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Problem 1.1 1-D quantum scattering problem

We consider a particle in one dimension, which is scattered at a potential barrier. This
problem can be numerically solved using the Numerov algorithm.
Proceed as described in the lecture notes in section 3.1.2. You can use a constant potential
(V = 1) in the interval [0, a].

1. Observe the tunneling effect for energies E ∈ [0, V ], where the transmission proba-
bility T = 1/|A|2 is non-vanishing.

2. Plot T versus the barrier width a and observe the exponential decay.

This dependency T (a) plays a crucial role for the realization of the scanning tunneling
microscope (STM). (Review of Modern Physics 59, 615 (1987). Nobel prize 1986).

Problem 1.2 Bound states in 1-D Schrödinger equation and eigenvalue
problem

Find the bound states solutions of the 1D Schrödinger equation with E < 0 using the
Numerov algorithm and a root solver. Note that the solution exists only for discrete
energy eigenvalues.
Proceed as described in lecture notes in section 3.1.3.
Take the potential zero outside the interval [0,1] and inside the interval it can be taken as

v(x) = c(x2 − x), 0 ≤ x ≤ 1, (1)

where c is a constant. Please check the dependency of the number of bound states on the
values of c.

Start with finding the ground state energy (zero node in your solution) and proceed fur-
ther with 1, 2, 3... nodes.
Hint: Check the number of zeros (nodes) in the solution. For your guessed energy, if you
find more nodes in your solution than the desired number of nodes, decrease the guess-
energy and vice versa.



Chapter 3

The quantum one-body problem

3.1 The time-independent 1D Schrödinger equation

We start the numerical solution of quantum problems with the time-indepent one-
dimensional Schrödinger equation for a particle with mass m in a Potential V (x). In
one dimension the Schrödinger equation is just an ordinary differential equation

− ~2

2m

∂2ψ

∂x2
+ V (x)ψ(x) = Eψ(x). (3.1)

We start with simple finite-difference schemes and discretize space into intervals of
length ∆x and denote the space points by

xn = n∆x (3.2)

and the wave function at these points by

ψn = ψ(xn). (3.3)

3.1.1 The Numerov algorithm

After rewriting the second order differential equation to a coupled system of two first
order differential equations, any ODE solver such as the Runge-Kutta method could be
applied, but there exist better methods. For the special form

ψ′′(x) + k(x)ψ(x) = 0, (3.4)

of the Schrödinger equation, with k(x) = 2m(E−V (x))/~2 we can derive the Numerov
algorithm by starting from the Taylor expansion of ψn:

ψn±1 = ψn ±∆xψ′n +
∆x2
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Adding ψn+1 and ψn−1 we obtain

ψn+1 + ψn−1 = 2ψn + (∆x)2ψ′′n +
(∆x)4
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ψ(4)
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Replacing the fourth derivatives by a finite difference second derivative of the second
derivatives

ψ(4)
n =

ψ′′n+1 + ψ′′n−1 − 2ψ′′n
∆x2

(3.7)

and substituting −k(x)ψ(x) for ψ′′(x) we obtain the Numerov algorithm
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)

ψn−1 + O(∆x6), (3.8)

which is locally of sixth order!

Initial values

To start the Numerov algorithm we need the wave function not just at one but at two
initial values and will now present several ways to obtain these.

For potentials V (x) with reflection symmetry V (x) = V (−x) the wave functions
need to be either even ψ(x) = ψ(−x) or odd ψ(x) = −ψ(−x) under reflection, which
can be used to find initial values:

• For the even solution we use a half-integer mesh with mesh points xn+1/2 =
(n + 1/2)∆x and pick initial values ψ(x−1/2) = ψ(x1/2) = 1.

• For the odd solution we know that ψ(0) = −ψ(0) and hence ψ(0) = 0, specifying
the first starting value. Using an integer mesh with mesh points xn = n∆x we
pick ψ(x1) = 1 as the second starting value.

In general potentials we need to use other approaches. If the potentials vanishes for
large distances: V (x) = 0 for |x| ≥ a we can use the exact solution of the Schrödinger
equation at large distances to define starting points, e.g.

ψ(−a) = 1 (3.9)

ψ(−a−∆x) = exp(−∆x
√

2mE/~). (3.10)

Finally, if the potential never vanishes we need to begin with a single starting value
ψ(x0) and obtain the second starting value ψ(x1) by performing an integration over the
first time step ∆τ with an Euler or Runge-Kutta algorithm.

3.1.2 The one-dimensional scattering problem

The scattering problem is the numerically easiest quantum problem since solutions
exist for all energies E > 0, if the potential vanishes at large distances (V (x) → 0 for
|x| → ∞). The solution becomes particularly simple if the potential is nonzero only
on a finite interval [0, a]. For a particle approaching the potential barrier from the left
(x < 0) we can make the following ansatz for the free propagation when x < 0:

ψL(x) = A exp(−iqx) +B exp(iqx) (3.11)
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where A is the amplitude of the incoming wave and B the amplitude of the reflected
wave. On the right hand side, once the particle has left the region of finite potential
(x > a), we can again make a free propagation ansatz,

ψR(x) = C exp(−iqx) (3.12)

The coefficients A, B and C have to be determined self-consistently by matching to a
numerical solution of the Schrödinger equation in the interval [0, a]. This is best done
in the following way:

• Set C = 1 and use the two points a and a+ ∆x as starting points for a Numerov
integration.

• Integrate the Schrödinger equation numerically – backwards in space, from a to
0 – using the Numerov algorithm.

• Match the numerical solution of the Schrödinger equation for x < 0 to the free
propagation ansatz (3.11) to determine A and B.

Once A and B have been determined the reflection and transmission probabilities R
and T are given by

R = |B|2/|A|2 (3.13)

T = 1/|A|2 (3.14)

3.1.3 Bound states and solution of the eigenvalue problem

While there exist scattering states for all energies E > 0, bound states solutions of the
Schrödinger equation with E < 0 exist only for discrete energy eigenvalues. Integrating
the Schrödinger equation from −∞ to +∞ the solution will diverge to ±∞ as x→∞
for almost all values. These functions cannot be normalized and thus do not constitute
solutions to the Schrödinger equation. Only for some special eigenvalues E, will the
solution go to zero as x→∞.

A simple eigensolver can be implemented using the following shooting method, where
we again will assume that the potential is zero outside an interval [0, a]:

• Start with an initial guess E

• Integrate the Schrödinger equation for ψE(x) from x = 0 to xf ≫ a and determine
the value ψE(xf )

• use a root solver, such as a bisection method (see appendix A.1), to look for an
energy E with ψE(xf) ≈ 0

This algorithm is not ideal since the divergence of the wave function for x ± ∞ will
cause roundoff error to proliferate.

A better solution is to integrate the Schrödinger equation from both sides towards
the center:

• We search for a point b with V (b) = E
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• Starting from x = 0 we integrate the left hand side solution ψL(x) to a chosen point
b and obtain ψL(b) and a numerical estimate for ψ′L(b) = (ψL(b)−ψL(b−∆x))/∆x.

• Starting from x = a we integrate the right hand solution ψR(x) down to the same
point b and obtain ψR(b) and a numerical estimate for ψ′R(b) = (ψR(b + ∆x) −
ψR(b))/∆x.

• At the point b the wave functions and their first two derivatives have to match,
since solutions to the Schrödinger equation have to be twice continuously differen-
tiable. Keeping in mind that we can multiply the wave functions by an arbitrary
factor we obtain the conditions

ψL(b) = αψR(b) (3.15)

ψ′L(b) = αψ′R(b) (3.16)

ψ′′L(b) = αψ′′R(b) (3.17)

The last condition is automatically fulfilled since by the choice V (b) = E the
Schrödinger equation at b reduces to ψ′′(b) = 0. The first two conditions can be
combined to the condition that the logarithmic derivatives vanish:

d logψL
dx

|x=b =
ψ′L(b)

ψL(b)
=
ψ′R(b)

ψR(b)
=
d logψR
dx

|x=b (3.18)

• This last equation has to be solved for in a shooting method, e.g. using a bisection
algorithm

Finally, at the end of the calculation, normalize the wave function.

3.2 The time-independent Schrödinger equation in

higher dimensions

The time independent Schrödinger equation in more than one dimension is a partial
differential equation and cannot, in general, be solved by a simple ODE solver such as
the Numerov algorithm. Before employing a PDE solver we should thus always first try
to reduce the problem to a one-dimensional problem. This can be done if the problem
factorizes.

3.2.1 Factorization along coordinate axis

A first example is a three-dimensional Schrödinger equation in a cubic box with potential
V (~r) = V (x)V (y)V (z) with ~r = (x, y, z). Using the product ansatz

ψ(~r) = ψx(x)ψy(y)ψz(z) (3.19)

the PDE factorizes into three ODEs which can be solved as above.
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