Exercise sheet VIII

due 29.4.2008.

Problem 1 [Isotropic harmonic oscillator]:
Solve Schrödinger's equation for the 3 d isotropic harmonic oscillator $V(r)=\frac{1}{2} m \omega^{2} r^{2}$ by making use of the spherical symmetry of the problem.
(i) Assume that the eigenfunctions of the Hamiltonian H are of the form

$$
\psi(r, \theta, \phi)=f(r) r^{l} \exp \left(-\frac{m \omega}{2 \hbar} r^{2}\right) Y_{l}^{m}(\theta, \phi)
$$

Rewrite H in spherical coordinates,

$$
H=\frac{p_{r}^{2}}{2 m}+\frac{\mathbf{L}^{2}}{2 m r^{2}}+V(r)
$$

where $\left(p_{r}=\frac{\hbar}{i}\left(\frac{1}{r}+\frac{\partial}{\partial r}\right)\right)$ and deduce a differential equation for $f(r)$.
(ii) Define $u(r)=r f(r)$ and derive the differential equation for u. Note that it is helpful to perform a change of variables, taking $\rho=r / b$, with the oscillator length $b=\sqrt{\hbar / m \omega}$.
(iii) Make a power series ansatz for $f(r)=\sum_{\nu=0} a_{\nu} \rho^{\nu}$. Why can the series only contain even powers and only a finite number of them, i.e. $f(r)=\sum_{\nu=0}^{K} a_{2 \nu} \rho^{2 \nu}$? Derive the recursion relation for the coefficients a_{ν} and determine the possible energies, $E \equiv E(n, l)(n=\nu+1)$. Compare to the results obtained earlier in Problem 2, Exercise sheet VI.

Problem 2 [Lenz-Runge vector]:
The Hydrogen atom has a dynamical symmetry that is bigger than the obvious $\mathrm{SO}(3)$ rotation symmetry of the Hamiltonian

$$
H=\frac{\mathbf{p}^{2}}{2 \mu}-\frac{\kappa}{r} .
$$

The additional symmetry generators are given by the components of the Lenz-Runge vector

$$
\begin{equation*}
\mathbf{J}=\frac{1}{2 \mu}(\mathbf{p} \wedge \mathbf{L}-\mathbf{L} \wedge \mathbf{p})-\frac{\kappa}{r} \mathbf{x} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{L}=\mathbf{x} \wedge \mathbf{p} \tag{2}
\end{equation*}
$$

is the angular momentum operator and we have the usual commutation relations

$$
\left[x_{i}, p_{j}\right]=i \hbar \delta_{i j} .
$$

(i) Show that \mathbf{J} commutes with the Hamiltonian H. [Hint: Evaluate first the commutation relations between the components of \mathbf{L} and the components of \mathbf{x} and \mathbf{p}.] Determine also the commutation relations between the components of \mathbf{L} and the components of \mathbf{J}.
(ii) Show that

$$
\begin{equation*}
\mathbf{J} \cdot \mathbf{L}=0, \quad \mathbf{J}^{2}=\frac{2 H}{\mu}\left(\mathbf{L}^{2}+\hbar^{2}\right)+\kappa^{2} \tag{3}
\end{equation*}
$$

Note that the term proportional to \hbar^{2} is a 'quantum correction' that is not present in the corresponding classical calculation.
(iii) Determine the commutation relations

$$
\begin{equation*}
\left[J_{i}, J_{j}\right]=-\frac{2 H}{\mu} i \hbar \varepsilon_{i j k} L_{k} . \tag{4}
\end{equation*}
$$

Thus the generators L_{i} and J_{j} form a Lie algebra.
(iv) Restrict the action of \mathbf{J} to the subspace of states where the eigenvalue of H is negative. Then define the generators

$$
\begin{equation*}
M_{i}=\frac{1}{\hbar} L_{i}, \quad K_{j}=\sqrt{\frac{\mu}{-2 H}} \hbar J_{j} \tag{5}
\end{equation*}
$$

and show that the generators

$$
\begin{equation*}
\mathbf{S}=\frac{1}{2}(\mathbf{M}+\mathbf{K}), \quad \text { and } \quad \mathbf{D}=\frac{1}{2}(\mathbf{M}-\mathbf{K}) \tag{6}
\end{equation*}
$$

define two commuting su(2) subalgebras. The total Lie algebra is therefore isomorphic to $\mathrm{so}(4)=\mathrm{su}(2) \oplus \mathrm{su}(2)$.

