Exercise sheet V

due 8.4.2008.

Problem 1 [Uncertainty relation I]: Recall from the lectures that the n-th eigenfunction of the particle confined to the one-dimensional box is

$$
\begin{equation*}
\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right), \quad 0 \leq x \leq a \tag{1}
\end{equation*}
$$

(i) Show that the expectation values in the state ψ_{n} satisfies

$$
\begin{equation*}
\langle x\rangle_{n}=\frac{a}{2}, \quad\left\langle(x-\langle x\rangle)^{2}\right\rangle_{n}=\frac{a^{2}}{12}\left(1-\frac{6}{n^{2} \pi^{2}}\right) . \tag{2}
\end{equation*}
$$

(ii) Determine also the expectation values and the variance of p in the state ψ_{n}, and confirm the Heisenberg uncertainty relation $\Delta x \cdot \Delta p \geq \hbar / 2$. Here the variance of a variable A in the state Ψ is defined to be

$$
\begin{equation*}
\Delta A_{\Psi}=\sqrt{\left\langle A^{2}\right\rangle_{\Psi}-\langle A\rangle_{\Psi}^{2}} \tag{3}
\end{equation*}
$$

Problem 2 [Uncertainty relation II]: A particle of mass m moves in one dimension subject to the potential $\frac{1}{2} k x^{2}(k>0)$. Express the expectation value of the energy E in terms of $\langle x\rangle,\langle p\rangle, \Delta x$ and Δp. Hence, using the uncertainty relation $\Delta x \cdot \Delta p \geq \hbar / 2$, show that

$$
\begin{equation*}
\langle E\rangle \geq \frac{1}{2} \hbar\left(\frac{k}{m}\right)^{1 / 2} \tag{4}
\end{equation*}
$$

This implies that there is a nonzero lower bound for the energy.
Problem 3 [Commutator Algebra]: Let A,B,C be linear operators. Show the following commutator relations:
(i) $[A, B C]=[A, B] C+B[A, C]$ and $[A B, C]=[A, C] B+A[B, C]$.
(ii) Suppose that $[A,[A, B]]=0=[B,[A, B]]$. Show that

$$
\left[A, B^{n}\right]=n B^{n-1}[A, B], \quad\left[A^{n}, B\right]=n A^{n-1}[A, B]
$$

(iii) If A and B are as in part (ii), prove that $e^{A} e^{B}=e^{A+B+[A, B] / 2}$.

Hint: Define $f(t)=e^{t A} e^{t B} e^{-t(A+B)}$ and show that $f^{\prime}=t[A, B] f$. Integrate.

