.23)
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0

0

β

Figure 10.2: Local update in the continuous-time auxiliary field method. The dashed
line represents the imaginary time interval [0, β). We increase the perturbation order
by adding a spin with random orientation at a random time. The perturbation order
is decreased by removing a randomly chosen spin.

10.3.3 Determinant ratios and fast matrix updates

From Eq. (10.22) it follows that each update requires the calculation of a ratio of two
determinants. Computing the determinant of a matrix of size (n × n) is an O(n3)
operation (LU decomposition). The important thing to realize is that each insertion
or removal of a spin merely changes one row and one column of the matrix N−1

σ . We
will now show that it is therefore possible to evaluate the ratio in Eq. (10.22) in a time
O(n2) (insertion) or O(1) (removal).

The objects which are stored and manipulated during the simulation are, besides
the lists of the times {τi} and spins {si}, the matrices Nσ = (eΓσ − G0σ(e

Γσ − I))−1.
Inserting a spin adds a new row and column to N−1

σ . We define the blocks (omitting
the σ index)

(N (n+1))−1 =

(

(N (n))−1 Q
R S

)

, N (n+1) =

(

P̃ Q̃

R̃ S̃

)

, (10.24)

where Q, R, S denote (n × 1), (1 × n), and (1 × 1) matrices, respectively, which
contain the contribution of the added spin. The determinant ratio needed for the
acceptance/rejection probability is then given by

det(N (n+1))−1

det(N (n))−1
=

1

det S̃
= S − [R][N (n)Q]. (10.25)

As we store N (n), computing the acceptance/rejection probability of an insertion move
is an O(n2) operation. If the move is accepted, the new matrix N (n+1) is computed out
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of N (n), Q,R, and S, also in a time O(n2):

S̃ = (S − [R][N (n)Q])−1, (10.26)

Q̃ = −[N (n)Q]S̃, (10.27)

R̃ = −S̃[RN (n)], (10.28)

P̃ = N (n) + [N (n)Q]S̃[RN (n)]. (10.29)

It follows from Eq. (10.25) that the calculation of the determinant ratio for removing a
spin is O(1), since it is just element S̃, and from the above formulas we also immediately
find the elements of the reduced matrix:

N (n) = P̃ − [Q̃][R̃]

S̃
. (10.30)

10.3.4 Measurement of the Green’s function

To compute the contribution of a configuration c to the Green’s function measurement
(10.6), we insert a creation operator d† at time 0 and an annihilation operator d at time
τ ,

gcσ(τ) =
1

wc
Tr
[

e−(β−τn)H1eγsn(n↑−n↓) . . . e−(τk+1−τ)H1dσe
−(τ−τk)H1 . . . eγs1(n↑−n↓)e−τ1H1d†σ

](Kdτ

2β

)n

.

(10.31)
with wc given in Eq. (10.14). The same steps as in section 10.3.1 (Wick’s theorem) then
lead to the expression

gcσ(τ) =
1

detN−1
σ detN−1

σ̄

detN−1
σ̄ det

(

(N
(n)
σ )−1 [g0σ(τi)]

−[g0σ(τ − τj)(eΓσj − 1)] g0σ(τ)

)

= g0σ(τ) + [g0σ(τ − τj)(eΓσj − 1)]N (n)
σ [g0σ(τi)]. (10.32)

The second equality follows from Eq. (10.25) and square brackets denote vectors of
length n. To avoid unnecessary and time consuming summations during the Monte
Carlo simulations, we only accumulate the quantity

Sσ(τ̃ ) ≡
n
∑

k=1

δ(τ̃ − τk)
n
∑

l=1

[

(eΓσ − I)Nσ

]

kl
g0σ(τl), (10.33)

binning the time points τ̃ on a fine grid. After the simulation is completed, the Green’s
function is computed as

gσ(τ) = g0σ(τ) +

∫ β

0

dτ̃g0σ(τ − τ̃)
〈

Sσ(τ̃ )
〉

MC
. (10.34)
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10.3.5 Expansion order and role of the parameter K

It follows from Eq. (10.10) that

〈−H2〉 =
1

β

∫ β

0

dτ〈−H(τ)〉

=
1

β

1

Z

∞
∑

n=0

n+ 1

(n+ 1)!

∫ β

0

dτ

∫ β

0

dτ1 . . .

∫ β

0

dτnTr
[

e−βH1T (−H2(τ))(−H2(τn)) . . . (−H2(τ1))
]

=
1

β

1

Z

∑

c

n(c)wc =
1

β
〈n〉, (10.35)

and because 〈−H2〉 = K/β − U〈n↑n↓ − (n↑ + n↓)/2〉 we conclude that the average
perturbation order 〈n〉 is related to the parameter K and the potential energy by

〈n〉 = K − βU〈n↑n↓ − (n↑ + n↓)/2〉. (10.36)

Increasing K leads to a higher perturbation order (and thus slower matrix updates),
but through Eq. (10.13) also to a smaller value of γ and thus to less polarization of the
auxiliary spins. A K of the order 1 appears to work well. We also learn from Eq. (10.36)
that the average perturbation order grows essentially proportional to U (as expected
for a weak-coupling method), and proportional to inverse temperature.

10.4 “Strong coupling” approach - expansion in the

impurity-bath hybridization

The second diagrammatic method, which is in many ways complementary to the weak-
coupling approach, is based on an expansion of the partition function in powers of the
impurity-bath hybridization V . This method has also been developed very recently, first
for the Anderson impurity model5 and then in a “matrix” formulation which allows to
treat arbitrary impurity models.6

10.4.1 Monte Carlo configurations

Here, we decompose the Hamiltonian asH2 = Hmix andH1 = H−H2 = H0+HU+Hbath.
Since H2 ≡ Hd†

2 +Hd
2 =

∑

σ,p V
σ
p d
†
σap,σ +

∑

σ,p′ V
σ∗
p′ dσa

†
p,σ has two terms, corresponding

to electrons hopping from the bath to the impurity and from the impurity back to
the bath, only even perturbation orders contribute to Eq. (10.10). Furthermore, at
perturbation order 2n only the (2n)!/(n!)2 terms corresponding to n creation operators
d† and n annihilation operators d will contribute. We can therefore write the partition

5P. Werner, A. Comanac, L. de’ Medici, M. Troyer and A. J. Millis, Phys. Rev. Lett. 97, 076405
(2006).

6P. Werner and A. J. Millis, Phys. Rev. B 74, 155107 (2006); K. Haule, Phys. Rev. B 75, 155113
(2007).
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function as a sum over configurations c = {τ1, . . . , τn; τ ′1, . . . , τ ′n}:

Z =

∞
∑

n=0

∫ β

0

dτ1 . . .

∫ β

τn−1

dτn

∫ β

0

dτ ′1 . . .

∫ β

τ ′n−1

dτ ′nTr
[

e−βH1THd
2 (τn)H

d†

2 (τ ′n) . . .H
d
2 (τ1)H

d†

2 (τ ′1)
]

.

(10.37)
Since the time evolution of the Anderson model (given by H1) does not rotate the spin,
there is an additional constraint, namely that both for spin up and spin down, there is
an equal number of creation and annihilation operators. Taking this into account and
writing out the expressions for Hd

2 and Hd†

2 explicitly, we find

Z =
∑

{nσ}

∏

σ

∫ β

0

dτσ1 . . .

∫ β

τσ
nσ−1

dτσnσ

∫ β

0

dτ ′σ1 . . .

∫ β

τ ′σnσ−1

dτ ′σnσ

× Tr
[

e−βH1T
∏

σ

∑

p1,...,pnσ

∑

p′1,...,p
′
nσ

V σ
p1
V σ∗
p′1
...V σ

pnσ
V σ∗
p′nσ

dσ(τ
σ
nσ

)a†σ,pnσ
(τσnσ

)aσ,p′nσ
(τ ′σnσ

)d†σ(τ
′σ
nσ

) . . . dσ(τ
σ
1 )a†σ,p1(τ

σ
1 )aσ,p′1(τ

′σ
1 )d†σ(τ

′σ
1 )
]

.

(10.38)

Now, because the d and a operate on different spaces and H1 does not mix the impurity
and bath states, we can separate the bath and the impurity and write

Z = Zbath

∑

{nσ}

∏

σ

∫ β

0

dτσ1 . . .

∫ β

τσ
nσ−1

dτσnσ

∫ β

0

dτ ′σ1 . . .

∫ β

τ ′σnσ−1

dτ ′σnσ

× Trd

[

e−βHlocT
∏

σ

dσ(τ
σ
nσ

)d†σ(τ
′σ
nσ

) . . . dσ(τ
σ
1 )d†σ(τ

′σ
1 )
]

× 1

Zbath
Tra

[

e−βHbathT
∏

σ

∑

p1,...,pnσ

∑

p′1,...,p
′
nσ

V σ
p1
V σ∗
p′1
...V σ

pnσ
V σ∗
p′nσ

a†σ,pnσ
(τσnσ

)aσ,p′nσ
(τ ′σnσ

) . . . a†σ,p1(τ
σ
1 )aσ,p′1(τ

′σ
1 )
]

, (10.39)

where Zbath = Trae
−βHbath , and Hloc = H0 + HU . Since the bath is non-interacting,

there is a Wick theorem for the bath and Tra[. . .] can be expressed as the determinant
of some matrix, whose size is equal to the perturbation order. To find the elements of
this matrix, it is useful to consider the lowest perturbation order, nσ = 1, nσ̄ = 0. In
this case

∑

p1

∑

p′1

V σ
p1
V σ∗
p′1

1

Zbath

Tra

[

e−βHbathTa†σ,p1(τ
σ
1 )aσ,p′1(τ

′σ
1 )
]

=
∑

p1

|V σ
p1|2

e−ǫp1
β + 1

{

e−ǫp1
(β−(τσ

1 −τ ′σ1 )) τσ1 > τ ′σ1
−e−ǫp1

(τ ′σ1 −τσ
1 ) τσ1 < τ ′σ1

. (10.40)

Note that Zbath =
∏

σ

∏

p(e
−ǫpβ + 1). Introducing the β-antiperiodic hybridization

function

Fσ(τ) =
∑

p

|Vp|2
e−ǫpβ + 1

{

e−ǫp(β−τ) τ > 0
−e−ǫp(−τ) τ < 0

, Fσ(−iωn) =
∑

p

|V σ
p |2

iωn − ǫp
, (10.41)
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which is related to the non-interacting Green’s functionG0σ of Section 10.3 by Fσ(−iωn) =
iωn + µ − U/2 − G0σ(iωn)

−1, the first order result becomes Fσ(τ
σ
1 − τ ′σ1 ). For higher

orders, one obtains

1

Zbath
Tra

[

e−βHbathT
∏

σ

∑

p1,...,pnσ

∑

p′1,...,p
′
nσ

V σ
p1V

σ∗
p′1
...V σ

pnσ
V σ∗
p′nσ

a†σ,pnσ
(τσnσ

)aσ,p′nσ
(τ ′σnσ

) . . . a†σ,p1(τ
σ
1 )aσ,p′1(τ

′σ
1 )
]

=
∏

σ

detM−1
σ ,(10.42)

where M−1
σ is a (nσ × nσ) matrix with elements

M−1
σ (i, j) = Fσ(τ

σ
i − τ ′σj ). (10.43)

In the hybridization expansion method, the configuration space consists of all sequences
c = {τ ↑1 , . . . , τ ↑n↑

; τ ′↑1 , . . . , τ
′↑
n↑
|τ ↓1 , . . . , τ ↓n↓

; τ ′↓1 , . . . , τ
′↓
n↓
}, of n↑ creation and annihilation

operators for spin up (n↑ = 0, 1, . . .), and n↓ creation and annihilation operators for
spin down (n↓ = 0, 1, . . .). The weight of this configuration is

wc = ZbathTrd

[

e−βHlocT
∏

σ

dσ(τ
σ
nσ

)d†σ(τ
′σ
nσ

) . . . dσ(τ
σ
1 )d†σ(τ

′σ
1 )
]

×
∏

σ

detM−1
σ (τσ1 , . . . , τ

σ
nσ

; τ ′σ1 , . . . , τ
′σ
nσ

)(dτ)2nσ . (10.44)

The trace factor represents the contribution of the impurity, which fluctuates between
different quantum states, as electrons hop in and out. The determinants resum all the
bath evolutions which are compatible with the given sequence of transitions.

To evaluate the trace factor, we use the eigenbasis of Hloc, which is |0〉 (energy
E0 = 0), | ↑〉, | ↓〉 (energy E1 = −µ) and | ↑↓〉 (energy E2 = U − 2µ). In this basis, the
time evolution operator e−τHloc = diag(e−τE0, e−τE1, e−τE1 , e−τE2) is diagonal while the
operators dσ and d†σ will produce transitions between eigenstates with amplitude ±1.

Because the time evolution does not flip the spin, the creation and annihilation
operators for given spin have to alternate. This allows us to separate the operators
for spin up from those for spin down and to depict the time evolution by a collection
of segments (each segment representing a time interval in which an electron of spin
up or down resides on the impurity). At each time, the eigenstate of the impurity
follows immediately from the segment representation and we can easily compute the
trace factor as

Trd

[

e−βHlocT
∏

σ

dσ(τ
σ
nσ

)d†σ(τ
′σ
nσ

) . . . dσ(τ
σ
1 )d†σ(τ

′σ
1 )
]

= exp
[

µ(l↑+l↓)−Uloverlap
]

, (10.45)

with lσ the total “length” of the segments for spin σ and loverlap the total length of
the overlap between up and down segments. The lower panel of Fig. 10.3 shows a
configuration with 3 segments for spin up and two segments for spin down; the time
intervals where segments overlap, indicated by gray rectangles, correspond to a doubly
occupied impurity and cost a repulsion energy U .
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Figure 10.3: Local update in the “segment” picture. The two segment configurations
correspond to spin up and spin down. Each segment depicts a time interval in which
an electron of the corresponding spin resides on the impurity (the end points are the
locations of the operators d† and d). We increase the perturbation order by adding a
segment or anti-segment of random length for random spin. The perturbation order is
decreased by removing a randomly chosen segment.

10.4.2 Sampling procedure and detailed balance

For ergodicity, it is sufficient to insert and remove pairs of creation and annihilation
operators (segments or anti-segments) for spin up and down. One possible strategy for
inserting a segment is the following: we pick a random time in [0, β) for the creation
operator. If it falls on an existing segment, the impurity is already occupied and the
move is rejected. If it falls on an empty space, we compute lmax, the length from this
position to the next segment (in the direction of increasing τ). If there are no segments,
lmax = β. The position of the new annihilation operator is then chosen randomly in
this interval of length lmax (see Fig. 10.3). If we propose to remove a randomly chosen
segment for this spin, then the proposal probabilities are

pprop(nσ → nσ + 1) =
dτ

β

dτ

lmax

, (10.46)

pprop(nσ + 1→ nσ) =
1

nσ + 1
, (10.47)

and the ratio of acceptance probabilities therefore becomes

pacc(nσ → nσ + 1)

pacc(nσ + 1→ nσ)
=

βlmax

nσ + 1
eµlnew−Uδloverlap | det(M

(nσ+1)
σ )−1|

| det(M
(nσ)
σ )−1|

. (10.48)

Here, lnew is the length of the new segment, and δloverlap the change in the overlap.
Again, we compute the ratio of determinants using the fast update formulas discussed
in Section 10.3.
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10.4.3 Measurement of the Green’s function

The strategy is to create configurations which contribute to the Green’s function mea-
surement by decoupling the bath from a given pair of creation and annihilation operators
in c. The idea is to write

g(τ) =
1

Z

∑

c

wd(τ)d
†(0)

c =
1

Z

∑

c

w(τ,0)
c

w
d(τ)d†(0)
c

w
(τ,0)
c

, (10.49)

where w
d(τ)d†(0)
c denotes the weight of configuration c with and additional operator

d†(0) and d(τ) in the trace factor, and w
(τ,0)
c the complete weight corresponding to the

enlarged operator sequence (including enlarged hybridization determinants). Since the

trace factors of both weights are identical, and detM−1
c is a minor of det(M

(τ,0)
c )−1, we

find
w
d(τ)d†(0)
c

w
(τ,0)
c

=
detM−1

c

det(M
(τ,0)
c )−1

= (M (τ,0)
c )j,i, (10.50)

with i and j denoting the row and column corresponding to the new operators d† and d
in the enlarged (M

(τ,0)
c )−1. To transform the sum over c into a sum over configurations

c̃ = {c, τi, τ ′j}, the new operators must be free to be anywhere on the imaginary time
interval, which (due to translational invariance) yields a factor 1

β
∆(τ, τi − τ ′j), with

∆(τ, τ ′) =

{

δ(τ − τ ′) τ ′ > 0
−δ(τ − τ ′ − β) τ ′ < 0

. (10.51)

Hence, the measurement formula for the Green’s function becomes

g(τ) =
1

Z

∑

c̃

wc̃
∑

i,j

1

β
∆(τ, τi − τ ′j)(Mc̃)j,i =

〈

∑

i,j

1

β
∆(τ, τi − τ ′j)Mj,i

〉

MC
. (10.52)

Note that if we let all the integrals run from 0 to β, there is a factor 1/(n!)2 in wc and
1/((n + 1)!)2 in wc̃, with n the size of Mc. Changing from a sum over c to a sum over
c̃ therefore adds a factor (n+ 1)2 if we restrict the measurement to a specific pair of d†

and d. Equivalently, we can sum over all the (n+ 1)2 pairs of operators in the enlarged
configuration.

10.4.4 Generalization - Matrix formalism

It is obvious from the derivation in Section 10.4.1 that the hybridization expansion
formalism is applicable to general classes of impurity models. Because the trace factor
in the weight (10.44) is computed exactly, Hloc can contain essentially arbitrary inter-
actions (e. g. spin-exchange terms in multi-orbital models), degrees of freedom (e. g.
spins in Kondo-lattice models) or constraints (e. g. no double occupancy in the t-J
model).

For multi-orbital impurity models with density-density interaction, the segment for-
malism is still applicable: we have now a collection of segments for each flavor α (or-
bital, spin) and the trace factor can still be computed from the length of the segments
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(chemical potential contribution) and the overlaps between segments of different flavor
(interaction terms).

If Hloc is not diagonal in the occupation number basis defined by the d†α, the cal-
culation of Trd

[

e−βHlocT
∏

α dα(τ
α
nα

)d†α(τ
′α
nα

) . . . dσ(τ
α
1 )d†α(τ

′α
1 )
]

becomes more involved.
We now have to compute the trace explicitly in some basis of Hloc – for example the
eigenbasis, in which the time evolution operators e−Hlocτ become diagonal. The opera-
tors dα and d†α are expressed as matrices in this eigenbasis, and the evaluation of the
trace factor thus involves the multiplication of matrices whose size is equal the size of
the Hilbert space of Hloc. Since the dimension of the Hilbert space grows exponentially
with the number of flavors, the calculation of the trace factor becomes the computa-
tional bottleneck of the simulation, and the matrix formalism is therefore restricted to
a relatively small number of flavors (. 10).

An important point, explained in the paper by Haule, is the use of conserved quan-
tum numbers (typically particle number for spin up and spin down, momentum, . . . ). If
the eigenstates of Hloc are grouped according to these quantum numbers, the operator
matrices will acquire a sparse block structure, because for example d†↑,q will connect the
states corresponding to quantum numbers m = {n↑, n↓, K} to those corresponding to
m′ = {n↑ + 1, n↓, K + q} (if they exist). Checking the compatibility of the operator
sequence with a given starting block furthermore allows one to find the (potentially)
contributing quantum number sectors without any matrix multiplications. The evalu-
ation of the trace is thus reduced to a block matrix multiplication of the form

∑

contr.m

Trm

[

. . . (O)m′′,m′(e−(τ ′−τ)Hloc)m′(O)m′,m(e−τHloc)m

]

. (10.53)

10.5 Comparison between the two approaches

The weak and “strong” coupling methods are in many ways complementary and their
respective strengths/weaknesses result from the scaling of the computational effort with
interaction strength and system size. For the Anderson impurity model considered in
these notes, the U dependence of the average perturbation order is shown in Fig. 10.4
(these are dynamical mean field theory calculations for a one-band Hubbard model).7

In the weak-coupling algorithms, where the average perturbation order is related to the
potential energy, one finds a roughly linear increase of the perturbation order with U .
In the hybridization-expansion method, the average perturbation order is related to the
kinetic energy, and decreases as the interaction strength increases. Thus, in single site
models with only density density interactions (where the evaluation of the trace factor
in Eq. (10.44) is cheap), the hybridization expansion method beats the weak coupling
method in the regime of strong correlations.

For more complicated models, which require the matrix formalism discussed in sec-
tion 10.4.4, the hybridization expansion method scales exponentially with system size,
and can only be applied to relatively small systems.8 Here, the weak-coupling approach

7E. Gull, P. Werner, A. J. Millis, and M. Troyer, Phys. Rev. B 76, 235123 (2007).
8While the calculation of the trace over atomic states is time consuming, it also yields useful

information about the system (histogram of visited states).
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Figure 10.4: Average perturbation order for the weak-coupling and strong coupling
(hybridization expansion) algorithm. These results correspond to the DMFT solution
of the one-band Hubbard model with semi-circular density of states of bandwidth 4t,
and temperature β = 1/T = 30. The bath is therefore different for each data point.

– if applicable – becomes the method of choice. Table 10.1 gives a summary of the differ-
ent scalings (assuming diagonal hybridization) and indicates which solver is appropriate
for which type of problem.

solver scaling use for

weak-coupling β3 L3 impurity clusters with density-density
interactions and hopping

hybridization expansion β3 L single site multi-orbital models with
(segment formulation) density-density interaction
hybridization expansion β exp(L) single site multi-orbital models with
(matrix formulation) general Uijkl

Table 10.1: Scaling of the different impurity solvers with inverse temperature and system
size.
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Appendix A

Numerical methods

A.1 Numerical root solvers

The purpose of a root solver is to find a solution (a root) to the equation

f(x) = 0, (A.1)

or in general to a multi-dimensional equation

~f(~x) = 0. (A.2)

Numerical root solvers should be well known from the numerics courses and we will
just review three simple root solvers here. Keep in mind that in any serious calculation
it is usually best to use a well optimized and tested library function over a hand-coded
root solver.

A.1.1 The Newton and secant methods

The Newton method is one of best known root solvers, however it is not guaranteed to
converge. The key idea is to start from a guess x0, linearize the equation around that
guess

f(x0) + (x− x0)f
′(x0) = 0 (A.3)

and solve this linearized equation to obtain a better estimate x1. Iterating this procedure
we obtain the Newton method:

xn+1 = xn −
f(xn)

f ′(xn)
. (A.4)

If the derivative f ′ is not known analytically, as is the case in our shooting problems,
we can estimate it from the difference of the last two points:

f ′(xn) ≈
f(xn)− f(xn−1)

xn − xn−1
(A.5)

Substituting this into the Newton method (A.4) we obtain the secant method:

xn+1 = xn − (xn − xn−1)
f(xn)

f(xn)− f(xn−1)
. (A.6)
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The Newton method can easily be generalized to higher dimensional equations, by
defining the matrix of derivatives

Aij(~x) =
∂fi(~x)

∂xj
(A.7)

to obtain the higher dimensional Newton method

~xn+1 = ~xn − A−1 ~f(~x) (A.8)

If the derivatives Aij(~x) are not known analytically they can be estimated through finite
differences:

Aij(~x) =
fi(~x+ hj~ej)− fi(~x)

hj
with hj ≈ xj

√
ε (A.9)

where ε is the machine precision (about 10−16 for double precision floating point num-
bers on most machines).

A.1.2 The bisection method and regula falsi

Both the bisection method and the regula falsi require two starting values x0 and x1

surrounding the root, with f(x0) < 0 and f(x1) > 0 so that under the assumption of a
continuous function f there exists at least one root between x0 and x1.

The bisection method performs the following iteration

1. define a mid-point xm = (x0 + x1)/2.

2. if signf(xm) = signf(x0) replace x0 ← xm otherwise replace x1 ← xm

until a root is found.
The regula falsi works in a similar fashion:

1. estimate the function f by a straight line from x0 to x1 and calculate the root of
this linearized function: x2 = (f(x0)x1 − f(x1)x0)/(f(x1)− f(x0)

2. if signf(x2) = signf(x0) replace x0 ← x2 otherwise replace x1 ← x2

In contrast to the Newton method, both of these two methods will always find a
root.

A.1.3 Optimizing a function

These root solvers can also be used for finding an extremum (minimum or maximum)
of a function f(~x), by looking a root of

∇f(~x) = 0. (A.10)

While this is efficient for one-dimensional problems, but better algorithms exist.
In the following discussion we assume, without loss of generality, that we want to

minimize a function. The simplest algorithm for a multi-dimensional optimization is
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steepest descent, which always looks for a minimum along the direction of steepest
gradient: starting from an initial guess ~xn a one-dimensional minimization is applied
to determine the value of λ which minimizes

f(~xn + λ∇f(~xn)) (A.11)

and then the next guess ~xn+1 is determined as

~xn+1 = ~xn + λ∇f(~xn) (A.12)

While this method is simple it can be very inefficient if the “landscape” of the
function f resembles a long and narrow valley: the one-dimensional minimization will
mainly improve the estimate transverse to the valley but takes a long time to traverse
down the valley to the minimum. A better method is the conjugate gradient algo-
rithm which approximates the function locally by a paraboloid and uses the minimum
of this paraboloid as the next guess. This algorithm can find the minimuim of a long
and narrow parabolic valley in one iteration! For this and other, even better, algorithms
we recommend the use of library functions.

One final word of warning is that all of these minimizers will only find a local
minimum. Whether this local minimum is also the global minimum can never be
decided by purely numerically. A necessary but never sufficient check is thus to start
the minimization not only from one initial guess but to try many initial points and
check for consistency in the minimum found.

A.2 The Lanczos algorithm

Sparse matrices with only O(N) non-zero elements are very common in scientific simu-
lations. We have already encountered them in the winter semester when we discretized
partial differential equations. Now we have reduced the transfer matrix of the Ising
model to a sparse matrix product. We will later see that also the quantum mechanical
Hamilton operators in lattice models are sparse.

The importance of sparsity becomes obvious when considering the cost of matrix
operations as listed in table A.1. For large N the sparsity leads to memory and time
savings of several orders of magnitude.

Here we will discuss the iterative calculation of a few of the extreme eigenvalues of
a matrix by the Lanczos algorithm. Similar methods can be used to solve sparse linear
systems of equations.

To motivate the Lanczos algorithms we will first take a look at the power method
for a matrix A. Starting from a random initial vector u1 we calculate the sequence

un+1 =
Aun
||Aun||

, (A.13)

which converges to the eigenvector of the largest eigenvalue of the matrix A. The
Lanczos algorithm optimizes this crude power method.

c



Table A.1: Time and memory complexity for operations on sparse and dense N × N
matrices
operation time memory
storage
dense matrix — N2

sparse matrix — O(N)
matrix-vector multiplication
dense matrix O(N2) O(N2)
sparse matrix O(N) O(N)
matrix-matrix multiplication
dense matrix O(N ln 7/ ln 2) O(N2)
sparse matrix O(N) . . .O(N2) O(N) . . .O(N2)
all eigen values and vectors
dense matrix O(N3) O(N2)
sparse matrix (iterative) O(N2) O(N2)
some eigen values and vectors
dense matrix (iterative) O(N2) O(N2)
sparse matrix (iterative) O(N) O(N)

Lanczos iterations

The Lanczos algorithm builds a basis {v1, v2, . . . , vM} for the Krylov-subspace KM =
span{u1, u2, . . . , uM}, which is constructed by M iterations of equation (A.13). This is
done by the following iterations:

βn+1vn+1 = Avn − αnvn − βnvn−1, (A.14)

where
αn = v†nAvn, βn = |v†nAvn−1|. (A.15)

As the orthogonality condition
v†i vj = δij (A.16)

does not determine the phases of the basis vectors, the βi can be chosen to be real and
positive. As can be seen, we only need to keep three vectors of size N in memory, which
makes the Lanczos algorithm very efficient, when compared to dense matrix eigensolvers
which require storage of order N2.

In the Krylov basis the matrix A is tridiagonal

T (n) :=

















α1 β2 0 · · · 0

β2 α2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . βn

0 · · · 0 βn αn

















. (A.17)

The eigenvalues {τ1, . . . , τM} of T are good approximations of the eigenvalues of A.
The extreme eigenvalues converge very fast. Thus M ≪ N iterations are sufficient to
obtain the extreme eigenvalues.
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Eigenvectors

It is no problem to compute the eigenvectors of T . They are however given in the
Krylov basis {v1, v2, . . . , vM}. To obtain the eigenvectors in the original basis we need
to perform a basis transformation.

Due to memory constraints we usually do not store all the vi, but only the last three
vectors. To transform the eigenvector to the original basis we have to do the Lanczos
iterations a second time. Starting from the same initial vector v1 we construct the
vectors vi iteratively and perform the basis transformation as we go along.

Roundoff errors and ghosts

In exact arithmetic the vectors {vi} are orthogonal and the Lanczos iterations stop after
at most N − 1 steps. The eigenvalues of T are then the exact eigenvalues of A.

Roundoff errors in finite precision cause a loss of orthogonality. There are two ways
to deal with that:

• Reorthogonalization of the vectors after every step. This requires storing all of
the vectors {vi} and is memory intensive.

• Control of the effects of roundoff.

We will discuss the second solution as it is faster and needs less memory. The main
effect of roundoff errors is that the matrix T contains extra spurious eigenvalues, called
“ghosts”. These ghosts are not real eigenvalues of A. However they converge towards
real eigenvalues of A over time and increase their multiplicities.

A simple criterion distinguishes ghosts from real eigenvalues. Ghosts are caused by
roundoff errors. Thus they do not depend on on the starting vector v1. As a consequence
these ghosts are also eigenvalues of the matrix T̃ , which can be obtained from T by
deleting the first row and column:

T̃ (n) :=

















α2 β3 0 · · · 0

β3 α3
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . βn

0 · · · 0 βn αn

















. (A.18)

From these arguments we derive the following heuristic criterion to distinguish ghosts
from real eigenvalues:

• All multiple eigenvalues are real, but their multiplicities might be too large.

• All single eigenvalues of T which are not eigenvalues of T̃ are also real.

Numerically stable and efficient implementations of the Lanczos algorithm can be
obtained from netlib or fromhttp://www.comp-phys.org/software/ietl/ .
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