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Aufgabe 1 [Ehrenfest’s Theorem ]: Prove Ehrenfest’s Theorem
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for movement in a potential V .

Aufgabe 2 [Probability current ]: Using the superposition principle or otherwise show
that the wave-function
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where A, B and k are constants and Ek = k2
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, is a solution of the time-dependent

Schrödinger equation with V (x) = 0. Show that the probability current
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corresponding to Ψk(x, t) equals
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Aufgabe 3 [General Potentials ]: Let V (x) be an arbitrary continuous potential in one
dimension, with the property that V (x) → 0 as x → ±∞.

(i) Let χ(x) be a solution of the time-independent Schrödinger equation with the asymp-
totic behaviour

χ(x) = eikx + Ae−ikx for x � 0

and
χ(x) = Beikx for x � 0 .

Using the continuity equation show that the probability current is independent of x, and
deduce that |A|2 + |B|2 = 1. [Later on we shall interpret |A|2 as the reflection probability,
and |B|2 as the transmission probability of the corresponding scattering experiment.]

(ii) Show that, for any state, 〈T 〉 ≥ 0, where T = p2/2m. By considering 〈T + V 〉 deduce
that for a potential well V of any shape, the lowest energy state has energy greater than
that of the bottom of the well.


