Exercise sheet IV

due 1.4.2008.

Problem 1 [Measurement, two-level-system]: Consider a system given by the Hamiltonian

$$
H=\left(\begin{array}{cc}
\varepsilon & -\gamma \tag{1}\\
-\gamma & \varepsilon
\end{array}\right)
$$

where the two states $\psi_{l}=\binom{1}{0}, \psi_{r}=\binom{0}{1}$ may have the meaning of particle position in a box with two panels (left and right). The $\psi_{i}(i=l, r)$ can thus be considered as eigenstates of some panel operator A with eigenvalues ± 1.
(i) Compute the eigenvalues E_{1}, E_{2} and eigenstates of H as well as the commutator $[H, A]$.
(ii) At $t=0$ a position measurement yielded the state ψ_{l} (i.e. the particle was located in the left panel). Determine the probability that a energy measurement at $t=t^{\prime}$ yields E_{1} and E_{2}.
(iii) At $t=0$ a position measurement yielded the state ψ_{l}. Determine the probability that at $t=t^{\prime}$ a repeated position measurement yields $\psi_{i}, i=l, r$.

Problem 2 [Square well potential, resonance, wave packet]: Consider a square well potential $V(x)=-V_{0}$ for $|x| \leq a$ and $V(x)=0$ otherwise. We are considering an incident particle (with energy $E>0$) from the left, scattering to a reflected and transmitted wave, i.e.

$$
\begin{aligned}
& \psi(x)=e^{i k x}+r e^{-i k x} \text { for } x<a \\
& \psi(x)=t e^{i k x} \text { for } x>a
\end{aligned}
$$

(i) Defining $q=\sqrt{\hbar^{2} / 2 m\left(V_{0}+E\right)}$, calculate the transmission amplitude t. [You may use your expression for t for the case of the potential barrier in problem 2, Exercise sheet III.]
(ii) The system is in resonance if $T=|t|^{2}=1$. Find the resonant energies E_{R} and momenta q_{R}, i.e. the values for which resonance takes place.
(iii) For $E-E_{R} \ll 1$ using a Taylor expansion, show that

$$
t(E) e^{2 i k a}=(-1)^{n} \frac{i \Gamma / 2}{E-E_{R}+i \Gamma / 2}, \quad \text { with } \quad \frac{2}{\Gamma}=\left.\left(\frac{1}{2}\left(\frac{q}{k}+\frac{k}{q}\right) \cdot \frac{\mathrm{d}}{\mathrm{~d} E}(2 q a)\right)\right|_{E_{R}} .
$$

Rewrite $t(E)$ as $t(E)=|t(E)| e^{i \delta(E)}$.
(iv) Instead of one incident plane wave $\sim e^{i k x}$, we now consider an incoming wave packet $\psi_{\text {in }}$, where

$$
\psi_{\text {in }}(x, t)=\int_{0}^{\infty} \mathrm{d} k f(k) \exp [i / \hbar(k x-E(k) t)]
$$

For a general wave packet with phase function $(k x-E(k) t+\hbar \alpha(k)) / \hbar$ and provided that $f(k)$ is narrowly peaked at $k=k_{0}$, the stationarity condition

$$
\left.\frac{d}{d k}(k x-E(k) t+\hbar \alpha(k))\right|_{k_{0}}=0
$$

defines the approximate center of the wave packet $x(t)=x_{0}+v_{0} t$, where $x_{0}=$ $-\left.\hbar \frac{d}{d k} \alpha(k)\right|_{k_{0}}$ and the group velocity is $v_{0}=\left.\frac{d}{d k} E(k)\right|_{k_{0}}$. Calculate $x(t)$ given $\psi_{\text {in }}$ above.
(v) Using the results from section (i) obtain the form of the transmitted (or scattered) wave packet $\psi_{\text {out }}$. Write $t(E)$ as $t(E)=|t(E)| e^{i \delta(E)}$ (see (iii)), and derive an expression for $x(t)$ in this case.

