Group theory

Example:
$$C_{4v}$$
 symmetry operation of square

$$C_{4v} = \{E, C_4, C_4^{-1}, C_2, \sigma_h, \sigma'_h, \sigma_d, \sigma'_d\}$$

$$C_4 \cdot C_4 = C_2 \qquad \underbrace{\sigma_h \cdot C_4 = \sigma'_d \quad C_4 \cdot \sigma_h = \sigma_d}_{\sigma_h \cdot C_4 \neq C_4 \cdot \sigma_h}$$
non-abelian

Group theory

 $\mathcal{G}'\subset\mathcal{G}$ subgroup: group \mathcal{G}' subset of \mathcal{G} $C_{4} = \{E, C_{4}, C_{4}^{-1}, C_{2}\}$ $C_{2v} = \{E, C_{2}, \sigma_{h}, \sigma_{h}'\}$ $\subset C_{4v}$ examples: $C_2 = \{E, C_2\}$ C_2 C_{4v} C_4 C_{2v}

number of elements: $|\mathcal{G}'|$ devides $|\mathcal{G}|$

Group representation

linear transformations: consider *n*-dimensional vector space $\mathcal{V} = \{|1\rangle, |2\rangle, ..., |n\rangle\}$ transformations on \mathcal{V} by unitary *n x n*-matrices $|k'\rangle = g|k\rangle = \sum_{j} M_{k'j}(g)|j\rangle$ matrices \hat{M} satisfies all properties of a group

representation mapping (homomorphism) of group \mathcal{G} on $n \times n$ -matrices in \mathcal{V} $g \rightarrow \hat{M}(g)$ conserving group structure \rightarrow representation of \mathcal{G} $\hat{M}(E) = \hat{1}_{n \times n}$ $\hat{M}(g^{-1}) = \hat{M}(g)^{-1}$

equivalent representations: $\hat{M}'(g) = \hat{U}\hat{M}(g)\hat{U}^{-1}$ basis transformation \hat{U} characters: $\chi(g) = tr\hat{M}(g)$ independent of basis

Group representation

irreducible representation: independent of basis $\{\hat{M}(g)\}$ connects whole $\, \mathcal{V} \,$

trivial representation: n = 1 $g \rightarrow \hat{M}(g) = 1$

example:
$$C_{4v}$$
 \hat{M} transformation of $\{\vec{a}_x, \vec{a}_y\}$
 $\vec{a}_y = (0,1)$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} C_4 \rightarrow \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} C_4^{-1} \rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} C_2 \rightarrow \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\sigma_h \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \sigma'_h \rightarrow \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \sigma_d \rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \sigma'_d \rightarrow \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

character table

	E	C_4	C_{4}^{-1}	C_2	σ_h	σ_h'	σ_d	σ_d'	basis function
A_1	1	1	1	1	1	1	1	1	1
A_2	1	1	1	1	-1	-1	-1	-1	$xy(x^2 - y^2)$
B_1	1	-1	-1	1	1	1	-1	-1	$x^2 - y^2$
B_2	1	-1	-1	1	-1	-1	1	1	xy
E	2	0	0	-2	0	0	0	0	$\{x,y\}$

Group representation & quantum mechanics

symmetry operations of Hamiltonian form a group $\mathcal{G} = \{\hat{S}_1, \ldots\}$ Hilbertspace is vector space $\{|\psi_1\rangle, \ldots\}$

stationary states: $\mathcal{H}|\phi_n\rangle = \epsilon_n |\phi_n\rangle$ $[\hat{S}, \mathcal{H}] = 0 \longrightarrow \mathcal{H}\hat{S}|\phi_n\rangle = \hat{S}\mathcal{H}|\phi_n\rangle = \epsilon_n \hat{S}|\phi_n\rangle$ $|\phi_n\rangle$ and $|\phi'_n\rangle = \hat{S}|\phi_n\rangle$ degenerate

degenerate states form a vector space with an irred. representation of ${\cal G}$

$$\{|\phi_1
angle,\ldots,|\phi_m
angle\}$$
 with $\hat{S}|\phi_k
angle=\sum_{k'=1}^m M_{kk'}|\phi_{k'}
angle$

dimension *m* of representation = degeneracy

Group representation & quantum mechanics

symmetry lowering $\ C_{4v} o C_{2v}$

$$\begin{array}{c|c|c} C_{4v} & C_{2v} \\ \hline A_1 & A_1' \\ A_2 & B_1' \\ B_1 & A_1' \\ B_2 & B_1' \\ E & A_2' \oplus B_2' \\ \end{array}$$

splitting of degeneracy through symmetry lowering

