Exercise sheet IX

due 6.5.2008.

Problem 1 [Spinors]: Let \vec{e} be a fixed unit vector in \mathbb{R}^{3}. A spin $1 / 2$ particle is in a state χ for which

$$
\begin{equation*}
\langle\vec{\sigma}\rangle=\vec{e}, \tag{1}
\end{equation*}
$$

where $\vec{\sigma}$ are the Pauli matrices.
(i) First we want to determine the state χ. Show that eq. (1) implies that

$$
\begin{equation*}
(\vec{e} \cdot \vec{\sigma}) \chi=\chi . \tag{2}
\end{equation*}
$$

Then solve (2) as a straightforward eigenvalue problem for $\vec{e} \cdot \vec{\sigma}$, and calculate χ.
(ii) What is the probability that the measurement of the observable S_{z} (z-component of spin) in the above state yields the value $\hbar / 2$.

Problem 2 [Clebsch-Gordon coefficients]:
(i) Prove that the Clebsch-Gordon coefficients for the decomposition of the tensor product of spin l and spin $1 / 2$ to spin $l+1 / 2$ are explicitly given by

$$
\left\langle l, \frac{1}{2}, m \mp \frac{1}{2}, \left. \pm \frac{1}{2} \right\rvert\, l, \frac{1}{2}, l+\frac{1}{2}, m\right\rangle=\sqrt{\frac{l \pm m+\frac{1}{2}}{2 l+1}} .
$$

Hint: consider expressions of the form $\left\langle j_{1} j_{2} m_{1} m_{2}\right| M_{ \pm}\left|j_{1} j_{2} j m\right\rangle$ and let $M_{ \pm}$act to the left and to the right. Derive recursion relations and use induction on m. Start the induction by considering a state with $m=j-1$. In order to identify states in the two bases look at states of highest spin.
(ii) An electron in the hydrogen atom is in an orbital angular momentum state with $l=1$. Find the eigenstates of the total (orbital and spin) angular momentum $\left|j, j_{z}\right\rangle$ in $D_{\frac{3}{2}}$ in terms of those labelled by $|m, s\rangle$, where m and s are the z-components of the orbital and spin angular momentum operators, respectively.

