Exercise sheet VII

due 22.4.2008.

Problem 1 [Angular momentum]: The angular momentum operator is defined by

$$
\begin{equation*}
\vec{L}=\vec{r} \wedge \vec{p}, \tag{1}
\end{equation*}
$$

thus being a vector operator with components

$$
\begin{equation*}
L_{i}=\varepsilon_{i j k} r_{j} p_{k} \tag{2}
\end{equation*}
$$

with the convention that there is a sum over double indices and where we have used the totally antisymmetric tensor $\varepsilon_{i j k} . \quad\left(\varepsilon_{123}=+1\right.$, and $\varepsilon_{i j k}$ is the sign of the permutation $(123) \rightarrow(i j k)$. One easily checks that $\varepsilon_{i j k} \varepsilon_{l m k}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}$.)
(i) Using $\left[r_{i}, p_{j}\right]=i \hbar \delta_{i j}$, derive the commutation relations

$$
\begin{equation*}
\left[L_{i}, L_{j}\right]=i \hbar \varepsilon_{i j k} L_{k} \tag{3}
\end{equation*}
$$

and show that

$$
\begin{equation*}
\left[L_{3}, \vec{L}^{2}\right]=0 \tag{4}
\end{equation*}
$$

where $\vec{L}^{2}=\sum_{i} L_{i} L_{i}$.
(ii) Evaluate $\left[L_{3}, L_{1} L_{2}+L_{2} L_{1}\right]$ and deduce that in an eigenstate $|l, m\rangle$ of both \vec{L}^{2} and L_{3} with eigenvalues $\hbar^{2} l(l+1)$ and $\hbar m$, respectively, the expectation values of L_{1}^{2} and L_{2}^{2} are given by

$$
\begin{equation*}
\langle l, m| L_{1}^{2}|l, m\rangle=\langle l, m| L_{2}^{2}|l, m\rangle=\frac{1}{2} \hbar^{2}\left[l(l+1)-m^{2}\right] . \tag{5}
\end{equation*}
$$

Hint: If ψ is an eigenstate of the self-adjoint operator \mathbf{A}, show that, for any operator \mathbf{B},

$$
\langle\psi \mid[\mathbf{A}, \mathbf{B}] \psi\rangle=0 .
$$

Problem $2[S O(4)]$: Construct the Lie algebra of $S O(4)$,

$$
s o(4)=\left\{\left.\dot{\gamma}(t)\right|_{t=0}: \gamma(t) \text { differentiable path in } S O(4), \gamma(0)=i d\right\}
$$

First find a basis for the vector space so(4), and then determine the commutators of these basis vetors. Finally, prove that $s o(4)$ is equivalent, as a Lie algebra, to $s u(2) \oplus s u(2)$.
Hint: Find an obvious subset of generators that satify the $s u(2)$ commutation relations. Calculate the commutators with the other generators, and construct two commuting sets of $s u(2)$ generators.

Problem 3 [Pauli matrices]: The Pauli matrices $\vec{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ define a basis for the Lie algebra of $s u(2)$. They are explicitly given as

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

(i) Show that

$$
\begin{equation*}
\sigma_{i} \sigma_{j}=\delta_{i j}+i \epsilon_{i j k} \sigma_{k} \tag{6}
\end{equation*}
$$

(ii) We define the exponential of these Lie algebra elements by

$$
\begin{equation*}
U(\omega \vec{n})=\exp \left(-i \frac{\omega}{2} \vec{n} \cdot \vec{\sigma}\right) \tag{7}
\end{equation*}
$$

Show that

$$
\begin{equation*}
U(\omega \vec{n})=\cos (\omega / 2) \mathbf{1}_{2}-i \sin (\omega / 2)(\vec{n} \cdot \vec{\sigma}) . \tag{8}
\end{equation*}
$$

Verify that $U(\omega \vec{n})$ is an element of the group $S U(2)$.
(iii) Regarded as an element of $S O(3)$, show that (7) describes the rotation by ω around the axis \vec{n}.

Hint: Use the isomorphism $S U(2) /\{ \pm \mathbf{1}\} \simeq S O(3)$ and calculate $\tilde{x}^{\prime}=U \tilde{x} U^{\dagger}$.

