Übungsblatt II

Rückgabe: 11.3.2008

Aufgabe 1 [Ehrenfest's Theorem]: Prove Ehrenfest's Theorem

$$m\frac{d^2}{dt^2}\langle x\rangle = -\langle V'(x)\rangle$$

for movement in a potential V.

Aufgabe 2 [*Probability current*]: Using the superposition principle or otherwise show that the wave-function

$$\Psi_k(x,t) = \left(Ae^{\frac{\imath kx}{\hbar}} + Be^{-\frac{\imath kx}{\hbar}}\right)e^{-\frac{\imath E_k}{\hbar}t},$$

where A, B and k are constants and $E_k = \frac{k^2}{2m}$, is a solution of the time-dependent Schrödinger equation with V(x) = 0. Show that the probability current

$$j(x,t) = \frac{i\hbar}{2m} \left(\Psi(x,t) \frac{\partial}{\partial x} \Psi(x,t)^* - \Psi(x,t)^* \frac{\partial}{\partial x} \Psi(x,t) \right)$$

corresponding to $\Psi_k(x,t)$ equals

$$j(x,t) = (|A|^2 - |B|^2) \frac{k}{m}$$

Aufgabe 3 [General Potentials]: Let V(x) be an arbitrary continuous potential in one dimension, with the property that $V(x) \to 0$ as $x \to \pm \infty$.

(i) Let $\chi(x)$ be a solution of the time-independent Schrödinger equation with the asymptotic behaviour

$$\chi(x) = e^{ikx} + Ae^{-ikx} \quad \text{for} \quad x \ll 0$$

and

$$\chi(x) = Be^{ikx}$$
 for $x \gg 0$.

Using the continuity equation show that the probability current is independent of x, and deduce that $|A|^2 + |B|^2 = 1$. [Later on we shall interpret $|A|^2$ as the reflection probability, and $|B|^2$ as the transmission probability of the corresponding scattering experiment.]

(ii) Show that, for any state, $\langle T \rangle \geq 0$, where $T = p^2/2m$. By considering $\langle T + V \rangle$ deduce that for a potential well V of any shape, the lowest energy state has energy greater than that of the bottom of the well.