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Abstract

After an introductory part to the standard model of cosmology, these lecture notes cover
mainly three connected topics. First, we give a detailed treatment of cosmological per-
turbation theory. A second part is devoted to cosmological inflation and the generation
of primordial fluctuations. It will be shown how these initial perturbation evolve and
produce the temperature anisotropies of the cosmic microwave background radiation.
Comparing the theoretical prediction for the angular power spectrum with the increas-
ingly accurate observations provides important cosmological information (cosmological
parameters, initial conditions).
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Introduction

Cosmology is going through a fruitful and exciting period. Some of the developments are
definitely also of interest to physicists outside the fields of astrophysics and cosmology.

These lectures cover some particularly fascinating and topical subjects. A central
theme will be the current evidence that the recent (z < 1) Universe is dominated by
an exotic nearly homogeneous dark energy density with negative pressure. The simplest
candidate for this unknown so-called Dark Energy is a cosmological term in Einstein’s
field equations, a possibility that has been considered during all the history of relativistic
cosmology. Independently of what this exotic energy density is, one thing is certain since
a long time: The energy density belonging to the cosmological constant is not larger than
the cosmological critical density, and thus incredibly small by particle physics standards.
This is a profound mystery, since we expect that all sorts of vacuum energies contribute
to the effective cosmological constant.

Since this is such an important issue it should be of interest to see how convincing the
evidence for this finding really is, or whether one should remain sceptical. Much of this
is based on the observed temperature fluctuations of the cosmic microwave background
radiation (CMB) and large-scale structure formation. A detailed analysis of the data
requires a considerable amount of theoretical machinery, the development of which fills
most space of these notes.

Since this audience consists mostly of diploma and graduate students, whose main
interests are outside astrophysics and cosmology, I do not presuppose that you had
already some serious training in cosmology. However, I do assume that you have some
working knowledge of general relativity (GR). As a source, and for references, I usually
quote my recent textbook [1].

In two opening chapters those parts of the Standard Model of cosmology will be
treated that are needed for the main body of the lectures. This includes a brief intro-
duction to inflation, a key idea of modern cosmology. More on this can be found at
many places, for instance in the recent textbooks on cosmology [2], [3], [4], [5], [6], [7],
[8]. A recent treatise that concentrates mainly on the theoretical aspects of the cosmic
microwave background physics is [9].

We will then develop the somewhat involved cosmological perturbation theory. The
general formalism will later be applied to two main topics: (1) The generation of pri-
mordial fluctuations during an inflationary era. (2) The evolution of these perturbations
during the linear regime. A main goal will be to determine the CMB angular power
spectrum.
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Part I

Standard Model of Cosmology
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Chapter 1

Essentials of Friedmann-Lemâıtre
models

For reasons explained in the Introduction I treat in this opening chapter some standard
material that will be needed in the main parts of these notes. In addition, an important
topical subject will be discussed in some detail, namely the Hubble diagram for Type Ia
supernovas that gave the first evidence for an accelerated expansion of the ‘recent’ and
future universe. Most readers can directly go to Sect. 1.3, where this is treated.

Let me begin with a few historical remarks. It is most remarkable that the simple,
highly-symmetric cosmological models, that were developed more than 80 years ago by
Friedmann and Lemâıtre, still play such an important role in modern cosmology. After
all, they were not put forward on the basis of astronomical observations. When the first
paper by Friedmann appeared in 1922 (in Z.f.Physik) astronomers had only knowledge of
the Milky Way. In particular, the observed velocities of stars were all small. Remember,
astronomers only learned later that spiral nebulae are independent star systems outside
the Milky Way. This was definitely established when in 1924 Hubble found that there
were Cepheid variables in Andromeda and also in other galaxies.

Friedmann’s models were based on mathematical simplicity, as he explicitly states.
This was already the case with Einstein’s static model of 1917, in which space is a
metric 3-sphere. About this Einstein wrote to de Sitter that his cosmological model was
intended primarily to settle the question “whether the basic idea of relativity can be
followed through its completion, or whether it leads to contradictions”. And he adds
whether the model corresponds to reality was another matter. Friedmann writes in his
dynamical generalization of Einstein’s model about the metric ansatz, that this can not
be justified on the basis of physical or philosophical arguments.

Friedmann’s two papers from 1922 and 1924 have a strongly mathematical character.
It was too early to apply them to the real universe. In his second paper he treated the
models with negative spatial curvature. Interestingly, he emphasizes that space can
nevertheless be compact, an aspect that has only recently come again into the focus
of attention. – It is really sad that Friedmann died already in 1925, at the age of 37.
His papers were largely ignored throughout the 1920’s, although Einstein studied them
carefully and even wrote a paper about them. He was, however, convinced at the time
that Friedmann’s models had no physical significance.

The same happened with Lemâıtre’s independent work of 1927. Lemâıtre was the first
person who seriously proposed an expanding universe as a model of the real universe.
He derived the general redshift formula we all know and love, and showed that it leads
for small distances to a linear relation, known as Hubble’s law. He also estimated the
Hubble constant H0 based on Slipher’s redshift data for about 40 nebulae and Hubble’s
1925 distance determinations to Andromeda and some other nearby galaxies, and found
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two years before Hubble a value only somewhat higher the one of Hubble from 1929.
(Actually, Lemâıtre gave two values for H0.)

The general attitude is well illustrated by the following remark of Eddington at a
Royal Society meeting in January, 1930: “One puzzling question is why there should be
only two solutions. I suppose the trouble is that people look for static solutions.”

Lemâıtre, who had been for a short time in 1925 a post-doctoral student of Edding-
ton, read this remark in a report to the meeting published in Observatory, and wrote
to Eddington pointing out his 1927 paper. Eddington had seen that paper, but had
completely forgotten about it. But now he was greatly impressed and recommended
Lemâıtre’s work in a letter to Nature. He also arranged for a translation which appeared
in MNRAS. It is a curious fact that the crucial paragraph describing how Lemâıtre esti-
matedH0 and assessed the evidence for linearity were dropped in the English translation.
Because of this omission, Lemâıtre’s role is not sufficiently known among cosmologists
who can not read French.

Hubble, on the other hand, nowhere in his famous 1929 paper even mentions an
expanding universe, but interprets his data within the static interpretation of the de
Sitter solution (repeating what Eddington wrote in the second edition of his relativity
book in 1924). In addition, Hubble never claimed to have discovered the expanding
universe, he apparently never believed this interpretation. That Hubble was elevated
to the discoverer of the expanding universe belongs to sociology, public relations, and
rewriting history.

The following remark is also of some interest. It is true that the instability of Ein-
stein’s model is not explicitly stated in Lemâıtre’s 1927 paper, but this was an immediate
consequence of his equations. In the words of Eddington: “...it was immediately deducible
from his [Lemâıtre’s] formulae that Einstein’s world is unstable so that an expanding or
a contracting universe is an inevitable result of Einstein’s law of gravitation.”

Lemâıtre’s successful explanation of Slipher’s and Hubble’s observations finally
changed the viewpoint of the majority of workers in the field. For an excellent, carefully
researched book on the early history of cosmology, see [10].

1.1 Friedmann-Lemâıtre spacetimes

There is now good evidence that the (recent as well as the early) Universe1 is – on
large scales – surprisingly homogeneous and isotropic. The most impressive support for
this comes from extended redshift surveys of galaxies and from the truly remarkable
isotropy of the cosmic microwave background (CMB). In the Two Degree Field (2dF)
Galaxy Redshift Survey2, completed in 2003, the redshifts of about 250’000 galaxies
have been measured. The distribution of galaxies out to 4 billion light years shows that
there are huge clusters, long filaments, and empty voids measuring over 100 million
light years across. But the map also shows that there are no larger structures. The
more extended Sloan Digital Sky Survey (SDSS) has produced very similar results, and
measured spectra of about a million galaxies3.

One arrives at the Friedmann (-Lemâıtre-Robertson-Walker) spacetimes by postulat-

1By Universe I always mean that part of the world around us which is in principle accessible to
observations. In my opinion the ‘Universe as a whole’ is not a scientific concept. When talking about
model universes, we develop on paper or with the help of computers, I tend to use lower case letters.
In this domain we are, of course, free to make extrapolations and venture into speculations, but one
should always be aware that there is the danger to be drifted into a kind of ‘cosmo-mythology’.

2Consult the Home Page: http://www.mso.anu.edu.au/2dFGRS .
3For a description and pictures, see the Home Page: http://www.sdss.org/sdss.html .
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ing that for each observer, moving along an integral curve of a distinguished four-velocity
field u, the Universe looks spatially isotropic. Mathematically, this means the following:
Let Isox(M) be the group of local isometries of a Lorentz manifold (M, g), with fixed
point x ∈ M , and let SO3(ux) be the group of all linear transformations of the tan-
gent space Tx(M) which leave the 4-velocity ux invariant and induce special orthogonal
transformations in the subspace orthogonal to ux, then

{Txφ : φ ∈ Isox(M), φ⋆u = u} ⊇ SO3(ux)

(φ⋆ denotes the push-forward belonging to φ; see [1], p. 550). In [11] it is shown that
this requirement implies that (M, g) is a Friedmann spacetime, whose structure we now
recall. Note that (M, g) is then automatically homogeneous.

A Friedmann spacetime (M, g) is a warped product of the form M = I × Σ, where
I is an interval of R, and the metric g is of the form

g = −dt2 + a2(t)γ, (1.1)

such that (Σ, γ) is a Riemannian space of constant curvature k = 0,±1. The distin-
guished time t is the cosmic time, and a(t) is the scale factor (it plays the role of the
warp factor (see Appendix B of [1])). Instead of t we often use the conformal time η,
defined by dη = dt/a(t). The velocity field is perpendicular to the slices of constant
cosmic time, u = ∂/∂t.

1.1.1 Spaces of constant curvature

For the space (Σ, γ) of constant curvature4 the curvature is given by

R(3)(X, Y )Z = k [γ(Z, Y )X − γ(Z,X)Y ] ; (1.2)

in components:
R

(3)
ijkl = k(γikγjl − γilγjk). (1.3)

Hence, the Ricci tensor and the scalar curvature are

R
(3)
jl = 2kγjl , R(3) = 6k. (1.4)

For the curvature two-forms we obtain from (1.3) relative to an orthonormal triad {θi}

Ω
(3)
ij =

1

2
R

(3)
ijkl θ

k ∧ θl = k θi ∧ θj (1.5)

(θi = γikθ
k). The simply connected constant curvature spaces are in n dimensions

the (n+1)-sphere Sn+1 (k = 1), the Euclidean space (k = 0), and the pseudo-sphere
(k = −1). Non-simply connected constant curvature spaces are obtained from these by
forming quotients with respect to discrete isometry groups. (For detailed derivations,
see [12].)

1.1.2 Curvature of Friedmann spacetimes

Let {θ̄i} be any orthonormal triad on (Σ, γ). On this Riemannian space the first structure
equations read (we use the notation in [1]; quantities referring to this 3-dim. space are
indicated by bars)

dθ̄i + ω̄i
j ∧ θ̄j = 0. (1.6)

4For a detailed discussion of these spaces I refer – for readers knowing German – to [12] or [14].

8



On (M, g) we introduce the following orthonormal tetrad:

θ0 = dt, θi = a(t)θ̄i. (1.7)

From this and (1.6) we get

dθ0 = 0, dθi =
ȧ

a
θ0 ∧ θi − a ω̄i

j ∧ θ̄j. (1.8)

Comparing this with the first structure equation for the Friedmann manifold implies

ω0
i ∧ θi = 0, ωi

0 ∧ θ0 + ωi
j ∧ θj =

ȧ

a
θi ∧ θ0 + a ω̄i

j ∧ θ̄j , (1.9)

whence

ω0
i =

ȧ

a
θi, ωi

j = ω̄i
j . (1.10)

The worldlines of comoving observers are integral curves of the four-velocity field
u = ∂t. We claim that these are geodesics, i.e., that

∇uu = 0. (1.11)

To show this (and for other purposes) we introduce the basis {eµ} of vector fields dual
to (1.7). Since u = e0 we have, using the connection forms (1.10),

∇uu = ∇e0e0 = ωλ
0(e0)eλ = ωi

0(e0)ei = 0.

1.1.3 Einstein equations for Friedmann spacetimes

Inserting the connection forms (1.10) into the second structure equations we readily find
for the curvature 2-forms Ωµ

ν :

Ω0
i =

ä

a
θ0 ∧ θi, Ωi

j =
k + ȧ2

a2
θi ∧ θj. (1.12)

A routine calculation leads to the following components of the Einstein tensor relative
to the basis (1.7)

G00 = 3

(
ȧ2

a2
+

k

a2

)

, (1.13)

G11 = G22 = G33 = −2
ä

a
− ȧ2

a2
− k

a2
, (1.14)

Gµν = 0 (µ 6= ν). (1.15)

In order to satisfy the field equations, the symmetries of Gµν imply that the energy-
momentum tensor must have the perfect fluid form (see [1], Sect. 1.4.2):

T µν = (ρ+ p)uµuν + pgµν , (1.16)

where u is the comoving velocity field introduced above.
Now, we can write down the field equations (including the cosmological term):

3

(
ȧ2

a2
+

k

a2

)

= 8πGρ+ Λ, (1.17)

−2
ä

a
− ȧ2

a2
− k

a2
= 8πGp− Λ. (1.18)
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Although the ‘energy-momentum conservation’ does not provide an independent
equation, it is useful to work this out. As expected, the momentum ‘conservation’ is
automatically satisfied. For the ‘energy conservation’ we use the general form (see (1.37)
in [1])

∇uρ = −(ρ+ p)∇ · u. (1.19)

In our case we have for the expansion rate

∇ · u = ωλ
0(eλ)u

0 = ωi
0(ei),

thus with (1.10)

∇ · u = 3
ȧ

a
. (1.20)

Therefore, eq. (1.19) becomes

ρ̇+ 3
ȧ

a
(ρ+ p) = 0. (1.21)

This should not be considered, as it is often done, as an energy conservation law. Because
of the equivalence principle there is in GR no local energy conservation. (For more on
this see Sect. 1.2.3.)

For a given equation of state, p = p(ρ), we can use (1.21) in the form

d

da
(ρa3) = −3pa2 (1.22)

to determine ρ as a function of the scale factor a. Examples: 1. For free massless particles
(radiation) we have p = ρ/3, thus ρ ∝ a−4. 2. For dust (p = 0) we get ρ ∝ a−3.

With this knowledge the Friedmann equation (1.17) determines the time evolution
of a(t). It is easy to see that (1.18) follows from (1.17) and (1.21).

As an important consequence of (1.17) and (1.18) we obtain for the acceleration of
the expansion

ä = −4πG

3
(ρ+ 3p)a+

1

3
Λa. (1.23)

This shows that as long as ρ + 3p is positive, the first term in (1.23) is decelerating,
while a positive cosmological constant is repulsive. This becomes understandable if one
writes the field equation as

Gµν = κ(Tµν + TΛ
µν) (κ = 8πG), (1.24)

with

TΛ
µν = − Λ

8πG
gµν . (1.25)

This vacuum contribution has the form of the energy-momentum tensor of an ideal
fluid, with energy density ρΛ = Λ/8πG and pressure pΛ = −ρΛ. Hence the combination
ρΛ + 3pΛ is equal to −2ρΛ, and is thus negative. In what follows we shall often include
in ρ and p the vacuum pieces.

1.1.4 Redshift

As a result of the expansion of the Universe the light of distant sources appears red-
shifted. The amount of redshift can be simply expressed in terms of the scale factor
a(t).

Consider two integral curves of the average velocity field u. We imagine that one
describes the worldline of a distant comoving source and the other that of an observer
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at a telescope (see Fig. 1.1). Since light is propagating along null geodesics, we conclude
from (1.1) that along the worldline of a light ray dt = a(t)dσ, where dσ is the line
element on the 3-dimensional space (Σ, γ) of constant curvature k = 0,±1. Hence the
integral on the left of

∫ to

te

dt

a(t)
=

∫ obs.

source

dσ, (1.26)

between the time of emission (te) and the arrival time at the observer (to), is independent
of te and to. Therefore, if we consider a second light ray that is emitted at the time te+∆te
and is received at the time to +∆to, we obtain from the last equation

∫ to+∆to

te+∆te

dt

a(t)
=

∫ to

te

dt

a(t)
. (1.27)

For a small ∆te this gives
∆to
a(to)

=
∆te
a(te)

.

The observed and the emitted frequences νo and νe, respectively, are thus related ac-
cording to

νo
νe

=
∆te
∆to

=
a(te)

a(to)
. (1.28)

The redshift parameter z is defined by

z :=
νe − νo

νo
, (1.29)

and is given by the key equation

1 + z =
a(to)

a(te)
. (1.30)

One can also express this by the equation ν · a = const along a null geodesic. Show that
this also follows from the differential equation for null geodesics.

1.1.5 Cosmic distance measures

We now introduce a further important tool, namely operational definitions of three
different distance measures, and show that they are related by simple redshift factors.

IfD is the physical (proper) extension of a distant object, and δ is its angle subtended,
then the angular diameter distance DA is defined by

DA := D/δ. (1.31)

If the object is moving with the proper transversal velocity V⊥ and with an apparent
angular motion dδ/dt0, then the proper-motion distance is by definition

DM :=
V⊥

dδ/dt0
. (1.32)

Finally, if the object has the intrinsic luminosity L and F is the received energy flux
then the luminosity distance is naturally defined as

DL := (L/4πF)1/2. (1.33)
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Source (te)

Observer (to)

Integral curve of uµdt
 =

 a
(t)

 dσ

Figure 1.1: Redshift for Friedmann models.

Below we show that these three distances are related as follows

DL = (1 + z)DM = (1 + z)2DA. (1.34)

It will be useful to introduce on (Σ, γ) ‘polar’ coordinates (r, ϑ, ϕ) (obtained by
stereographic projection), such that

γ =
dr2

1− kr2
+ r2dΩ2, dΩ2 = dϑ2 + sin2 ϑdϕ2. (1.35)

One easily verifies that the curvature forms of this metric satisfy (1.5). (This follows
without doing any work by using in [1] the curvature forms (3.9) in the ansatz (3.3) for
the Schwarzschild metric.)

To prove (1.34) we show that the three distances can be expressed as follows, if re
denotes the comoving radial coordinate (in (1.35)) of the distant object and the observer
is (without loss of generality) at r = 0:

DA = rea(te), DM = rea(t0), DL = rea(t0)
a(t0)

a(te)
. (1.36)

Once this is established, (1.34) follows from (1.30).
From Fig. 1.2 and (1.35) we see that

D = a(te)reδ, (1.37)

hence the first equation in (1.36) holds.
To prove the second one we note that the source moves in a time dt0 a proper

transversal distance

dD = V⊥dte = V⊥dt0
a(te)

a(t0)
.

Using again the metric (1.35) we see that the apparent angular motion is

dδ =
dD

a(te)re
=

V⊥dt0
a(t0)re

.

12



rea(to)

r 
=

 r e

to

r 
=

 r e

dte D

r 
=

 0
Figure 1.2: Spacetime diagram for cosmic distance measures.

Inserting this into the definition (1.32) shows that the second equation in (1.36) holds.
For the third equation we have to consider the observed energy flux. In a time dte
the source emits an energy Ldte. This energy is redshifted to the present by a factor
a(te)/a(t0), and is now distributed by (1.35) over a sphere with proper area 4π(rea(t0))

2

(see Fig. 1.2). Hence the received flux (apparent luminosity) is

F = Ldte
a(te)

a(t0)

1

4π(rea(t0))2
1

dt0
,

thus

F =
La2(te)

4πa4(t0)r2e
.

Inserting this into the definition (1.33) establishes the third equation in (1.36). For later
applications we write the last equation in the more transparent form

F =
L

4π(rea(t0))2
1

(1 + z)2
. (1.38)

The last factor is due to redshift effects.
Two of the discussed distances as a function of z are shown in Fig. 1.3 for two Fried-

mann models with different cosmological parameters. The other two distance measures
will be introduced in Sect. 2.2.

1.2 Thermal history below 100 MeV

1.2.1 Overview

Below the transition at about 200 MeV from a quark-gluon plasma to the confinement
phase, the Universe was initially dominated by a complicated dense hadron soup. The
abundance of pions, for example, was so high that they nearly overlapped. The pions,
kaons and other hadrons soon began to decay and most of the nucleons and antinucleons
annihilated, leaving only a tiny baryon asymmetry. The energy density is then almost
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0
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z
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Figure 1.3: Cosmological distance measures as a function of source redshift for two
cosmological models. The angular diameter distance Dang ≡ DA and the luminosity dis-
tance Dlum ≡ DL have been introduced in this Section. The other two will be introduced
in Sect. 2.2.

completely dominated by radiation and the stable leptons (e±, the three neutrino flavors
and their antiparticles). For some time all these particles are in thermodynamic equi-
librium. For this reason, only a few initial conditions have to be imposed. The Universe
was never as simple as in this lepton era. (At this stage it is almost inconceivable that
the complex world around us would eventually emerge.)

The first particles which freeze out of this equilibrium are the weakly interacting
neutrinos. Let us estimate when this happened. The coupling of the neutrinos in the
lepton era is dominated by the reactions:

e− + e+ ↔ ν + ν̄, e± + ν → e± + ν, e± + ν̄ → e± + ν̄.

For dimensional reasons, the cross sections are all of magnitude

σ ≃ G2
FT

2, (1.39)

where GF is the Fermi coupling constant (~ = c = kB = 1). Numerically, GFm
2
p ≃

10−5. On the other hand, the electron and neutrino densities ne, nν are about T 3. For
this reason, the reaction rates Γ for ν-scattering and ν-production per electron are of
magnitude c · v · ne ≃ G2

FT
5. This has to be compared with the expansion rate of the

Universe

H =
ȧ

a
≃ (Gρ)1/2.

Since ρ ≃ T 4 we get
H ≃ G1/2T 2, (1.40)

and thus
Γ

H
≃ G−1/2G2

FT
3 ≃ (T/1010 K)3. (1.41)

14



This ration is larger than 1 for T > 1010 K ≃ 1 MeV , and the neutrinos thus remain in
thermodynamic equilibrium until the temperature has decreased to about 1 MeV . But
even below this temperature the neutrinos remain Fermi distributed,

nν(p)dp =
1

2π2

1

ep/Tν + 1
p2dp , (1.42)

as long as they can be treated as massless. The reason is that the number density
decreases as a−3 and the momenta with a−1. Because of this we also see that the neutrino
temperature Tν decreases after decoupling as a

−1. The same is, of course true for photons.
The reader will easily find out how the distribution evolves when neutrino masses are
taken into account. (Since neutrino masses are so small this is only relevant at very late
times.)

1.2.2 Chemical potentials of the leptons

The equilibrium reactions below 100 MeV , say, conserve several additive quantum num-
bers5, namely the electric charge Q, the baryon number B, and the three lepton numbers
Le, Lµ, Lτ . Correspondingly, there are five independent chemical potentials. Since parti-
cles and antiparticles can annihilate to photons, their chemical potentials are oppositely
equal: µe− = −µe+ , etc. From the following reactions

e− + µ+ → νe + ν̄µ, e− + p → νe + n, µ− + p → νµ + n

we infer the equilibrium conditions

µe− − µνe = µµ− − µνµ = µn − µp. (1.43)

As independent chemical potentials we can thus choose

µp, µe−, µνe, µνµ, µντ . (1.44)

Because of local electric charge neutrality, the charge number density nQ vanishes.
From observations (see Sect. 1.2.3) we also know that the baryon number density nB is
much smaller than the photon number density (∼ entropy density sγ). The ratio nB/sγ
remains constant for adiabatic expansion (both decrease with a−3; see the next section).
Moreover, the lepton number densities are

nLe
= ne− + nνe − ne+ − nν̄e , nLµ

= nµ− + nνµ − nµ+ − nν̄µ , etc. (1.45)

Since in the present Universe the number density of electrons is equal to that of the
protons (bound or free), we know that after the disappearance of the muons ne− ≃ ne+

(recall nB ≪ nγ), thus µe− (= −µe+) ≃ 0. It is conceivable that the chemical potentials
of the neutrinos and antineutrinos can not be neglected, i.e., that nLe

is not much smaller
than the photon number density. In analogy to what we know about the baryon density
we make the reasonable asumption that the lepton number densities are also much
smaller than sγ. Then we can take the chemical potentials of the neutrinos equal to zero
(|µν |/kT ≪ 1). With what we said before, we can then put the five chemical potentials
(1.44) equal to zero, because the charge number densities are all odd in them. Of course,
nB does not really vanish (otherwise we would not be here), but for the thermal history
in the era we are considering they can be ignored.

5Even if B,Le, Lµ, Lτ should not be strictly conserved, this is not relevant within a Hubble time
H−1

0 .
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1.2.3 Constancy of entropy

Let ρeq, peq denote (in this subsection only) the total energy density and pressure of
all particles in thermodynamic equilibrium. Since the chemical potentials of the leptons
vanish, these quantities are only functions of the temperature T . According to the second
law, the differential of the entropy S(V, T ) is given by

dS(V, T ) =
1

T
[d(ρeq(T )V ) + peq(T )dV ]. (1.46)

This implies

d(dS) = 0 = d

(
1

T

)

∧ d(ρeq(T )V ) + d

(
peq(I)

T

)

∧ dV

= −ρeq
T 2

dT ∧ dV +
d

dT

(
peq(T )

T

)

dT ∧ dV,

i.e., the Maxwell relation

dpeq(T )

dT
=

1

T
[ρeq(T ) + peq(T )]. (1.47)

If we use this in (1.46), we get

dS = d

[
V

T
(ρeq + peq)

]

,

so the entropy density of the particles in equilibrium is

s =
1

T
[ρeq(T ) + peq(T )]. (1.48)

For an adiabatic expansion the entropy in a comoving volume remains constant:

S = a3s = const. (1.49)

This constancy is equivalent to the energy equation (1.21) for the equilibrium part.
Indeed, the latter can be written as

a3
dpeq
dt

=
d

dt
[a3(ρeq + peq)],

and by (1.48) this is equivalent to dS/dt = 0.
In particular, we obtain for massless particles (p = ρ/3) from (1.47) again ρ ∝ T 4

and from (1.48) that S = constant implies T ∝ a−1.
It is sometimes said that for a Friedmann model the expansion always proceeds

adiabatically, because the symmetries forbid a heat current to flow into a comoving
volume. While there is indeed no heat current, entropy can be generated if the cosmic
fluid has a non-vanishing bulk viscosity. This follows formally from general relativistic
thermodynamics. Eq. (B.36) in Appendix B of [77] shows that the divergence of the
entropy current contains the term (ζ/T )θ2, where ζ is the bulk viscosity and θ the
expansion rate (=3(ȧ/a) for a Friedmann spacetime).

Once the electrons and positrons have annihilated below T ∼ me, the equilibrium
components consist of photons, electrons, protons and – after the big bang nucleosynthe-
sis – of some light nuclei (mostly He4). Since the charged particle number densities are
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much smaller than the photon number density, the photon temperature Tγ still decreases
as a−1. Let us show this formally. For this we consider beside the photons an ideal gas
in thermodynamic equilibrium with the black body radiation. The total pressure and
energy density are then (we use units with ~ = c = kB = 1; n is the number density of
the non-relativistic gas particles with mass m):

p = nT +
π2

45
T 4, ρ = nm+

nT

γ − 1
+

π2

15
T 4 (1.50)

(γ = 5/3 for a monoatomic gas). The conservation of the gas particles, na3 = const.,
together with the energy equation (1.22) implies, if σ := sγ/n,

d lnT

d ln a
= −

[
σ + 1

σ + 1/[3(γ − 1)]

]

.

For σ ≪ 1 this gives the well-known relation T ∝ a3(γ−1) for an adiabatic expansion of
an ideal gas.

We are however dealing with the opposite situation σ ≫ 1, and then we obtain, as
expected, a · T = const.

Let us look more closely at the famous ratio nB/sγ. We need

sγ =
4

3T
ργ =

4π2

45
T 3 = 3.60nγ, nB = ρB/mp = ΩBρcrit/mp. (1.51)

From the present value of Tγ ≃ 2.7 K and (1.90), ρcrit = 1.12 × 10−5 h2
0(mp/cm

3), we
obtain as a measure for the baryon asymmetry of the Universe

nB

sγ
= 0.75× 10−8(ΩBh

2
0). (1.52)

It is one of the great challenges to explain this tiny number. So far, this has been achieved
at best qualitatively in the framework of grand unified theories (GUTs).

1.2.4 Neutrino temperature

During the electron-positron annihilation below T = me the a-dependence is compli-
cated, since the electrons can no more be treated as massless. We want to know at this
point what the ratio Tγ/Tν is after the annihilation. This can easily be obtained by us-
ing the constancy of comoving entropy for the photon-electron-positron system, which
is sufficiently strongly coupled to maintain thermodynamic equilibrium.

We need the entropy for the electrons and positrons at T ≫ me, long before annihi-
lation begins. To compute this note the identity

∫ ∞

0

xn

ex − 1
dx−

∫ ∞

0

xn

ex + 1
dx = 2

∫ ∞

0

xn

e2x − 1
dx =

1

2n

∫ ∞

0

xn

ex − 1
dx,

whence ∫ ∞

0

xn

ex + 1
dx = (1− 2−n)

∫ ∞

0

xn

ex − 1
dx. (1.53)

In particular, we obtain for the entropies se, sγ the following relation

se =
7

8
sγ (T ≫ me). (1.54)
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Equating the entropies for Tγ ≫ me and Tγ ≪ me gives

(Tγa)
3
∣
∣
before

[

1 + 2× 7

8

]

= (Tγa)
3
∣
∣
after

× 1,

because the neutrino entropy is conserved. Therefore, we obtain

(aTγ)|after =
(
11

4

)1/3

(aTγ)|before . (1.55)

But (aTν)|after = (aTν)|before = (aTγ)|before, hence we obtain the important relation

(
Tγ

Tν

)∣
∣
∣
∣
after

=

(
11

4

)1/3

= 1.401. (1.56)

1.2.5 Epoch of matter-radiation equality

In the main parts of these lectures the epoch when radiation (photons and neutri-
nos) have about the same energy density as non-relativistic matter (Dark Matter and
baryons) plays a very important role. Let us determine the redshift, zeq, when there is
equality.

For the three neutrino and antineutrino flavors the energy density is according to
(1.53)

ρν = 3× 7

8
×
(

4

11

)4/3

ργ . (1.57)

Using
ργ
ρcrit

= 2.47× 10−5h−2
0 (1 + z)4, (1.58)

we obtain for the total radiation energy density, ρr,

ρr
ρcrit

= 4.15× 10−5h−2
0 (1 + z)4, (1.59)

Equating this to
ρM
ρcrit

= ΩM(1 + z)3 (1.60)

we obtain
1 + zeq = 2.4× 104ΩMh2

0. (1.61)

Only a small fraction of ΩM is baryonic. There are several methods to determine
the fraction ΩB in baryons. A traditional one comes from the abundances of the light
elements. This is treated in most texts on cosmology. (German speaking readers find a
detailed discussion in my lecture notes [14], which are available in the internet.) The
comparison of the straightforward theory with observation gives a value in the range
ΩBh

2
0 = 0.021± 0.002. Other determinations are all compatible with this value. In Sect.

8 we shall obtain ΩB from the CMB anisotropies. The striking agreement of different
methods, sensitive to different physics, strongly supports our standard big bang picture
of the Universe.
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1.2.6 Recombination and decoupling

The plasma era ends when electrons combine with protons and helium ions to form
neutral atoms. The details of the physics of recombination are a bit complicated, but for
a rough estimate of the recombination time one can assume thermodynamic equilibrium
conditions. (When the ionization fraction becomes low, a kinetic treatment is needed.)
For simplicity, we ignore helium and study the thermodynamic equilibrium of e− + p ⇋

H + γ. The condition for chemical equilibrium is

µe− + µp = µH , (1.62)

where µi (i = e−, p, H) are the chemical potentials of e−, p and neutral hydrogen H .
These are related to the particle number densities as follows: For electrons

ne =

∫
2d3p

(2π)3
1

e(Ee(p)−µe)/T + 1
≃
∫

2d3p

(2π)3
e−(µe−me)/T e−p2/2mT ,

in the non-relativistic and non-degenerate case. In our problem we can thus use

ne = 2e(µe−me)/T

(
meT

2π

)3/2

, (1.63)

and similarly for the proton component

np = 2e(µp−mp)/T

(
mpT

2π

)3/2

. (1.64)

For a composite system like H statistical mechanics gives

nH = 2e(µH−mH )/TQ

(
mHT

2π

)3/2

, (1.65)

where Q is the partition sum of the internal degrees of freedom

Q =
∑

n

gne
−εn/T

(εn is measured from the ground state). Usually only the ground state is taken into
account, Q ≃ 4.

For hydrogen, the partition sum of an isolated atom is obviously infinite, as a result
of the long-range of the Coulomb potential. However, in a plasma the latter is screened,
and for our temperature and density range the ground state approximation is very
good (estimate the Debye length and compare it with the Bohr radius for the principle
quantum number n). Then we obtain the Saha equation:

nenp

nH
= e−∆/T

(
meT

2π

)3/2

, (1.66)

where ∆ is the ionization energy ∆ = 1
2
α2me ≃ 13.6 eV. (In the last factor we have

replaced mp/mH by unity.)
Let us rewrite this in terms of the ionization fraction xe := ne/nB, nB = np + nH =

ne + nH :
x2
e

1− xe
=

1

nB

(
meT

2π

)3/2

e−∆/T . (1.67)
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It is important to see the role of the large ratio σ := sγ/nB = 4π2

45
T 3/nB given in (1.56).

In terms of this we have

x2
e

1− xe
=

45

4π2
σ

(
meT

2π

)3/2

e−∆/T . (1.68)

So, when the temperature is of order ∆, the right-hand side is of order 109(me/T )
3/2 ∼

1015. Hence xe is very close to 1. Recombination only occurs when T drops far below ∆.
Using (1.56) we see that xe = 1/2 for

(
Trec

1 eV

)−3/2

exp (−13.6 eV/Trec) = 1.3 · 10−6ΩBh
2
0.

For ΩBh
2
0 ≃ 0.02 this gives

Trec ≃ 3760 K = 0.32 eV, zrec ≃ 1380.

Decoupling occurs roughly when the Thomson scattering rate is comparable to the
expansion rate. The first is neσT = xempnBσT /mp = xeσTΩBρcrit/mp. For H we use

Eqs. (1.91) and (1.92) below: H(z) = H0E(z), where for large redshifts E(z) ≃ Ω
1/2
M (1+

z)3/2[1 + (1 + z)/(1 + zeq)]
1/2. So we get

neσT

H
=

xeσTΩB

H0Ω
1/2
M

̺crit
mp

(1 + z)3/2[1 + (1 + z)/(1 + zeq)]
1/2. (1.69)

For best-fit values of the cosmological parameters the right-hand side is for z ≃ 1000
about 102xe. Hence photons decouple when xe drops below ∼ 10−2.

Kinetic treatment. For an accurate kinetic treatment one has to take into account
some complications connected with the population of the 1s state and the Ly-α back-
ground. We shall add later some remarks on this, but for the moment we are satisfied
with a simplified treatment.

We replace the photon number density nγ by the equilibrium distribution of temper-
ature T . If σrec denotes the recombination cross section of e− + p → H + γ, the electron
number density satisfies the rate equation

a−3(t)
d

dt
(nea

3) = −nenp〈σrec · ve〉+ neq
γ nH〈σion · c〉. (1.70)

The last term represents the contribution of the inverse reaction γ +H → p+ e−. This
can be obtained from detailed balance: For equilibrium the right-hand side must vanish,
thus

neq
e neq

p 〈σrec · ve〉 = neq
γ neq

H 〈σion · c〉. (1.71)

Hence
dxe

dt
= 〈σrec · ve〉

[

−x2
enB + (1− xe)

neq
e neq

p

neq
H

]

(1.72)

or with the Saha-equation

dxe

dt
= 〈σrec · ve〉

[

−nBx
2
e + (1− xe)

(
meT

2π

)3/2

e−∆/T

]

; (1.73)
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The recombination rate 〈σrec ·ve〉 for a transition to the nth excited state of H is usually
denoted by αn. In Eq. (1.74) we have to take the sum

α(2) :=

∞∑

n=2

αn, (1.74)

ignoring n = 1, because transitions to the ground state level n = 1 produce photons
that are sufficiently energetic to ionize other hydrogen atoms.

With this the rate equation (1.74) takes the form

dxe

dt
= −nBα

(2)x2
e + β(1− xe), (1.75)

where

β := α(2)

(
meT

2π

)3/2

e−∆/T . (1.76)

In the relevant range one finds with Dirac’s radiation theory the approximate formula

α(2) ≃ 10.9
α2

m2
e

(
∆

T

)1/2

ln

(
∆

T

)

. (1.77)

Our kinetic equation is too simple. Especially, the relative population of the 1s and
2s states requires some detailed study in which the two-photon transition 2s → 1s+2γ
enters. The interested reader finds the details in [2], Sect. 6 or [8], Sect. 2.3.

1.3 Luminosity-redshift relation for

Type Ia supernovae

In 1998 the Hubble diagram for Type Ia supernovae gave, as a big surprise, the first
serious evidence for a currently accelerating Universe. Before presenting and discussing
critically these exciting results, we develop some theoretical background.

1.3.1 Theoretical redshift-luminosity relation

In cosmology several different distance measures are in use, which are all related by
simple redshift factors (see Sect. A.4). The one which is relevant in this section is the
luminosity distance DL. We recall that this is defined by

DL = (L/4πF)1/2, (1.78)

where L is the intrinsic luminosity of the source and F the observed energy flux.
We want to express this in terms of the redshift z of the source and some of the

cosmological parameters. If the comoving radial coordinate r is chosen such that the
Friedmann- Lemâıtre metric takes the form

g = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]

, k = 0,±1, (1.79)

then we have

Fdt0 = Ldte ·
1

1 + z
· 1

4π(rea(t0))2
.
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The second factor on the right is due to the redshift of the photon energy; the indices
0, e refer to the present and emission times, respectively. Using also 1 + z = a(t0)/a(te),
we find in a first step:

DL(z) = a0(1 + z)r(z) (a0 ≡ a(t0)). (1.80)

We need the function r(z). From

dz = −a0
a

ȧ

a
dt, dt = −a(t)

dr√
1− kr2

for light rays, we obtain the two differential relations

dr√
1− kr2

=
1

a0

dz

H(z)
= − dt

a(t)

(
H(z) =

ȧ

a

)
. (1.81)

Now, we make use of the Friedmann equation

H2 +
k

a2
=

8πG

3
ρ. (1.82)

Let us decompose the total energy-mass density ρ into nonrelativistic (NR), relativistic
(R), Λ, quintessence (Q), and possibly other contributions

ρ = ρNR + ρR + ρΛ + ρQ + · · · . (1.83)

For the relevant cosmic period we can assume that the “energy equation”

d

da
(ρa3) = −3pa2 (1.84)

also holds for the individual components X = NR,R,Λ, Q, · · · . If wX ≡ pX/ρX is
constant, this implies that

ρXa
3(1+wX ) = const. (1.85)

Therefore,

ρ =
∑

X

(
ρXa

3(1+wX)
)

0

1

a3(1+wX)
=
∑

X

(ρX)0(1 + z)3(1+wX ). (1.86)

Hence the Friedmann equation (1.82) can be written as

H2(z)

H2
0

+
k

H2
0a

2
0

(1 + z)2 =
∑

X

ΩX(1 + z)3(1+wX ), (1.87)

where ΩX is the dimensionless density parameter for the species X ,

ΩX =
(ρX)0
ρcrit

, (1.88)

where ρcrit is the critical density:

ρcrit =
3H2

0

8πG
= 1.88× 10−29 h2

0 g cm−3 (1.89)

= 8× 10−47h2
0 GeV 4.
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Here h0 denotes the reduced Hubble parameter

h0 = H0/(100 km s−1 Mpc−1) ≃ 0.7. (1.90)

Using also the curvature parameter ΩK ≡ −k/H2
0a

2
0, we obtain the useful form

H2(z) = H2
0E

2(z; ΩK ,ΩX), (1.91)

with
E2(z; ΩK ,ΩX) = ΩK(1 + z)2 +

∑

X

ΩX(1 + z)3(1+wX ). (1.92)

Especially for z = 0 this gives

ΩK + Ω0 = 1, Ω0 ≡
∑

X

ΩX . (1.93)

If we use (1.91) in (1.81), we get

∫ r(z)

0

dr√
1− kr2

=
1

H0a0

∫ z

0

dz′

E(z′)
(1.94)

and thus
r(z) = S(χ(z)), (1.95)

where

χ(z) =
1

H0a0

∫ z

0

dz′

E(z′)
(1.96)

and

S(χ) =







sinχ : k = 1
χ : k = 0

sinhχ : k = 1.
(1.97)

Inserting this in (1.80) gives finally the relation we were looking for

DL(z) =
1

H0
DL(z; ΩK ,ΩX), (1.98)

with

DL(z; ΩK ,ΩX) = (1 + z)
1

|ΩK |1/2
S
(

|ΩK |1/2
∫ z

0

dz′

E(z′)

)

(1.99)

for k = ±1. For a flat universe, ΩK = 0 or equivalently Ω0 = 1, the “Hubble-constant-
free” luminosity distance is

DL(z) = (1 + z)

∫ z

0

dz′

E(z′)
. (1.100)

Astronomers use as logarithmic measures of L and F the absolute and apparent
magnitudes6, denoted by M and m, respectively. The conventions are chosen such that
the distance modulus µ := m−M is related to DL as follows

m−M = 5 log

(
DL

1 Mpc

)

+ 25. (1.101)

6Beside the (bolometric) magnitudes m,M , astronomers also use magnitudes mB, mV , . . . referring
to certain wavelength bands B (blue), V (visual), and so on.
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Inserting the representation (1.98), we obtain the following relation between the appar-
ent magnitude m and the redshift z:

m = M+ 5 logDL(z; ΩK ,ΩX), (1.102)

where, for our purpose, M = M − 5 logH0 + 25 is an uninteresting fit parameter.
The comparison of this theoretical magnitude redshift relation with data will lead to
interesting restrictions for the cosmological Ω-parameters. In practice often only ΩM and
ΩΛ are kept as independent parameters, where from now on the subscript M denotes
(as in most papers) nonrelativistic matter.

The following remark about degeneracy curves in the Ω-plane is important in this
context. For a fixed z in the presently explored interval, the contours defined by the
equations DL(z; ΩM ,ΩΛ) = const have little curvature, and thus we can associate an
approximate slope to them. For z = 0.4 the slope is about 1 and increases to 1.5-2 by
z = 0.8 over the interesting range of ΩM and ΩΛ. Hence even quite accurate data can
at best select a strip in the Ω-plane, with a slope in the range just discussed.

In this context it is also interesting to determine the dependence of the deceleration
parameter

q0 = −
(aä

ȧ2

)

0
(1.103)

on ΩM and ΩΛ. At an any cosmic time we obtain from (1.23) and (1.86) for the decel-
eration function

q(z) ≡ − äa

ȧ2
=

1

2

1

E2(z)

∑

X

ΩX(1 + z)3(1+wX )(1 + 3wX). (1.104)

For z = 0 this gives

q0 =
1

2

∑

X

ΩX(1 + 3wX) =
1

2
(ΩM − 2ΩΛ + · · · ). (1.105)

The line q0 = 0 (ΩΛ = ΩM/2) separates decelerating from accelerating universes at the
present time. For given values of ΩM ,ΩΛ, etc, (1.104) vanishes for z determined by

ΩM(1 + z)3 − 2ΩΛ + · · · = 0. (1.106)

This equation gives the redshift at which the deceleration period ends (coasting redshift).

Remark. Without using the Friedmann equation one can express the luminosity
distance DL(z) purely kinematically in terms of the deceleration variable q(z). With the
help of the previous tools the reader may derive the following relations for a spatially
flat Friedmann spacetime:

H−1(z) = H−1
0 exp

{

−
∫ z

0

1 + q(z′)

1 + z′
dz′
}

, (1.107)

DL(z) = (1 + z)H−1
0

∫ z

0

dz′ exp
{

−
∫ z′

0

[1 + q(z′′)] d ln(1 + z′′)
}

. (1.108)

It has been claimed that the existing supernova data imply an accelerating phase at late
times [15].
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Generalization for dynamical models of Dark Energy

If the vacuum energy constitutes the missing two thirds of the average energy density
of the present Universe, we would be confronted with the following cosmic coincidence
problem: Since the vacuum energy density is constant in time – at least after the QCD
phase transition –, while the matter energy density decreases as the Universe expands,
it would be more than surprising if the two are comparable just at about the present
time, while their ratio was tiny in the early Universe and would become very large in the
distant future. The goal of dynamical models of Dark Energy is to avoid such an extreme
fine-tuning. The ratio p/ρ of this component then becomes a function of redshift, which
we denote by wQ(z) (because so-called quintessence models are particular examples).
Then the function E(z) in (1.92) gets modified.

To see how, we start from the energy equation (1.84) and write this as

d ln(ρQa
3)

d ln(1 + z)
= 3wQ.

This gives

ρQ(z) = ρQ0(1 + z)3 exp

(
∫ ln(1+z)

0

3wQ(z
′)d ln(1 + z′)

)

or

ρQ(z) = ρQ0 exp

(

3

∫ ln(1+z)

0

(1 + wQ(z
′))d ln(1 + z′)

)

. (1.109)

Hence, we have to perform on the right of (1.92) the following substitution:

ΩQ(1 + z)3(1+wQ) → ΩQ exp

(

3

∫ ln(1+z)

0

(1 + wQ(z
′))d ln(1 + z′)

)

. (1.110)

As indicated above, a much discussed class of dynamical models for Dark Energy
are quintessence models. In many ways people thereby repeat what has been done in
inflationary cosmology. The main motivation there was (see 2) to avoid excessive fine
tunings of standard big bang cosmology (horizon and flatness problems). It has to be
emphasize, however, that quintessence models do not solve the vacuum energy problem,
so far also not the coincidence puzzle.

1.3.2 Type Ia supernovas as standard candles

It has long been recognized that supernovas of type Ia are excellent standard candles
and are visible to cosmic distances [16] (the record is at present at a redshift of about
1.7). At relatively closed distances they can be used to measure the Hubble constant, by
calibrating the absolute magnitude of nearby supernovas with various distance determi-
nations (e.g., Cepheids). There is still some dispute over these calibration resulting in
differences of about 10% for H0. (For recent papers and references, see [17].)

In 1979 Tammann [18] and Colgate [19] independently suggested that at higher
redshifts this subclass of supernovas can be used to determine also the deceleration
parameter. In recent years this program became feasible thanks to the development of
new technologies which made it possible to obtain digital images of faint objects over
sizable angular scales, and by making use of big telescopes such as Hubble and Keck.

There are two major teams investigating high-redshift SNe Ia, namely the ‘Supernova
Cosmology Project’ (SCP) and the ‘High-Z Supernova search Team’ (HZT). Each team
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has found a large number of SNe, and both groups have published almost identical
results. (For up-to-date information, see the home pages [20] and [21].)

Before discussing the most recent results, a few remarks about the nature and prop-
erties of type Ia SNe should be made. Observationally, they are characterized by the
absence of hydrogen in their spectra, and the presence of some strong silicon lines near
maximum. The immediate progenitors are most probably carbon-oxygen white dwarfs in
close binary systems, but it must be said that these have not yet been clearly identified.7

In the standard scenario a white dwarf accretes matter from a nondegenerate com-
panion until it approaches the critical Chandrasekhar mass and ignites carbon burn-
ing deep in its interior of highly degenerate matter. This is followed by an outward-
propagating nuclear flame leading to a total disruption of the white dwarf. Within a few
seconds the star is converted largely into nickel and iron. The dispersed nickel radioac-
tively decays to cobalt and then to iron in a few hundred days. A lot of effort has been
invested to simulate these complicated processes. Clearly, the physics of thermonuclear
runaway burning in degenerate matter is complex. In particular, since the thermonuclear
combustion is highly turbulent, multidimensional simulations are required. This is an
important subject of current research. (One gets a good impression of the present status
from several articles in [22]. See also the review [23].) The theoretical uncertainties are
such that, for instance, predictions for possible evolutionary changes are not reliable.

It is conceivable that in some cases a type Ia supernova is the result of a merging
of two carbon-oxygen-rich white dwarfs with a combined mass surpassing the Chan-
drasekhar limit. Theoretical modelling indicates, however, that such a merging would
lead to a collapse, rather than a SN Ia explosion. But this issue is still debated.

In view of the complex physics involved, it is not astonishing that type Ia supernovas
are not perfect standard candles. Their peak absolute magnitudes have a dispersion of
0.3-0.5 mag, depending on the sample. Astronomers have, however, learned in recent
years to reduce this dispersion by making use of empirical correlations between the
absolute peak luminosity and light curve shapes. Examination of nearby SNe showed
that the peak brightness is correlated with the time scale of their brightening and fading:
slow decliners tend to be brighter than rapid ones. There are also some correlations with
spectral properties. Using these correlations it became possible to reduce the remaining
intrinsic dispersion, at least in the average, to ≃ 0.15mag. (For the various methods in
use, and how they compare, see [24], [30], and references therein.) Other corrections, such
as Galactic extinction, have been applied, resulting for each supernova in a corrected
(rest-frame) magnitude. The redshift dependence of this quantity is compared with the
theoretical expectation given by (1.101) and (1.99).

1.3.3 Results

After the classic papers [25], [26], [27] on the Hubble diagram for high-redshift type Ia
supernovas, published by the SCP and HZT teams, significant progress has been made
(for reviews, see [28] and [29]). I discuss here the main results presented in [30] and [31].
These are based on additional new data for z > 1, obtained in conjunction with the
GOODS (Great Observatories Origins Deep Survey) Treasury program, conducted with
the Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST).

The quality of the data and some of the main results of the analysis are shown in
Figure 1.4. The data points are and redshifts for ground-based and HST-discovered SNe
Ia. The dashed line is the best fit for a flat ΛCDM model with ΩM = 0.27, ΩΛ = 0.73,

7This is perhaps not so astonishing, because the progenitors are presumably faint compact dwarf
stars.
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Figure 1.4: Hubble diagram for SNe Ia. Ground-based discovered SNe Ia in the Gold
sample are shown as diamonds, HST-discovered ones as filled symbols. The best fit flat
ΛCDM model has ΩM = 0.27. Inset: Distance moduli relative to an empty uniformly
expanding universe (residual Hubble diagram). The Gold sample is uniformly binned.
(From [31], Fig.6.)

close to the ‘concordance’ values. The inset to 1.4 shows the ‘reduced’ Hubble diagram, in
which the distance moduli relative to an empty uniformly expanding universe, ∆(m−M),
are plotted, and the so-called “Gold” data are uniformly binned. The other model curves
will be discussed below.

The residuals from this fit are shown in Figure 1.5. These have a dispersion of 0.21
mag. As demonstrated in [31], the fit to the data is not improved with a z-dependent
equation of state parameter w(z).

Another high-z SN Ia compilation resulted from the Supernova Legacy Survey
(SNLS) of the first year [32]. More recently, results from the ESSENCE (Equation of
State: Supernovae trace Cosmic Expansion) program have been reported [33]. By com-
bining these with the Supernova Legacy Survey, the authors find for a flat universe a
joint constraint of w = −1.07+0.09

−0.09(stat 1σ)± 0.13(sys), ΩM = 0.267+0.028
−0.018(stat 1σ).

1.3.4 Systematic uncertainties

Possible systematic uncertainties due to astrophysical effects have been discussed exten-
sively in the literature. The most serious ones are (i) dimming by intergalactic dust, and
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Figure 1.5: Distance difference in magnitudes for all Gold SNe between the measured
distance and that predicted for the flat ΛCDM concordance model with ΩM = 0.29.
(From [31], Fig.17.)

(ii) evolution of SNe Ia over cosmic time, due to changes in progenitor mass, metallicity,
and C/O ratio. I discuss these concerns only briefly (see also [28], [30]).

Concerning extinction, detailed studies show that high-redshift SN Ia suffer little
reddening; their B-V colors at maximum brightness are normal. However, it can a priori
not be excluded that we see distant SNe through a grey dust with grain sizes large
enough as to not imprint the reddening signature of typical interstellar extinction. One
argument against this hypothesis is that this would also imply a larger dispersion than
is observed. In Figure 1.4 the expectation of a simple grey dust model is also shown.
The new high redshift data reject this monotonic model of astrophysical dimming. Eq.
(1.106) shows that at redshifts z ≥ (2ΩΛ/ΩM )1/3 − 1 ≃ 1.2 the Universe is decelerating,
and this provides an almost unambiguous signature for Λ, or some effective equivalent.
There is now strong evidence for a transition from a deceleration to acceleration at a
redshift z = 0.46± 0.13.

The same data provide also some evidence against a simple luminosity evolution
that could mimic an accelerating Universe. Other empirical constraints are obtained
by comparing subsamples of low-redshift SN Ia believed to arise from old and young
progenitors. It turns out that there is no difference within the measuring errors, after the
correction based on the light-curve shape has been applied. Moreover, spectra of high-
redshift SNe appear remarkably similar to those at low redshift. This is very reassuring.
On the other hand, there seems to be a trend that more distant supernovas are bluer.
It would, of course, be helpful if evolution could be predicted theoretically, but in view
of what has been said earlier, this is not (yet) possible.

In conclusion, none of the investigated systematic errors appear to reconcile the data
with ΩΛ = 0 and q0 ≥ 0. But further work is necessary before we can declare this as a
really established fact.

To improve the observational situation a satellite mission called SNAP (“Supernovas
Acceleration Probe”) has been proposed [34]. According to the plans this satellite would
observe about 2000 SNe within a year and much more detailed studies could then be
performed. For the time being some scepticism with regard to the results that have been
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obtained is still not out of place, but the situation is steadily improving.
Finally, I mention a more theoretical complication. In the analysis of the data the

luminosity distance for an ideal Friedmann universe was always used. But the data
were taken in the real inhomogeneous Universe. This may perhaps not be good enough,
especially for high-redshift standard candles. The simplest way to take this into account
is to introduce a filling parameter which, roughly speaking, represents matter that exists
in galaxies but not in the intergalactic medium. For a constant filling parameter one can
determine the luminosity distance by solving the Dyer-Roeder equation. But now one has
an additional parameter in fitting the data. For a flat universe this was investigated in
[35]. The magnitude-redshift relation in a perturbed Friedmann model has been derived
in [36], and was later used to determine the angular power spectrum of the luminosity
distance [37]. One of the numerical results was that the uncertainties in determining
cosmological parameters via the magnitude-redshift relation caused by fluctuations are
small compared with the intrinsic dispersion in the absolute magnitude of Type Ia
supernovae.

This subject was recently taken up in [38], [39], [40] as part of a program to develop
the tools for extracting cosmological parameters, when much extended supernovae data
become available.

1.3.5 Updates

The constraints for the ΩM ,ΩΛ parameters from more recent supernova data [41] are
shown in Figure 1.6.
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Chapter 2

Inflationary Scenario

2.1 Introduction

The horizon and flatness problems of standard big bang cosmology are so serious that
the proposal of a very early accelerated expansion, preceding the hot era dominated by
relativistic fluids, appears quite plausible. This general qualitative aspect of ‘inflation’ is
now widely accepted. However, when it comes to concrete model building the situation
is not satisfactory. Since we do not know the fundamental physics at superhigh energies
not too far from the Planck scale, models of inflation are usually of a phenomenologi-
cal nature. Most models consist of a number of scalar fields, including a suitable form
for their potential. Usually there is no direct link to fundamental theories, like super-
gravity, however, there have been many attempts in this direction. For the time being,
inflationary cosmology should be regarded as an attractive scenario, and not yet as a
theory.

The most important aspect of inflationary cosmology is that the generation of pertur-
bations on large scales from initial quantum fluctuations is unavoidable and predictable.
For a given model these fluctuations can be calculated accurately, because they are tiny
and cosmological perturbation theory can be applied. And, most importantly, these pre-
dictions can be confronted with the cosmic microwave anisotropy measurements. We are
in the fortunate position to witness rapid progress in this field. The results from vari-
ous experiments, most recently from WMAP, give already strong support of the basic
predictions of inflation. Further experimental progress can be expected in the coming
years.

2.2 The horizon problem and the general idea of

inflation

I begin by describing the famous horizon puzzle, which is a very serious causality problem
of standard big bang cosmology.

Past and future light cone distances

Consider our past light cone for a Friedmann spacetime model (Fig. 2.1). For a radial
light ray the differential relation dt = a(t)dr/(1− kr2)1/2 holds for the coordinates (t, r)
of the metric (1.79). The proper radius of the past light sphere at time t (cross section
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Figure 2.1: Spacetime diagram illustrating the horizon problem.

of the light cone with the hypersurface {t = const}) is

lp(t) = a(t)

∫ r(t)

0

dr√
1− kr2

, (2.1)

where the coordinate radius is determined by

∫ r(t)

0

dr√
1− kr2

=

∫ t0

t

dt′

a(t′)
. (2.2)

Hence,

lp(t) = a(t)

∫ t0

t

dt′

a(t′)
. (2.3)

We rewrite this in terms of the redhift variable. From 1 + z = a0/a we get dz =
−(1 + z)Hdt, so

dt

dz
= − 1

H0(1 + z)E(z)
, H(z) = H0E(z).

Therefore,

lp(z) =
1

H0(1 + z)

∫ z

0

dz′

E(z′)
. (2.4)

Similarly, the extension lf(t) of the forward light cone at time t of a very early event
(t ≃ 0, z ≃ ∞) is

lf (t) = a(t)

∫ t

0

dt′

a(t′)
=

1

H0(1 + z)

∫ ∞

z

dz′

E(z′)
. (2.5)

For the present Universe (t0) this becomes what is called the particle horizon distance

Dhor = H−1
0

∫ ∞

0

dz′

E(z′)
, (2.6)

and gives the size of the observable Universe .
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Analytical expressions for these distances are only available in special cases. For
orientation we consider first the Einstein-de Sitter model (K = 0, ΩΛ = 0, ΩM = 1),
for which a(t) = a0(t/t0)

2/3 and thus

Dhor = 3t0 = 2H−1
0 , lf(t) = 3t,

lp
lf

=

(
t0
t

)1/3

− 1 =
√
1 + z − 1. (2.7)

For a flat Universe a good fitting formula for cases of interest is (Hu and White)

Dhor ≃ 2H−1
0

1 + 0.084 lnΩM√
ΩM

. (2.8)

It is often convenient to work with ‘comoving distances’, by rescaling distances re-
ferring to time t (like lp(t), lf(t)) with the factor a(t0)/a(t) = 1 + z to the present. We
indicate this by the superscript c. For instance,

lcp(z) =
1

H0

∫ z

0

dz′

E(z′)
. (2.9)

This distance is plotted in Fig. 1.3 as Dcom(z). Note that for a0 = 1 : lcf(η) = η, lcp(η) =
η0 − η. Hence (2.5) gives the following relation between η and z:

η =
1

H0

∫ ∞

z

dz′

E(z′)
.

The number of causality distances on the cosmic photosphere

The number of causality distances at redshift z between two antipodal emission points is
equal to lp(z)/lf (z), and thus the ratio of the two integrals on the right of (2.4) and (2.5).
We are particularly interested in this ratio at the time of last scattering with zrec ≃ 1100.
Then we can use for the numerator a flat Universe with non-relativistic matter, while
for the denominator we can neglect in the standard hot big bang model ΩK and ΩΛ.
A reasonable estimate is already obtained by using the simple expression in (2.7), i.e.,

z
1/2
rec ≈ 30. A more accurate evaluation would increase this number to about 40. The
length lf(zrec) subtends an angle of about 1 degree (Exercise). How can it be that there
is such a large number of causally disconnected regions we see on the microwave sky all
having the same temperature? This is what is meant by the horizon problem and was a
troublesome mystery before the invention of inflation.

Vacuum-like energy and exponential expansion

This causality problem is potentially avoided, if lf(t) would be increased in the very
early Universe as a result of different physics. If, for instance, a vacuum-like energy
density would dominate, the Universe would undergo an exponential expansion. Indeed,
in this case the Friedmann equation is

(
ȧ

a

)2

+
k

a2
=

8πG

3
ρvac, ρvac ≃ const, (2.10)

and has the solutions

a(t) ∝







cosh Hvact : k = 1
eHvact : k = 0

sinh Hvact : k = 1,
(2.11)
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with

Hvac =

√

8πG

3
ρvac . (2.12)

Assume that such an exponential expansion starts for some reason at time ti and
ends at the reheating time te, after which standard expansion takes over. From

a(t) = a(ti)e
Hvac(t−ti) (ti < t < te), (2.13)

for k = 0 we get

lcf(te) ≃ a0

∫ te

ti

dt

a(t)
=

a0
Hvaca(ti)

(
1− e−Hvac∆t

)
≃ a0

Hvaca(ti)
,

where ∆t := te − ti. We want to satisfy the condition lcf (te) ≫ lcp(te) ≃ H−1
0 (see (2.8)),

i.e.,

aiHvac ≪ a0H0 ⇔ ai
ae

≪ a0H0

aeHvac
(2.14)

or

eHvac∆t ≫ aeHvac

a0H0
=

Heqaeq
H0a0

Hvacae
Heqaeq

.

Here, eq indicates the values at the time teq when the energy densities of non-relativistic
and relativistic matter were equal. We now use the Friedmann equation for k = 0 and
w := p/ρ = const. From (1.85) it follows that in this case

Ha ∝ a−(1+3w)/2,

and hence we arrive at

eHvac∆t ≫
(
a0
aeq

)1/2(
aeq
ae

)

= (1 + zeq)
1/2

(
Te

Teq

)

= (1 + zeq)
−1/2TP l

T0

Te

TP l

, (2.15)

where we used aT = const. So the number of e-folding periods during the inflationary
period, N = Hvac∆t, should satisfy

N ≫ ln

(
TP l

T0

)

− 1

2
ln zeq + ln

(
Te

TP l

)

≃ 70 + ln

(
Te

TP l

)

. (2.16)

For a typical GUT scale, Te ∼ 1014 GeV , we arrive at the condition N ≫ 60.
Such an exponential expansion would also solve the flatness problem, another worry

of standard big bang cosmology. Let me recall how this problem arises.
The Friedmann equation (1.17) can be written as

(Ω−1 − 1)ρa2 = − 3k

8πG
= const.,

where

Ω(t) :=
ρ(t)

3H2/8πG
(2.17)

(ρ includes vacuum energy contributions). Thus

Ω−1 − 1 = (Ω−1
0 − 1)

ρ0a
2
0

ρa2
. (2.18)
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Without inflation we have

ρ = ρeq

(aeq
a

)4

(z > zeq), (2.19)

ρ = ρ0

(a0
a

)3

(z < zeq). (2.20)

According to (1.86) zeq is given by

1 + zeq =
ΩM

ΩR
≃ 104 Ω0h

2
0. (2.21)

For z > zeq we obtain from (2.18) and (2.19)

Ω−1 − 1 = (Ω−1
0 − 1)

ρ0a
2
0

ρeqa2eq

ρeqa
2
eq

ρa2
= (Ω−1

0 − 1)(1 + zeq)
−1

(
a

aeq

)2

(2.22)

or

Ω−1 − 1 = (Ω−1
0 − 1)(1 + zeq)

−1

(
Teq

T

)2

≃ 10−60(Ω−1
0 − 1)

(
TP l

T

)2

. (2.23)

Let us apply this equation for T = 1MeV, Ω0 ≃ 0.2 − 0.3. Then | Ω − 1 |≤ 10−15,
thus the Universe was already incredibly flat at modest temperatures, not much higher
than at the time of nucleosynthesis.

Such a fine tuning must have a physical reason. This is naturally provided by infla-
tion, because our observable Universe could originate from a small patch at te. (A tiny
part of the Earth surface is also practically flat.)

Beside the horizon scale lf (t), the Hubble length H−1(t) = a(t)/ȧ(t) plays also an
important role. One might call this the “microphysics horizon”, because this is the
maximal distance microphysics can operate coherently in one expansion time. It is this
length scale which enters in basic evolution equations, such as the equation of motion
for a scalar field (see eq. (2.30) below).

We sketch in Figs. 2.2 – 2.4 the various length scales in inflationary models, that is
for models with a period of accelerated (e.g., exponential) expansion. From these it is
obvious that there can be – at least in principle – a causal generation mechanism for
perturbations. This topic will be discussed in great detail in later parts of these lectures.

Exponential inflation is just an example. What we really need is an early phase
during which the comoving Hubble length decreases (Fig. 2.4). This means that (for
Friedmann spacetimes)

(
H−1(t)/a

)·
< 0. (2.24)

This is the general definition of inflation; equivalently, ä > 0 (accelerated expansion).
For a Friedmann model eq. (1.23) tells us that

ä > 0 ⇔ p < −ρ/3. (2.25)

This is, of course, not satisfied for ‘ordinary’ fluids.
Assume, as another example, power-law inflation: a ∝ tp. Then ä > 0 ⇔ p > 1.

2.3 Scalar field models

Models with p < −ρ/3 are naturally obtained in scalar field theories. Most of the time
we shall consider the simplest case of one neutral scalar field ϕ minimally coupled to
gravity. Thus the Lagrangian density is assumed to be

L =
M2

pl

16π
R[g]− 1

2
∇µϕ∇µϕ− V (ϕ), (2.26)
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Figure 2.2: Past and future light cones in models with an inflationary period.

t

trec

tR

ti

H-1(t)
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Figure 2.3: Physical distance (e.g. between clusters of galaxies) and Hubble distance,
and causality horizon in inflationary models.
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Figure 2.4: Part of Fig. 3.3 expressed in terms of comoving distances.

where R[g] is the Ricci scalar for the metric g. The scalar field equation is

2ϕ = V,ϕ, (2.27)

and the energy-momentum tensor in the Einstein equation

Gµν =
8π

M2
P l

Tµν (2.28)

is
Tµν = ∇µϕ∇νϕ+ gµνLϕ (2.29)

(Lϕ is the scalar field part of (2.26)).
We consider first Friedmann spacetimes. Using previous notation, we obtain from

(1.1)
√−g = a3

√
γ, 2ϕ =

1√−g
∂µ(

√−ggµν∂νϕ) = − 1

a3
(a3ϕ̇)· +

1

a2
△γϕ.

The field equation (2.27) becomes

ϕ̈+ 3Hϕ̇− 1

a2
△γϕ = −V,ϕ(ϕ). (2.30)

Note that the expansion of the Universe induces a ‘friction’ term. In this basic equation
one also sees the appearance of the Hubble length. From (2.29) we obtain for the energy
density and the pressure of the scalar field

ρϕ = T00 =
1

2
ϕ̇2 + V +

1

2a2
(∇ϕ)2, (2.31)

pϕ =
1

3
T i

i =
1

2
ϕ̇2 − V − 1

6a2
(∇ϕ)2. (2.32)

(Here, (∇ϕ)2 denotes the squared gradient on the 3-space (Σ, γ).)
Suppose the gradient terms can be neglected, and that ϕ is during a certain phase

slowly varying in time, then we get

ρϕ ≈ V, pϕ ≈ −V. (2.33)

Thus pϕ ≈ −ρϕ, as for a cosmological term.
Let us ignore for the time being the spatial inhomogeneities in the previous equations.

Then these reduce to
ϕ̈+ 3Hϕ̇+ V,ϕ(ϕ) = 0; (2.34)
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ρϕ =
1

2
ϕ̇2 + V, pϕ =

1

2
ϕ̇2 − V. (2.35)

Beside (2.34) the other dynamical equation is the Friedmann equation

H2 +
K

a2
=

8π

3M2
P l

[
1

2
ϕ̇2 + V (ϕ)

]

. (2.36)

Eqs. (2.34) and (2.36) define a nonlinear dynamical system for the dynamical variables
a(t), ϕ(t), which can be studied in detail (see, e.g., [42]).

Let us ignore the curvature term K/a2 in (2.36). Differentiating this equation and
using (2.34) shows that

Ḣ = − 4π

M2
P l

ϕ̇2. (2.37)

Regard H as a function of ϕ, then

dH

dϕ
= − 4π

M2
P l

ϕ̇. (2.38)

This allows us to write the Friedmann equation as

(
dH

dϕ

)2

− 12π

M2
P l

H2(ϕ) = −32π2

M4
P l

V (ϕ). (2.39)

For a given potential V (ϕ) this is a differential equation for H(ϕ). Once this function
is known, we obtain ϕ(t) from (2.38) and a(t) from (2.37).

2.3.1 Power-law inflation

We now proceed in the reverse order, assuming that a(t) follows a power law

a(t) = const. tp. (2.40)

Then H = p/t, so by (2.37)

ϕ̇ =

√
p

4π
MP l

1

t
, ϕ(t) =

√
p

4π
MP l ln(t) + const.,

hence

H(ϕ) ∝ exp

(

−
√

4π

p

ϕ

MP l

)

. (2.41)

Using this in (2.39) leads to an exponential potential

V (ϕ) = V0 exp

(

−4

√
π

p

ϕ

MP l

)

. (2.42)

2.3.2 Slow-roll approximation

An important class of solutions is obtained in the slow-roll approximation (SLA), in
which the basic eqs. (2.34) and (2.36) can be replaced by

H2 =
8π

3M2
P l

V (ϕ), (2.43)

3Hϕ̇ = −V,ϕ. (2.44)
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A necessary condition for their validity is that the slow-roll parameters

εV (ϕ) : =
M2

P l

16π

(
V,ϕ

V

)2

, (2.45)

ηV (ϕ) : =
M2

P l

8π

V,ϕϕ

V
(2.46)

are small:
εV ≪ 1, | ηV |≪ 1. (2.47)

These conditions, which guarantee that the potential is flat, are, however, not sufficient.
The simplified system (2.43) and (2.44) implies

ϕ̇2 =
M2

P l

24π

1

V
(V,ϕ)

2 . (2.48)

This is a differential equation for ϕ(t).
Let us consider potentials of the form

V (ϕ) =
λ

n
ϕn. (2.49)

Then eq. (2.48) becomes

ϕ̇2 =
n2M2

P l

24π

1

ϕ2
V. (2.50)

Hence, (2.43) implies
ȧ

a
= − 4π

nM2
P l

(ϕ2)·,

and so

a(t) = a0 exp

[
4π

nM2
P l

(ϕ2
0 − ϕ2(t))

]

. (2.51)

We see from (2.50) that 1
2
ϕ̇2 ≪ V (ϕ) for

ϕ ≫ n

4
√
3π

MP l. (2.52)

Consider first the example n = 4. Then (2.50) implies

ϕ̇

ϕ
=

√

λ

6π
MP l ⇒ ϕ(t) = ϕ0 exp

(

−
√

λ

6π
MP l t

)

. (2.53)

For n 6= 4:

ϕ(t)2−n/2 = ϕ
2−n/2
0 + t

(

2− n

2

)
√

nλ

24π
M

3−n/2
P l . (2.54)

For the special case n = 2 this gives, using the notation V = 1
2
m2ϕ2, the simple result

ϕ(t) = ϕ0 −
mMP l

2
√
3π

t. (2.55)

Inserting this into (2.51) provides the time dependence of a(t).
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2.3.3 Why did inflation start?

Attempts to answer this and related questions are very speculative indeed. A reason-
able direction is to imagine random initial conditions and try to understand how in-
flation can emerge, perhaps generically, from such a state of matter. A. Linde first
discussed a scenario along these lines which he called chaotic inflation. In the context
of a single scalar field model he argued that typical initial conditions correspond to
1
2
ϕ̇2 ∼ 1

2
(∂iϕ)

2 ∼ V (ϕ) ∼ 1 (in Planckian units). The chance that the potential energy
dominates in some domain of size > O(1) is presumably not very small. In this situa-
tion inflation could begin and V (ϕ) would rapidly become even more dominant, which
ensures continuation of inflation. Linde concluded from such considerations that chaotic
inflation occurs under rather natural initial conditions. For this to happen, the form of
the potential V (ϕ) can even be a simple power law of the form (2.49). Many questions
remain, however, open.

The chaotic inflationary Universe will look on very large scales – much larger than the
present Hubble radius – extremely inhomogeneous. For a review of this scenario I refer
to [43]. A much more extended discussion of inflationary models, including references,
can be found in [4].

2.3.4 The Trans-Planckian problem

Another serious worry is this: If the period of inflation lasted sufficiently long (see
the inequality (2.16)), then the scales inside today’s Hubble radius started out at the
beginning of inflation with physical wavelengths smaller than the Planck scale. In this
domain classical GR can most probably no more be trusted.

Optimistically, one can hope that observations of primordial spectra may turn out
to be a window to unknown physics not far from the Planck scale.
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Part II

Cosmological Perturbation Theory
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Introduction

The astonishing isotropy of the cosmic microwave background radiation provides di-
rect evidence that the early universe can be described in a good first approximation
by a Friedmann model. At the time of recombination deviations from homogeneity and
isotropy have been very small indeed (∼ 10−5). Thus there was a long period during
which deviations from Friedmann models can be studied perturbatively, i.e., by lin-
earizing the Einstein and matter equations about solutions of the idealized Friedmann-
Lemâıtre models.

Cosmological perturbation theory is a very important tool that is by now well de-
veloped. Among the various reviews I will often refer to [44]. Other works will be cited
later, but the present notes should be self-contained. Almost always I will provide de-
tailed derivations. Some of the more lengthy calculations are deferred to appendices.

The formalism, developed in this part, will later be applied to two main problems: (1)
The generation of primordial fluctuations during an inflationary era. (2) The evolution
of these perturbations during the linear regime. A main goal will be to determine the
CMB power spectrum as a function of certain cosmological parameters. Among these
the fractions of Dark Matter and Dark Energy are particularly interesting.

In this chapter we develop the model independent parts of cosmological perturbation
theory. This forms the basis of all that follows. The development is in principle quite
straightforward. Unfortunately, a lot of symbols have to be introduced, to a large extent
because of the gauge freedom implied by the diffeomorphism invariance of GR.
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Chapter 3

Basic Equations

3.1 Generalities

For the unperturbed Friedmann models the metric is denoted by g(0), and has the form

g(0) = −dt2 + a2(t)γ = a2(η)
[
−dη2 + γ

]
; (3.1)

γ is the metric of a space with constant curvature K. In addition, we have matter
variables for the various components (radiation, neutrinos, baryons, cold dark matter
(CDM), etc). We shall linearize all basic equations about the unperturbed solutions.

3.1.1 Decomposition into scalar, vector, and tensor contribu-

tions

We may regard the various perturbation amplitudes as time dependent functions on a
three-dimensional Riemannian space (Σ, γ) of constant curvature K. Since such a space
is highly symmetric, we can perform two types of decompositions.

Consider first the set X (Σ) of smooth vector fields on Σ. This module can be de-
composed into an orthogonal sum of ‘scalar’ and ‘vector’ contributions

X (Σ) = X S
⊕

X V , (3.2)

where X S consists of all gradients and X V of all vector fields with vanishing divergence.
More generally, we have for the p-forms

∧p(Σ) on Σ the orthogonal decomposition1

∧p
(Σ) = d

∧p−1
(Σ)

⊕

kerδ , (3.3)

where the last summand denotes the kernel of the co-differential δ (restricted to
∧p(Σ)).

Similarly, we can decompose a symmetric tensor t ∈ S(Σ) (= set of all symmetric
tensor fields on Σ) into ‘scalar’, ‘vector’, and ‘tensor’ contributions:

tij = t
(S)
ij + t

(V )
ij + t

(T )
ij , (3.4)

1This is a consequence of the Hodge decomposition theorem. The scalar product in
∧p

(Σ) is defined
as

(α, β) =

∫

Σ

α ∧ ⋆β;

see also Sect.13.9 of [1].

43



where

t
(S)
ij =

1

3
tkkγij + (∇i∇j −

1

3
γij∇2)f , (3.5)

t
(V )
ij = ∇iξj +∇jξi, (3.6)

t
(T )
ij : t(T )i

i = 0; ∇jt
(T )ij = 0. (3.7)

In these equations f is a function on Σ and ξi a vector field with vanishing divergence.
In what follows ∇2 always denotes γij∇i∇j on (Σ, γ). (Note that this does not agree
with the Laplace-Beltrami operator for differential forms, except for functions. But for
tensor fields this is the natural extension of the Laplace operator on functions.) Show
that the three components are orthogonal to each other with respect to the obvious
generalization of the scalar product (3.3). This fact implies that the decomposition of
tij is unique. An existence proof is given in Appendix D.

In addition, these decompositions are respected by the covariant derivatives. For
example, if ξ ∈ X (Σ), ξ = ξ∗ +∇f, ∇ · ξ∗ = 0, then

∇2ξ = ∇2ξ∗ +∇
[
∇2f + 2Kf

]
(3.8)

(prove this as an exercise). Here, the first term on the right has a vanishing divergence
(show this), and the second (the gradient) involves only f . For other cases, see Appendix
B of [44]. Is there a conceptual proof based on the symmetries of (Σ, γ)?

3.1.2 Decomposition into spherical harmonics

In a second step we perform a harmonic decomposition. For K = 0 this is just Fourier
analysis. The spherical harmonics {Y } of (Σ, γ) are in this case the functions Y (x;k) =
exp(ik · x) (for γ = δijdx

idxj). The scalar parts of vector and symmetric tensor fields
can be expanded in terms of

Yi : = −k−1∇iY, (3.9)

Yij : = k−2∇i∇jY +
1

3
γijY, (3.10)

and γijY .
There are corresponding complete sets of spherical harmonics for K 6= 0. They are

eigenfunctions of the Laplace operator on (Σ, γ):

(∇2 + k2)Y = 0. (3.11)

Indices referring to the various modes are usually suppressed. By making use of the
Riemann tensor of (Σ, γ) one can easily derive the following identities:

∇iY
i = kY,

∇2Yi = −(k2 − 2K)Yi,

∇jYi = −k(Yij −
1

3
γijY ),

∇jYij =
2

3
k−1(k2 − 3K)Yi,

∇j∇mYim =
2

3
(3K − k2)(Yij −

1

3
γijY ),

∇2Yij = −(k2 − 6K)Yij,

∇mYij −∇jYim =
k

3

(

1− 3K

k2

)

(γimYj − γijYm). (3.12)

44



——————
Exercise. Verify some of the relations in (3.12).
——————
The main point of the harmonic decomposition is, of course, that different modes

in the linearized approximation do not couple. Hence, it suffices to consider a generic
mode.

For the time being, we consider only scalar perturbations. Tensor perturbations
(gravity modes) will be studied later. For the harmonic analysis of vector and tensor
perturbations I refer again to [44].

3.1.3 Gauge transformations, gauge invariant

amplitudes

In GR the diffeomorphism group of spacetime is an invariance group. This means that
we can replace the metric g and the matter fields by their pull-backs φ⋆(g), etc., for any
diffeomorphism φ, without changing the physics. Consider, in particular, the flow φλ of
a vector field ξ. By definition of the Lie derivative Lξ we have for the pull-back of a
physical variable Q (metric g, etc)

φ∗
λQ = Q+ λLξQ +O(λ2).

If
Q = Q(0) + λQ(1) +O(λ2)

is the expansion of Q into background plus perturbations, we have

φ∗
λQ = Q(0) + λQ(1) + λLξQ

(0) +O(λ2).

So, the first order perturbation of φ∗
λQ is λ(Q(1) + LξQ

(0)). In other words, Q(1) the
transforms as

Q(1) → Q(1) + LξQ
(0).

This shows that for small-amplitude departures in

g = g(0) + δg, etc., (3.13)

we have the gauge freedom

δg → δg + Lξg
(0) , etc., (3.14)

where ξ is any vector field and Lξ denotes its Lie derivative. (For further explanations,
see [1], Sect. 4.1). These transformations will induce changes in the various perturba-
tion amplitudes. It is clearly desirable to write all independent perturbation equations
in a manifestly gauge invariant manner. In this way one can, for instance, avoid mis-
interpretations of the growth of density fluctuations, especially on superhorizon scales.
Moreover, one gets rid of uninteresting gauge modes.

I find it astonishing that it took so long until the gauge invariant formalism was
widely used.
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3.1.4 Parametrization of the metric perturbations

The most general scalar perturbation of the metric can be parametrized as follows

δg = a2(η)
[
−2Adη2 − 2B,i dx

idη + (2Dγij + 2E|ij)dx
idxj

]
. (3.15)

The functions A(η, xi), B, D, E are the scalar perturbation amplitudes; E|ij denotes
∇i∇jE on (Σ, γ). Thus the true metric is

g = a2(η)
{
−(1 + 2A)dη2 − 2B,i dx

idη + [(1 + 2D)γij + 2E|ij]dx
idxj

}
. (3.16)

Let us work out how A,B,D,E change under a gauge transformation (3.14), provided
the vector field is of the ‘scalar’ type2:

ξ = ξ0∂0 + ξi∂i, ξi = γijξ|j. (3.17)

(The index 0 refers to the conformal time η.) For this we need (’≡ d/dη)

Lξa
2(η) = 2aa′ξ0 = 2a2Hξ0, H := a′/a,

Lξdη = dLξη = (ξ0)′dη + ξ0|idx
i,

Lξdx
i = dLξx

i = dξi = ξi,j dx
j + (ξi)′dη = ξi,j dx

j + ξ′|idη,

implying

Lξ

(
a2(η)dη2

)
= 2a2

{
(Hξ0 + (ξ0)′)dη2 + ξ0|idx

idη
}
,

Lξ

(
γijdx

idxj
)

= 2ξ|ijdx
idxj + 2ξ′|idx

idη.

This gives the transformation laws:

A → A+Hξ0 + (ξ0)′, B → B + ξ0 − ξ′, D → D +Hξ0, E → E + ξ. (3.18)

From this one concludes that the following Bardeen potentials

Ψ = A− 1

a
[a(B + E ′)]

′
, (3.19)

Φ = D −H(B + E ′), (3.20)

are gauge invariant.
Note that the transformations of A and D involve only ξ0. This is also the case for

the combinations
χ := a(B + E ′) → χ+ aξ0 (3.21)

and

κ :=
3

a
(HA−D′)− 1

a2
∇2χ (3.22)

−→ κ+
3

a

[
H(Hξ0 + (ξ0)′)− (Hξ0)′

]
− 1

a2
∇2ξ0. (3.23)

Therefore, it is good to work with A,D, χ, κ. This was emphasized in [46]. Below we
will show that χ and κ have a simple geometrical meaning. Moreover, it will turn out

2It suffices to consider this type of vector fields, since vector fields from X V do not affect the scalar
amplitudes; check this.
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that the perturbation of the Einstein tensor can be expressed completely in terms of the
amplitudes A,D, χ, κ.

——————
Exercise. The most general vector perturbation of the metric is obviously of the

form

(δgµν) = a2(η)

(
0 βi

βi Hi|j +Hj|i

)

,

with Bi
|i = Hi

|i = 0. Derive the gauge transformations for βi and Hi. Show that Hi can
be gauged away. Compute R0

j in this gauge. Result:

R0
j =

1

2

(
∇2βj + 2Kβj

)
.

——————

3.1.5 Geometrical interpretation

Let us first compute the scalar curvature R(3) of the slices with constant time η with
the induced metric

g(3) = a2(η)
[
(1 + 2D)γij + 2E|ij

]
dxidxj. (3.24)

If we drop the factor a2, then the Ricci tensor does not change, but R(3) has to be
multiplied afterwards with a−2.

For the metric γij + hij the Palatini identity (eq. (4.20) in [1])

δRij =
1

2

[
hk

i|jk − hk
k|ij + hk

j|ik −∇2hij

]
(3.25)

gives
δRi

i = hij
|ij −∇2h (h := hi

i), hij = 2Dγij + 2E|ij.

We also use

h = 6D + 2∇2E, E|ij
|ij = ∇j(∇2∇jE) = ∇j(∇j∇2E − 2K∇jE)

= (∇2)2E − 2K∇2E

(we used (∇i∇2 −∇2∇i)f = −R
(0)
ij ∇jf , for a function f). This implies

hij
|ij = 2∇2D + 2((∇2)2E − 2K∇2E),

δRi
i = −4D − 4K∇2E),

whence
δR = δRi

i + hijR
(0)
ij = −4∇2D + 12KD.

This shows that D determines the scalar curvature perturbation

δR(3) =
1

a2
(−4∇2D + 12KD). (3.26)

Next, we compute the second fundamental form3 Kij for the time slices. We shall
show that

κ = δKi
i, (3.27)

3This geometrical concept is introduced in Appendix A of [1].
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and

Kij −
1

3
gijK

l
l = −(χ|ij −

1

3
γij∇2χ). (3.28)

Derivation. In the following derivation we make use of Sect. 2.9 of [1] on the 3 + 1
formalism. According to eq. (2.287) of this reference, the second fundamental form is
determined in terms of the lapse α, the shift β = βi∂i, and the induced metric ḡ as
follows (dropping indices)

K = − 1

2α
(∂t − Lβ)ḡ. (3.29)

To first order this gives in our case

Kij = − 1

2a(1 + A)

[
a2(1 + 2D)γij + 2a2E|ij

]′ − aB|ij . (3.30)

(Note that βi = −a2B,i , βi = −γijB,j .)
In zeroth order this gives

K
(0)
ij = −1

a
Hg

(0)
ij . (3.31)

Collecting the first order terms gives the claimed equations (3.27) and (3.28). (Note that
the trace-free part must be of first order, because the zeroth order vanishes according
to (3.31).)

Conformal gauge. According to (3.18) and (3.21) we can always chose the gauge
such that B = E = 0. This so-called conformal Newtonian (or longitudinal) gauge is
often particularly convenient to work with. Note that in this gauge

χ = 0, A = Ψ, D = Φ, κ =
3

a
(HΨ− Φ′).

3.1.6 Scalar perturbations of the energy-
momentum tensor

At this point we do not want to specify the matter model. For a convenient parametriza-
tion of the scalar perturbations of the energy-momentum tensor Tµν = T

(0)
µν + δTµν , we

define the four-velocity uµ as a normalized timelike eigenvector of T µν :

T µ
νu

ν = −ρuµ, (3.32)

gµνu
µuν = −1. (3.33)

The eigenvalue ρ is the proper energy-mass density.
For the unperturbed situation we have

u(0)0 =
1

a
, u

(0)
0 = −a, u(0)i = 0, T (0)0

0 = −ρ(0), T (0)i
j = p(0)δij, T (0)0

i = 0. (3.34)

Setting ρ = ρ(0) + δρ, uµ = u(0)µ + δuµ, etc, we obtain from (3.33)

δu0 = −1

a
A, δu0 = −aA. (3.35)

The first order terms of (3.32) give, using (3.34),

δT µ
0u

(0)0 + δµ0u
(0)0δρ+

(
T (0)µ

ν + ρ(0)δµν
)
δuν = 0.
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For µ = 0 and µ = i this leads to

δT 0
0 = −δρ, (3.36)

δT i
0 = −a(ρ(0) + p(0))δui. (3.37)

From this we can determine the components of δT 0
j :

δT 0
j = δ

[
g0µgjνT

ν
µ

]

= δg0kg
(0)
ij T (0)i

k + g(0)00δg0jT
(0)0

0 + g(0)00g
(0)
ij δT i

0

=

(

− 1

a2
γkiB|i

)

(a2γij)p
(0)δik +

(

− 1

a2

)

(−a2B|j)(−ρ(0))− γijδT
i
0.

Collecting terms gives

δT 0
j = a(ρ(0) + p(0))

[

γijδu
i − 1

a
B|j

︸ ︷︷ ︸

a−2δuj

]

. (3.38)

Scalar perturbations of δui can be represented as

δui =
1

a
γijv|j. (3.39)

Inserting this above gives

δT 0
j = (ρ(0) + p(0))(v − B)|j. (3.40)

The scalar perturbations of the spatial components δT i
j can be represented as follows

δT i
j = δij δp+ p(0)

(

Π|i
|j −

1

3
δij ∇2Π

)

. (3.41)

Let us collect these formulae (dropping (0) for the unperturbed quantities ρ(0), etc):

δu0 = −1

a
A, δu0 = −aA, δui =

1

a
γijv|j ⇒ δui = a(v − B)|i;

δT 0
0 = −δρ,

δT 0
i = (ρ+ p)(v − B)|i, δT i

0 = −(ρ+ p)γijv|j ,

δT i
j = δp δij + p

(

Π|i
|j −

1

3
δij ∇2Π

)

. (3.42)

Sometimes we shall also use the quantity

Q := a(ρ+ p)(v − B),

in terms of which the energy flux density can be written as

δT 0
i =

1

a
Q,i , (⇒ T t

i = Q,i). (3.43)

For fluids one often decomposes δp as

pπL := δp = c2sδρ+ pΓ, (3.44)

where cs is the sound velocity
c2s = ṗ/ρ̇. (3.45)
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Γ measures the deviation between δp/δρ and ṗ/ρ̇. One can show [47] that the divergence
of the entropy current is proportional to Γ.

As for the metric we have four perturbation amplitudes:

δ := δρ/ρ , v , Γ , Π . (3.46)

Let us see how they change under gauge transformations:

δT µ
ν → δT µ

ν + (LξT
(0))µν , (LξT

(0))µν = ξλT (0)µ
ν,λ − T (0)λ

νξ
µ
,λ + T (0)µ

λξ
λ
,ν . (3.47)

Now,
(LξT

(0))00 = ξ0T (0)0
0,0 = ξ0(−ρ)′,

hence

δρ → δρ+ ρ′ξ0 ; δ → δ +
ρ′

ρ
ξ0 = δ − 3(1 + w)Hξ0 (3.48)

(w := p/ρ). Similarly (ξi = γijξ|j):

(LξT
(0))0i = 0− T (0)j

iξ
0
|j + T (0)0

0ξ
0
,i = −ρξ0|i − pξ0|i;

so
v − B → (v − B)− ξ0. (3.49)

Finally,
(LξT

(0))ij = p′δijξ
0,

hence

δp → δp+ p′ξ0, (3.50)

Π → Π. (3.51)

From (3.44), (3.48) and (3.50) we also obtain

Γ → Γ. (3.52)

We see that Γ, Π are gauge invariant. Note that the transformation of δ and v − B
involve only ξ0, while v transforms as

v → v − ξ′.

For Q we get
Q → Q− a(ρ+ p)ξ0. (3.53)

We can introduce various gauge invariant quantities. It is useful to adopt the following
notation: For example, we use the symbol δQ for that gauge invariant quantity which is
equal to δ in the gauge where Q = 0 (often called the comoving gauge), thus

δQ = δ − 3

aρ
HQ = δ − 3(1 + w)H(v − B). (3.54)

Similarly, gauge invariant perturbations related to the zero-shear gauge χ = 0 are

δχ = δ + 3
(1 + w)H

a
χ = δ + 3H(1 + w)(B + E ′); (3.55)

V : = (v −B)χ = v − B + a−1χ = v + E ′ =
1

a

(

χ+
1

ρ+ p
Q
)

; (3.56)

Qχ = Q+ (ρ+ p)χ = a(ρ+ p)V. (3.57)

Another important gauge invariant amplitude, often called the curvature perturbation
(see (3.26)), is

R := DQ = D +H(v −B) = Dχ +H(v −B)χ = Dχ +HV. (3.58)
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3.2 Explicit form of the energy-momentum conser-

vation

After these preparations we work out the consequences ∇ · T = 0 of Einstein’s field
equations for the metric (3.16) and T µ

ν as given by (3.34) and (3.42). The details of the
calculations are presented in Appendix A of this chapter.

The energy equation reads (see (3.240)):

(ρδ)′ + 3Hρδ + 3HpπL + (ρ+ p)
[
∇2(v + E ′) + 3D′] = 0 (3.59)

or, with (ρδ)′/ρ = δ′ − 3H(1 + w)δ and (3.56),

δ′ + 3H(c2s − w)δ + 3HwΓ = −(1 + w)(∇2V + 3D′). (3.60)

This gives, putting an index χ, the gauge invariant equation

δ′χ + 3H(c2s − w)δχ + 3HwΓ = −(1 + w)(∇2V + 3D′
χ). (3.61)

Conversely, eq. (3.60) follows from (3.61): the χ-terms cancel, as is easily verified by
using the zeroth order equation

w′ = −3(c2s − w)(1 + w)H, (3.62)

that is easily derived from the Friedman equations in Sect. 1.1.3. From the definitions
it follows readily that the last factor in (3.60) is equal to −(aκ− 3HA−∇2(v − B)).

The momentum equation becomes (see (3.246)):

[(ρ+ p)(v − B)]′ + 4H(ρ+ p)(v − B) + (ρ+ p)A+ pπL +
2

3
(∇2 + 3K)pΠ = 0. (3.63)

Using (3.44) in the form
pπL = ρ(c2sδ + wΓ), (3.64)

and putting the index χ at the perturbation amplitudes gives the gauge invariant equa-
tion

[(ρ+ p)V ]′ + 4H(ρ+ p)V + (ρ+ p)Aχ + ρc2sδχ + ρwΓ +
2

3
(∇2 + 3K)pΠ = 0 (3.65)

or4

V ′ + (1− 3c2s)HV + Aχ +
c2s

1 + w
δχ +

w

1 + w
Γ +

2

3
(∇2 + 3K)

w

1 + w
Π = 0. (3.66)

For later use we write (3.63) also as

(v−B)′ +(1−3c2s)H(v−B)+A+
c2s

1 + w
δ+

w

1 + w
Γ+

2

3
(∇2+3K)

w

1 + w
Π = 0 (3.67)

(from which (3.66) follows immediately).

4Note that h := ρ+ p satisfies h′ = −3H(1 + c2s)h.
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3.3 Einstein equations

A direct computation of the first order changes δGµ
ν of the Einstein tensor for (3.15)

is complicated. It is much simpler to proceed as follows: Compute first δGµ
ν in the

longitudinal gauge B = E = 0. (That these gauge conditions can be imposed follows
from (3.18).) Then we write the perturbed Einstein equations in a gauge invariant form.
It is then easy to rewrite these equations without imposing any gauge conditions, thus
obtaining the equations one would get for the general form (3.15).

δGµ
ν is computed for the longitudinal gauge in Appendix B to this chapter. Let us

first consider the component µ = ν = 0 (see eq. (3.257)):

δG0
0 =

2

a2
[
3H(HA−D′) + (∇2 + 3K)D

]

= 2

[

3H(HA− Ḋ) +
1

a2
(∇2 + 3K)D

]

. (3.68)

Since δT 0
0 = −δρ (see (3.42)), we obtain the perturbed Einstein equation in the longi-

tudinal gauge

3H(HA− Ḋ) +
1

a2
(∇2 + 3K)D = −4πGρδ. (3.69)

Since in the longitudinal gauge χ = 0 and

κ = 3(HA− Ḋ), (3.70)

we can write (3.69) as follows

1

a2
(∇2 + 3K)D +Hκ = −4πGρδ. (3.71)

Obviously, the gauge invariant form of this equation is

1

a2
(∇2 + 3K)Dχ +Hκχ = −4πGρδχ, (3.72)

because it reduces to (3.71) for χ = 0. Recall in this connection the remark in Sect. 3.1.4
that the gauge transformations of the amplitudes A,D, χ, κ involve only ξ0. Therefore,
Aχ, Dχ, κχ are uniquely defined; the same is true for δχ (see (3.55)).

From (3.72) we can now obtain the generalization of (3.71) in any gauge. First note
that as a consequence of

Aχ = A− χ̇, Dχ = D −Hχ (3.73)

(verify this), we have, using also (3.22),

κχ = 3(HAχ − Ḋχ) = 3(HA− Ḋ) + 3Ḣχ

= κ + (3Ḣ +
1

a2
∇2)χ. (3.74)

From this, (3.73) and (3.55) one readily sees that (3.72) is equivalent to

1

a2
(∇2 + 3K)D +Hκ = −4πGρδ (any gauge), (3.75)

in any gauge.
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For the other components we proceed similarly. In the longitudinal gauge we have
(see eqs. (3.258) and (3.70)):

δG0
j = − 2

a2
(HA−D′),j = −2

a
(HA− Ḋ),j = − 2

3a
κ,j, (3.76)

δT 0
j = (ρ+ p)(v − B),j =

1

a
Q,j . (3.77)

This gives, up to an (irrelevant) spatially homogeneous term,

κ = −12πGQ (long. gauge). (3.78)

The gauge invariant form of this is

κχ = −12πGQχ. (3.79)

Inserting here (3.74), (3.57), and using the unperturbed equation

Ḣ =
K

a2
− 4πG(ρ+ p) (3.80)

(derive this), one obtains in any gauge

κ+
1

a2
(∇2 + 3K)χ = −12πGQ (any gauge). (3.81)

Next, we use (3.259):

a2

2
δGi

j = δij

[

(2H′ +H2)A+HA′ −D′′

−2HD′ +KD +
1

2
∇2(A+D)

]

− 1

2
(A+D)|i|j. (3.82)

This implies

a2

2
(δGi

j −
1

3
δij δG

k
k) = −1

2

[

(A+D)|i|j −
1

3
δij(A+D)|k|k

]

. (3.83)

Since

δT i
j −

1

3
δijδT

k
k = p

[

Π|i
|j −

1

3
δij∇2Π

]

we get following field equation for S := A +D

S |i
|j −

1

3
δij∇2S = −8πGa2p

(

Π|i
|j −

1

3
δij∇2Π

)

.

Modulo an irrelevant homogeneous term (use the harmonic decomposition) this gives in
the longitudinal gauge

A+D = −8πGa2pΠ (long. gauge). (3.84)

The gauge invariant form is

Aχ +Dχ = −8πGa2pΠ, (3.85)

from which we obtain with (3.73) in any gauge

χ̇+Hχ−A−D = 8πGa2pΠ (any gauge). (3.86)
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Finally, we consider the combination

1

2
(δGi

i − δG0
0) = 3

{

2(Ḣ +H2)A+HȦ− D̈ − 2HḊ
}

+
1

a2
∇2A.

Since
1

2
(δT i

i − δT 0
0) =

1

2
ρ
[

(1 + 3c2s)δ + 3wΓ
︸ ︷︷ ︸

δ+3wπL

]

we obtain in the longitudinal gauge the field equation

6ḢA+ 6H2A+ 3HȦ− 3D̈ − 6HḊ = − 1

a2
∇2A + 4πG(1 + 3s2s)ρδ + 12πGpΓ. (3.87)

The gauge invariant form is obviously

6ḢAχ+6H2Aχ+3HȦχ−3D̈χ−6HḊχ = − 1

a2
∇2Aχ+4πG(1+3s2s)ρδχ+12πGpΓ. (3.88)

or

3(HAχ − Ḋχ)
· + 6H(HAχ − Ḋχ) =

−
(

1

a2
∇2 + 3Ḣ

)

Aχ + 4πG(1 + 3c2s)ρδχ + 12πGpΓ.

With (3.74) we can write this as

κ̇χ + 2Hκχ = −
(

1

a2
∇2 + 3Ḣ

)

Aχ + 4πG(1 + 3c2s)ρδχ + 12πGpΓ. (3.89)

In an arbitrary gauge we obtain (the χ-terms cancel)

κ̇ + 2Hκ = −
(

1

a2
∇2 + 3Ḣ

)

A + 4πG(1 + 3c2s)ρδ + 12πGpΓ
︸ ︷︷ ︸

4πGρ(δ+3wπL)

. (3.90)

Intermediate summary

This exhausts the field equations. For reference we summarize the results obtained so far.
First, we collect the equations that are valid in any gauge (indicating also their origin).
As perturbation amplitudes we use A,D, χ, κ (metric functions) and δ,Q,Π,Γ (mat-
ter functions), because these are either gauge invariant or their gauge transformations
involve only the component ξ0 of the vector field ξµ.

• definition of κ:

κ = 3(HA− Ḋ)− 1

a2
∇2χ; (3.91)

• δG0
0:

1

a2
(∇2 + 3K)D +Hκ = −4πGρδ; (3.92)

• δG0
j:

κ +
1

a2
(∇2 + 3K)χ = −12πGQ; (3.93)

• δGi
j − 1

3
δij δG

k
k:

χ̇+Hχ− A−D = 8πGa2pΠ; (3.94)
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• δGi
i − δG0

0:

κ̇+ 2Hκ = −
(

1

a2
∇2 + 3Ḣ

)

A+ 4πG(1 + 3c2s)ρδ + 12πGpΓ
︸ ︷︷ ︸

4πGρ(δ+3wπL)

; (3.95)

• T 0ν
;ν (eq. (3.60)):

δ̇ + 3H(c2s − w)δ + 3HwΓ = (1 + w)(κ− 3HA)− 1

ρa2
∇2Q (3.96)

or

(ρδ)· + 3Hρ(δ + wπL
︸︷︷︸

c2sδ+wΓ

) = (ρ+ p)(κ− 3HA)− 1

a2
∇2Q; (3.97)

• T iν
;ν = 0 (eq. (3.63)):

Q̇+ 3HQ = −(ρ+ p)A− pπL − 2

3
(∇2 + 3K)pΠ. (3.98)

These equations are, of course, not all independent. Putting an index χ or Q, etc at
the perturbation amplitudes in any of them gives a gauge invariant equation. We write
these down for Aχ, Dχ, · · · (instead of Qχ we use V ; see also (3.61) and (3.66)):

κχ = 3(HAχ − Ḋχ); (3.99)

1

a2
(∇2 + 3K)Dχ +Hκχ = −4πGρδχ; (3.100)

κχ = −12πGQχ; (3.101)

Aχ +Dχ = −8πGa2pΠ; (3.102)

κ̇χ + 2Hκχ = −
(

1

a2
∇2 + 3Ḣ

)

Aχ + 4πG(1 + 3c2s)ρδχ + 12πGpΓ
︸ ︷︷ ︸

4πGρ(δχ+3wπL)

; (3.103)

δ̇χ + 3H(c2s − w)δχ + 3HwΓ = −3(1 + w)Ḋχ −
1 + w

a
∇2V ; (3.104)

V̇ + (1− 3c2s)HV = −1

a
Aχ −

1

a

[
c2s

1 + w
δχ +

w

1 + w
Γ +

2

3
(∇2 + 3K)

w

1 + w
Π

]

. (3.105)

Harmonic decomposition

We write these equations once more for the amplitudes of harmonic decompositions,
adopting the following conventions. For those amplitudes which enter in gµν and Tµν

without spatial derivatives (i.e., A,D, δ,Γ) we set

A = A(k)Y(k) , etc ; (3.106)

those which appear only through their gradients (B, v) are decomposed as

B = −1

k
B(k)Y(k) , etc , (3.107)

and, finally, we set for E and Π, entering only through second derivatives,

E =
1

k2
E(k)Y(k) (⇒ ∇2E = −E(k)Y(k)). (3.108)
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The reason for this is that we then have, using the definitions (3.9) and (3.10),

B|i = B(k)Y(k)i, Π|ij −
1

3
γij∇2Π = Π(k)Y(k)ij . (3.109)

The spatial part of the metric in (3.16) then becomes

gijdx
idxj = a2(η)

[

γij + 2(D − 1

3
E)γijY + 2EYij

]

dxidxj. (3.110)

The basic equations (3.91) – (3.98) imply for A(k), B(k), etc
5, dropping the index (k),

κ = 3(HA− Ḋ) +
k2

a2
χ, (3.111)

−k2 − 3K

a2
D +Hκ = −4πGρδ, (3.112)

κ− k2 − 3K

a2
χ = −12πGQ, (3.113)

χ̇+Hχ− A−D = 8πGa2pΠ/k2, (3.114)

κ̇+ 2Hκ =

(
k2

a2
− 3Ḣ

)

A+ 4πG(1 + 3c2s)ρδ + 12πGpΓ
︸ ︷︷ ︸

4πGρ(δ+3wπL)

, (3.115)

(ρδ)· + 3Hρ(δ + wπL
︸︷︷︸

c2sδ+wΓ

) = (ρ+ p)(κ− 3HA) +
k2

a2
Q, (3.116)

Q̇+ 3HQ = −(ρ+ p)A− pπL +
2

3

k2 − 3K

k2
pΠ. (3.117)

For later use we also collect the gauge invariant eqs. (3.99) – (3.105) for the Fourier
amplitudes:

κχ = 3(HAχ − Ḋχ), (3.118)

−k2 − 3K

a2
Dχ +Hκχ = −4πGρδχ, (3.119)

κχ = −12πGQχ

(

Qχ = −a

k
(ρ+ p)V

)

, (3.120)

k2(Aχ +Dχ) = −8πGa2pΠ, (3.121)

κ̇χ + 2Hκχ =

(
k2

a2
− 3Ḣ

)

Aχ + 4πG(1 + 3c2s)ρδχ + 12πGpΓ
︸ ︷︷ ︸

4πGρ(δχ+3wπL)

, (3.122)

δ̇χ + 3H(c2s − w)δχ + 3HwΓ = −3(1 + w)Ḋχ − (1 + w)
k

a
V, (3.123)

V̇ + (1− 3c2s)HV =
k

a
Aχ +

c2s
1 + w

k

a
δχ +

w

1 + w

k

a
Γ− 2

3

w

1 + w

k2 − 3K

k2

k

a
Π. (3.124)

5We replace χ by χ(k)Y(k), where according to (3.21) χ(k) = −(a/k)(B − k−1E′); eq. (3.111) is
then just the translation of (3.22) to the Fourier amplitudes, with κ → κ(k)Y(k). Similarly, Q →
Q(k)Y(k), Q(k) = −(1/k)a(ρ+ p)(v −B)(k).
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Alternative basic systems of equations

From the basic equations (3.91) – (3.105) we now derive another set which is sometimes
useful, as we shall see. We want to work with6 δQ, V and Dχ.

The energy equation (3.96) with index Q gives

δ̇Q + 3H(c2s − w)δQ + 3HwΓ = (1 + w)(κQ − 3HAQ). (3.125)

Similarly, the momentum equation (3.98) implies

AQ = − 1

1 + w

[

c2sδQ + wΓ +
2

3
(∇2 + 3K)wΠ

]

. (3.126)

From (3.93) we obtain

κQ +
1

a2
(∇2 + 3K)χQ = 0. (3.127)

But from (3.56) we see that
χQ = aV, (3.128)

hence

κQ = −1

a
(∇2 + 3K)V. (3.129)

Now we insert (3.126) and (3.129) in (3.125) and obtain

δ̇Q − 3HwδQ = −(1 + w)
1

a
(∇2 + 3K)V + 2H(∇2 + 3K)wΠ. (3.130)

Next, we use (3.105) and the relation

δχ = δQ + 3(1 + w)aHV, (3.131)

which follows from (3.54), to obtain

V̇ +HV = −1

a
Aχ −

1

a(1 + w)

[

c2sδQ + wΓ +
2

3
(∇2 + 3K)wΠ

]

. (3.132)

Here we make use of (3.102), with the result

V̇ +HV = 1
a
Dχ − 1

a(1+w)

[
c2sδQ + wΓ− 8πGa2(1 + w)pΠ+ 2

3
(∇2 + 3K)wΠ

]
(3.133)

From (3.99), (3.101), (3.102) and (3.57) we find

Ḋχ +HDχ = 4πGa(ρ+ p)V − 8πGa2HpΠ. (3.134)

Finally, we replace in (3.100) δχ by δQ (making use of (3.131)) and κχ by V according
to (3.101), giving the Poisson-like equation

1

a2
(∇2 + 3K)Dχ = −4πGρδQ. (3.135)

The system we were looking for consists of (3.130), (3.133), (3.134) or (3.135).

6A detailed analysis in [48] shows that the equations for δQ, V and Dχ are for pressureless fluids,
but general scales, of the same form as the corresponding Newtonian equations.
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From these equations we now derive an interesting expression for Ṙ. Recall (3.58):

R = DQ = Dχ + aHV = Dχ + ȧV. (3.136)

Thus
Ṙ = Ḋχ + äV + ȧV̇ .

On the right of this equation we use for the first term (3.134), for the second the following
consequence of the Friedmann equations (1.17) and (1.23)

ä = −1

2
(1 + 3w)a

(

H2 +
K

a2

)

, (3.137)

and for the last term we use (3.133). The result becomes relatively simple for K = 0
(the V -terms cancel):

Ṙ = − H

1 + w

[

c2sδQ + wΓ +
2

3
w∇2Π

]

.

Using also (3.135) and the Friedmann equation (1.17) (for K = 0) leads to

Ṙ =
H

1 + w

[
2

3
c2s

1

(Ha)2
∇2Dχ − wΓ− 2

3
w∇2Π

]

. (3.138)

This is an important equation that will show, for instance, that R remains constant on
superhorizon scales, provided Γ and Π can be neglected.

As another important application, we can derive through elimination a second order
equation for δQ. For this we perform again a harmonic decomposition and rewrite the
basic equations (3.130), (3.133), (3.134) and (3.135) for the Fourier amplitudes:

δ̇Q − 3HwδQ = −(1 + w)
k

a

k2 − 3K

k2
V − 2H

k2 − 3K

k2
wΠ, (3.139)

V̇ +HV = −k

a
Dχ+

1

1 + w

k

a

[

c2sδQ + wΓ− 8πG(1 + w)
a2

k2
pΠ− 2

3

k2 − 3K

k2
wΠ

]

(3.140)

k2 − 3K

a2
Dχ = 4πGρδQ, (3.141)

Ḋχ +HDχ = −4πG(ρ+ p)
a

k
V − 8πGH

a2

k2
pΠ. (3.142)

Through elimination one can derive the following important second order equation
for δQ (including the Λ term)

δ̈Q + (2 + 3c2s − 6w)Hδ̇Q +

[

c2s
k2

a2
− 4πGρ(1 + w)(1 + 3c2s)

−3Ḣ(w + c2s) + 3H2(3c2s − 5w)
]

δQ = S, (3.143)

where

S = −k2 − 3K

a2
wΓ− 2

(

1− 3K

k2

)

HwΠ̇

−
(

1− 3K

k2

)[

−1

3

k2

a2
+ 2Ḣ + (5− 3c2s/w)H

2

]

2wΠ. (3.144)
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This is obtained by differentiating (3.139), and eliminating V and V̇ with the help of
(3.139) and (3.140). In addition one has to use several zeroth order equations. We leave
the details to the reader. In this form the equation also holds if there are additional
background contributions, for instance from the Λ-term or a dynamical form of dark
energy. (These are – through the Friedmann equation – contained in H .) Note that
S = 0 for Γ = Π = 0.

For the special case of dust (c2s = w = Π = Γ = 0) and K = 0 we get for (3.139) –
(3.141) and (3.143) the same equations as in Newtonian theory :

δ̇Q = −k

a
V, V̇ +HV = −k

a
Φ,

k2

a2
Φ = 4πGρδQ,

δ̈Q + 2Hδ̇Q − 4πGρδQ = 0.

3.4 Extension to multi-component systems

The phenomenological description of multi-component systems in this section follows
closely the treatment in [44].

Let T µ
(α)ν denote the energy-momentum tensor of species (α). The total T µ

ν is as-
sumed to be just the sum

T µ
ν =

∑

(α)

T µ
(α)ν , (3.145)

and is, of course, ‘conserved’. For the unperturbed background we have, as in (3.34),

T
(0)
(α)µ

ν = (ρ(0)α + p(0)α )u(0)
µ u(0)ν + p(0)α δµ

ν , (3.146)

with
(
u(0)µ

)
=

(
1

a
, 0

)

. (3.147)

The divergence of T µ
(α)ν does, in general, not vanish. We set

T ν
(α)µ;ν = Q(α)µ;

∑

α

Q(α)µ = 0. (3.148)

The unperturbed Q(α)µ must be of the form

Q
(0)
(α)µ =

(
−aQ(0)

α , 0
)
, (3.149)

and we obtain from (3.148) for the background

ρ̇(0)α = −3H(ρ(0)α + p(0)α ) +Q(0)
α = −3H(1− q(0)α )hα, (3.150)

where
hα = ρ(0)α + p(0)α , q(0)α := Q(0)

α /(3Hhα). (3.151)

Clearly,

ρ(0) =
∑

α

ρ(0)α , p(0) =
∑

α

p(0)α , h := ρ(0) + p(0) =
∑

α

hα, (3.152)

and (3.148) implies
∑

α

Q(0)
α = 0 ⇔

∑

α

hαq
(0)
α = 0. (3.153)
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We again consider only scalar perturbations, and proceed with each component as in
Sect. 3.1.6. In particular, eqs. (3.32), (3.33), (3.42) and (3.44) become

T µ
(α)νu

ν
(α) = −ρ(α)u

µ
(α), (3.154)

gµνu
µ
(α)u

ν
(α) = −1, (3.155)

δu0
(α) = −1

a
A, δui

(α) =
1

a
γijvα|j ⇒ δu(α)i = a(vα − B)|i,

δT 0
(α)0 = −δρα,

δT 0
(α)j = hα(vα −B)|j , T i

(α)0 = −hαγ
ijvα|j ,

δT i
(α)j = δpαδ

i
j + pα

(

Π
|i
α|j −

1

3
δij∇2Πα

)

,

δpα = c2αδρα + pαΓα ≡ pαπLα, c2α := ṗα/ρ̇α. (3.156)

In (3.156) and in what follows the index (0) is dropped.
Summation of these equations give (δα := δρα/ρα):

ρδ =
∑

α

ραδα, (3.157)

hv =
∑

α

hαvα, (3.158)

pπL =
∑

α

pαπLα, (3.159)

pΠ =
∑

α

pαΠα. (3.160)

The only new aspect is the appearance of the perturbations δQ(α)µ. We decompose
Q(α)µ into energy and momentum transfer rates:

Q(α)µ = Qαuµ + f(α)µ, uµf(α)µ = 0. (3.161)

Since ui and f(α)i are of first order, the orthogonality condition in (3.161) implies

f(α)0 = 0. (3.162)

We set (for scalar perturbations)

δQ(α) = Q(0)
α εα, (3.163)

f(α)j = Hhαfα|j, (3.164)

with two perturbation functions εα, fα for each component. Now, recall from (3.42) that

δu0 = −aA, δui = a(v −B)|i.

Using all this in (3.161) we obtain

δQ(α)0 = −aQ(0)
α (εα + A), (3.165)

δQ(α)i = a
[
Q(0)

α (v −B) +Hhαfα
]

|i . (3.166)

The constraint in (3.148) can now be expressed as
∑

α

Q(0)
α εα = 0,

∑

α

hαfα = 0 (3.167)
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(we have, of course, made use of (3.153)).
From now on we drop the index (0).
We turn to the gauge transformation properties. As long as we do not use the zeroth-

order energy equation (3.150), the transformation laws for δα, vα, πLα,Πα remain the
same as those in Sect. 3.1.6 for δ, v, πL, and Π. Thus, using (3.150) and the notation
wα = pα/ρα, we have

δα → δα +
ρ′α
ρα

ξ0 = δα − 3(1 + wα)H(1− qα)ξ
0,

vα − B → (vα −B)− ξ0,

δpα → δpα + p′αξ
0,

Πα → Πα,

Γα → Γα. (3.168)

The quantity Q, introduced below (3.42), will also be used for each component:

δT 0
(α)i =:

1

a
Qα|i, ⇒ Q =

∑

α

Qα|i. (3.169)

The transformation law of Qα is

Qα → Qα − ahαξ
0. (3.170)

For each α we define gauge invariant density perturbations (δα)Qα
, (δα)χ and veloc-

ities Vα = (vα − B)χ. Because of the modification in the first of eq. (3.168), we have
instead of (3.54)

∆α := (δα)Qα
= δα − 3H(1 + wα)(1− qα)(vα − B). (3.171)

Similarly, adopting the notation of [44], eq. (3.55) generalizes to

∆sα := (δα)χ = δα + 3(1 + wα)(1− qα)Hχ. (3.172)

If we replace in (3.171) vα − B by v − B we obtain another gauge invariant density
perturbation

∆cα := (δα)Q = δα − 3H(1 + wα)(1− qα)(v − B), (3.173)

which reduces to δα for the comoving gauge: v = B.
The following relations between the three gauge invariant density perturbations are

useful. Putting an index χ on the right of (3.171) gives

∆α = ∆sα − 3H(1 + wα)(1− qα)Vα. (3.174)

Similarly, putting χ as an index on the right of (3.173) implies

∆cα = ∆sα − 3H(1 + wα)(1− qα)V. (3.175)

For Vα we have, as in (3.56),
Vα = vα + E ′. (3.176)

From now on we use similar notations for the total density perturbations:

∆ := δQ, ∆s := δχ (∆ ≡ ∆c). (3.177)
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Let us translate the identities (3.157) – (3.160). For instance,
∑

α

ρα∆cα =
∑

α

ραδα + 3H(v −B)
∑

α

hα(1− qα) = ρδ + 3H(v − B)h = ρ∆.

We collect this and related identities:

ρ∆ =
∑

α

ρα∆cα (3.178)

=
∑

α

ρα∆α − a
∑

α

QαVα, (3.179)

ρ∆s =
∑

α

ρα∆sα, (3.180)

hV =
∑

α

hαVα, (3.181)

pΠ =
∑

α

pαΠα. (3.182)

We would like to write also pΓ in a manifestly gauge invariant form. From (using
(3.157), (3.159) and (3.156))

pΓ = pπL − c2sρδ =
∑

α

pαπLα
︸ ︷︷ ︸

c2αραδα+pαΓα

−c2s
∑

α

ραδα =
∑

α

pαΓα +
∑

α

(c2α − c2s)ραδα

we get
pΓ = pΓint + pΓrel, (3.183)

with
pΓint =

∑

α

pαΓα (3.184)

and
pΓrel =

∑

α

(c2α − c2s)ραδα. (3.185)

Since pΓint is obviously gauge invariant, this must also be the case for pΓrel. We want
to exhibit this explicitly. First note, using (3.152) and (3.150), that

c2s =
p′

ρ′
=
∑

α

p′α
ρ′

=
∑

α

c2α
ρ′α
ρ′

=
∑

α

c2α
hα

h
(1− qα), (3.186)

i.e.,

c2s = c̄2s −
∑

α

hα

h
qαc

2
α, (3.187)

where

c̄2s =
∑

α

hα

h
c2α. (3.188)

Now we replace δα in (3.185) with the help of (3.173) and use (3.186), with the result

pΓrel =
∑

α

(c2α − c2s)ρα∆cα. (3.189)

One can write this in a physically more transparent fashion by using once more (3.186),
as well as (3.152) and (3.153),

pΓrel =
∑

α,β

(c2α − c2β)
hβ

h
(1− qβ)ρα∆cα,
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or

pΓrel =
1

2

∑

α,β

(c2α − c2β)
hαhβ

h
(1− qα)(1− qβ)

·
[

∆cα

(1 + wα)(1− qα)
− ∆cβ

(1 + wβ)(1− qβ)

]

. (3.190)

For the special case qα = 0, for all α, we obtain

pΓrel =
1

2

∑

α,β

(c2α − c2β)
hαhβ

h
Sαβ ; (3.191)

Sαβ : =
∆cα

1 + wα

− ∆cβ

1 + wβ

. (3.192)

Note that δα/(1+wα)− δβ/(1+wβ) is only gauge invariant for qα = 0. In this case this
quantity agrees with Sαβ.

The gauge transformation properties of εα, fα are obtained from

δQ(α)µ → δQ(αµ) + ξλQ(α)µ,λ +Q(α)λξ
λ
,µ. (3.193)

For µ = 0 this gives, making use of (3.149) and (3.165),

εα + A → εα + A + ξ0
(aQα)

′

aQα
+ (ξ0)′ .

Recalling (3.18), we obtain

εα → εα +
(Qα)

′

Qα
ξ0. (3.194)

For µ = i we get
δQ(α)i → δQ(α)i +Q(α)0ξ

0
i,

thus
v −B +Hhαfα → v − B +Hhαfα − ξ0.

But according to (3.49) v − B transforms the same way, whence

fα → fα. (3.195)

We see that the following quantity is a gauge invariant version of εα

Ecα := (εα)Q = εα +
(Qα)

′

Qα
(v − B). (3.196)

We shall also use

Eα := (εα)Qα
= εα +

(Qα)
′

Qα
(vα − B) = Ecα +

(Qα)
′

Qα
(Vα − V ) (3.197)

and

Esα := (εα)χ = εα − Q̇α

Qα

χ. (3.198)

Beside
Fcα := fα (3.199)
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we also make use of
Fα := Fcα − 3qα(Vα − V ). (3.200)

In terms of these gauge invariant amplitudes the constraints (3.167) can be written
as (using (3.153))

∑

α

QαEcα = 0, (3.201)

∑

α

QαEα =
∑

α

(Qα)
′Vα, (3.202)

∑

α

hαFcα = 0. (3.203)

Dynamical equations

We now turn to the dynamical equations that follow from

δT ν
(α)µ;ν = δQ(α)µ, (3.204)

and the expressions for δT ν
(α)µ;ν and δQ(α)µ given in (3.156), (3.165) and (3.166). Below

we write these in a harmonic decomposition, making use of the formulae in Appendix A
for δT ν

(α)µ;ν (see (3.237) and (3.245)). In the harmonic decomposition Eqs. (3.165) and

(3.166) become

δQ(α)0 = −aQα(εα + A)Y, (3.205)

δQ(α)j = a [Qα(v − B) +Hhαfα] Yj. (3.206)

From (3.237) we obtain, following the conventions adopted in the harmonic decom-
positions and using the last line in (3.156),

(ραδα)
′ + 3

a′

a
ραδα + 3

a′

a
pαπLα + hα(kvα + 3D′ − E ′) = aQα(A+ εα). (3.207)

Let us write this also in the ‘gauge ready’ form (3.116):

(ραδα)
· + 3H(ραδα + pαπLα) = (ρα + pα)(κ− 3HA) +

k2

a2
Qα +Qα(A+ εα). (3.208)

In the longitudinal gauge we have ∆sα = δα, Vα = vα, Esα = εα, E = 0, and (see (3.73))
A = Aχ, D = Dχ. We also note that, according to the definitions (3.19), (3.20), the
Bardeen potentials can be expressed as

Aχ = Ψ, Dχ = Φ. (3.209)

Eq. (3.207) can thus be written in the following gauge invariant form

(ρα∆sα)
′+3

a′

a
ρα∆sα+3

a′

a
pα

(
c2α
wα

∆sα + Γα

)

+hα(kVα+3Φ′) = aQα(Ψ+Esα). (3.210)

Similarly, we obtain from (3.245) the momentum equation

[hα(vα − B)]′ + 4
a′

a
hα(vα − B)− khαA− kpαπLα

+
2

3

k2 − 3K

k
pαΠα = a[Qα(v −B) +

ȧ

a
hαfα] (3.211)
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or, generalizing (3.117),

Q̇α+3HQα = −(ρα+pα)A−pαπLα+
2

3

k2 − 3K

k2
pαΠα+[Qα(vα−B)+Hhαfα]. (3.212)

The gauge invariant form of (3.211) is (remember that fα is gauge invariant)

(hαVα)
′ + 4

a′

a
hαVα − kpα

(
c2α
wα

∆sα + Γα

)

−khαΨ+
2

3

k2 − 3K

k
pαΠα = a[QαV +

ȧ

a
hαfα]. (3.213)

Eqs. (3.210) and (3.213) constitute our basic system describing the dynamics of matter.
It will be useful to rewrite the momentum equation by using

(hαVα)
′ = hαV

′
α + Vαh

′
α, h′

α = ρ′α(1 + c2s) = −3
a′

a
(1− qα)(1 + c2α)hα.

Together with (3.151) and (3.200) we obtain

V ′
α − 3

a′

a
(1− qα)(1 + c2α)Vα + 4

a′

a
Vα − k

pα
hα

(
c2α
wα

∆sα + Γα

)

−kΨ+
2

3

k2 − 3K

k

pα
hα

Πα = a[
Qα

hα

V +
ȧ

a
fα] =

a′

a
(Fα + 3qαVα)

or

V ′
α +

a′

a
Vα = kΨ+

a′

a
Fα + 3

a′

a
(1− qα)c

2
αVα

+k

[
c2α

1 + wα
∆sα +

wα

1 + wα
Γα

]

− 2

3

k2 − 3K

k

wα

1 + wα
Πα. (3.214)

Here we use (3.174) in the harmonic decomposition, i.e.,

∆α = ∆sα + 3(1 + wα)(1− qα)
a′

a

1

k
Vα, (3.215)

and finally get

V ′
α +

a′

a
Vα = kΨ+

a′

a
Fα

+k

[
c2α

1 + wα
∆α +

wα

1 + wα
Γα

]

− 2

3

k2 − 3K

k

wα

1 + wα
Πα. (3.216)

In applications it is useful to have an equation for Vαβ := Vα−Vβ. We derive this for
qα = Γα = 0 (⇒ Γint = 0, Fα = Fcα = fα). From (3.216) we get

V ′
αβ +

a′

a
Vαβ =

a′

a
Fαβ

+k

[
c2α

1 + wα

∆α −
c2β

1 + wβ

∆β

]

− 2

3

k2 − 3K

k
Παβ, (3.217)

where
Παβ =

wα

1 + wα
Πα − wβ

1 + wβ
Πβ . (3.218)
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Beside (3.215) we also use (3.175) in the harmonic decomposition,

∆cα = ∆sα + 3(1 + wα)(1− qα)
a′

a

1

k
V, (3.219)

to get

∆α = ∆cα + 3(1 + wα)(1− qα)
a′

a

1

k
(Vα − V ). (3.220)

From now on we consider only a two-component system α, β. (The generalization is
easy; see [44].) Then Vα − V = (hβ/h)Vαβ , and therefore the second term on the right
of (3.217) is (remember that we assume qα = 0)

k

[
c2α

1 + wα

∆α − c2β
1 + wβ

∆β

]

=

k

[
c2α

1 + wα

∆cα − c2β
1 + wβ

∆cβ

]

+ 3
a′

a

(

c2αVαβ
hβ

h
+ c2βVαβ

hα

h

)

. (3.221)

At this point we use the identity7

∆cα

1 + wα
=

∆

1 + w
+

hβ

h
Sαβ. (3.222)

Introducing also the abbreviation

c2z := c2α
hβ

h
+ c2β

hα

h
(3.223)

the right hand side of (3.221) becomes k(c2α − c2β)
∆

1+w
+ kc2zSαβ +3a′

a
c2zVαβ . So finally we

arrive at

V ′
αβ +

a′

a
(1− 3c2z)Vαβ

= k(c2α − c2β)
∆

1 + w
+ kc2zSαβ +

a′

a
Fαβ −

2

3

k2 − 3K

k
Παβ . (3.224)

For the generalization of this equation, without the simplifying assumptions, see (II.5.27)
in [44].

Under the same assumptions we can simplify the energy equation (3.210). Using

(
ρα∆sα

hα

)′
=

1

hα
(ρα∆sα)

′ − h′
α

hα

ρα
hα

∆sα,
h′
α

hα

ρα
hα

= −3
a′

a
(1 + c2α)

1

1 + wα

in (3.210) yields
(

∆sα

1 + wα

)′
= −kVα − 3Φ′. (3.225)

From this, (3.219) and the defining equation (3.192) of Sαβ we obtain the useful equation

S ′
αβ = −kVαβ . (3.226)

7From (3.192) we obtain for an arbitrary number of components (making use of (3.178))

∑

β

hβ

h
Sαβ =

∆cα

1 + wα
−
∑

β

hβ

h

1

1 + wβ
︸ ︷︷ ︸

ρβ/h

∆cβ =
∆cα

1 + wα
− ρ

h
∆ =

∆cα

1 + wα
− ∆

1 + w
.
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It is sometimes useful to have an equation for (∆cα/(1 + wα))
′. From (3.219) and

(3.225) (for qα = 0) we get
(

∆cα

1 + wα

)′
= −kVα − 3Φ′ + 3

(
a′

a

1

k
V

)′
.

For the last term make use of (3.137), (3.140) and (3.121). If one uses also the following
consequence of (3.118) and (3.120)

a′

a
Ψ− Φ′ = 4πGρa2(1 + w)k−1V =

3

2

[(
a′

a

)2

+K

]

(1 + w)k−1V (3.227)

one obtains after some manipulations
(

∆cα

1 + wα

)′
= −kVα + 3

K

k
V + 3

a′

a
c2s

∆

1 + w
+ 3

a′

a

w

1 + w
Γ

− 3
a′

a

w

1 + w

2

3

(

1− 3K

k2

)

Π. (3.228)

3.5 Appendix to Chapter 3

In this Appendix we give derivations of some results that were used in previous sections.

A. Energy-momentum equations

In what follows we derive the explicit form of the perturbation equations δT µ
ν;µ = 0 for

scalar perturbations, i.e., for the metric (3.16) and the energy-momentum tensor given
by (3.34) and (3.42).

Energy equation

From
T µ

ν;µ = T µ
ν,µ + Γµ

µλT
λ
ν − Γλ

µνT
µ
λ (3.229)

we get for ν = 0:

δ(T µ
0;µ) = δT µ

0,µ + δΓµ
µλT

λ
0 + Γµ

µλδT
λ
0 − δΓλ

µ0T
µ
λ − Γλ

µ0δT
µ
λ (3.230)

(quantities without a δ in front are from now on the zeroth order contributions). On the
right we have more explicitly for the first three terms

δT µ
0,µ = δT i

0,i + δT 0
0,0,

δΓµ
µλT

λ
0 = δΓµ

µ0T
0
0 = δΓi

i0T
0
0 + δΓ0

00T
0
0,

Γµ
µλδT

λ
0 = Γµ

µ0δT
0
0 + Γµ

µiδT
i
0 = 4HδT 0

0 + Γj
jiδT

i
0;

we used some of the unperturbed Christoffel symbols:

Γ0
00 = H, Γ0

0i = Γi
00 = 0, Γ0

ij = Hγij, Γi
0j = Hδij , Γi

jk = Γ̄i
jk, (3.231)

where Γ̄i
jk are the Christoffel symbols for the metric γij. With these the other terms

become

−δΓλ
µ0T

µ
λ = −δΓ0

µ0T
µ
0 − δΓi

µ0T
µ
i = −δΓ0

00T
0
0 − δΓi

j0T
j
i,

−Γλ
µ0δT

µ
λ = −Γ0

µ0δT
µ
0 − Γi

µ0δT
µ
i = −HδT 0

0 −HδT i
i.
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Collecting terms gives

δ(T µ
0;µ) = (δT i

0)|i + δT 0
0,0 −HδT i

i + 3HδT 0
0 − (ρ+ p)δΓi

i0. (3.232)

We recall part of (3.42)

δT 0
0 = −δρ, δT i

0 = −(ρ+ p)v|i, δT i
j = δpδij + pΠi

j , (3.233)

where

Πi
j := Π|i

|j −
1

3
δij ∇2Π. (3.234)

Inserting this gives

δ(T µ
0;µ) = −δρ,0 − (ρ+ p)∇2v − 3H(δρ+ δp)− (ρ+ p)δΓi

i0. (3.235)

We need δΓi
i0. In a first step we have

δΓi
i0 =

1

2
gij(δgij,0 + δgj0,i − δgi0,j) +

1

2
δgiν(gνi,0 + gν0,i − δgi0,ν),

so

δΓi
i0 =

1

2

(
1

a2
γijδgij,0 + δgij(a2),0γij

)

.

Inserting here (1.16), i.e.,

δgij = 2a2(Dγij + E|ij), δgij = −2a2(Dγij + E|ij),

gives
δΓi

i0 = (3D +∇2E)′. (3.236)

Hence (3.235) becomes

−δ(T µ
0;µ) = (δρ)′ + 3H(δρ+ δp) + (ρ+ p)[∇2(v + E ′) + 3D′], (3.237)

giving the energy equation:

(δρ)′ + 3H(δρ+ δp) + (ρ+ p)[∇2(v + E ′) + 3D′] = 0 (3.238)

or
(δρ)· + 3H(δρ+ δp) + (ρ+ p)[∇2(v + Ė) + 3Ḋ] = 0. (3.239)

We rewrite (3.238) in terms of δ := δρ/ρ, using also (3.44) and (3.56),

(ρδ)′ + 3Hρδ + 3HpπL + (ρ+ p)[∇2V + 3D′] = 0. (3.240)

Momentum equation

For ν = i eq. (3.229) gives

δ(T µ
i;µ) = δT µ

i,µ + δΓµ
µλT

λ
i + Γµ

µλδT
λ
i − δΓλ

µiT
µ
λ − Γλ

µiδT
µ
λ. (3.241)

On the right we have more explicitly, again using (3.231),

δT µ
i,µ = δT j

i,j + δT 0
i,0,

δΓµ
µjT

λ
i = δΓµ

µjT
j
i = δΓ0

0jT
j
i + δΓk

kjT
j
i,

Γµ
µλδT

λ
i = Γµ

µ0δT
0
i + Γµ

µjδT
j
i = 4HδT 0

i + Γk
kjδT

j
i,

−δΓλ
µiT

µ
λ = −δΓ0

µiT
µ
0 − δΓj

µiT
µ
j = −δΓ0

0iT
0
0 − δΓj

kiT
k
j,

−Γλ
µiδT

µ
λ = −Γ0

µiδT
µ
0 − Γj

µiδT
µ
j = −HγijδT

j
0 −HδT 0

i − Γj
kiδT

k
j.
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Collecting terms gives

δ(T µ
i;µ) = (δT j

i)|j + δT 0
i,0 + 3HδT 0

i −HγijδT
j
0 + (ρ+ p)δΓ0

0i. (3.242)

One readily finds
δΓ0

0i = (A−HB)|i (3.243)

We insert this and (3.233) into the last equation and obtain

δ(T µ
i;µ) = {δp+ (ρ+ p)′(v −B) + (ρ+ p)

·[(v −B)′ + 4H(v −B) + A]}|i + pΠj
i|j.

From (3.234) we obtain (R(γ)ij denotes the Ricci tensor for the metric γij)

Πj
i|j = Π|j

|ij −
1

3
Π|i = Π|j

|ji +R(γ)ijΠ
|j − 1

3
Π|i =

[
2

3
(∇2 + 3K)Π

]

|i
. (3.244)

As a result we see that δ(T µ
i;µ) is equal to ∂i of the function

[(ρ+ p)(v −B)]′ + 4H(ρ+ p)(v − B) + (ρ+ p)A+ pπL +
2

3
(∇2 + 3K)pΠ, (3.245)

and the momentum equation becomes explicitly (h = ρ+ p)

[h(v − B)]′ + 4Hh(v − B) + hA + pπL +
2

3
(∇2 + 3K)pΠ = 0. (3.246)

B. Calculation of the Einstein tensor
for the longitudinal gauge

In the longitudinal gauge the metric is equal to gµν + δgµν , with

g00 = −a2, g0i = 0, gij = a2γij , g00 = −a−2, g0i = 0, gij = a−2γij ; (3.247)

δg00 = −2a2A, δg0i = 0, δgij = 2a2Dγij,

δg00 = 2a−2A, δg0i = 0, δgij = −2a−2Dγij. (3.248)

The unperturbed Christoffel symbols have been given before in (3.231).
Next we need

δΓµ
αβ =

1

2
δgµν(gνα,β + gνβ,α − gαβ,ν) +

1

2
gµν(δgνα,β + δgνβ,α − δgαβ,ν). (3.249)

For example, we have

δΓ0
00 =

1

2
2a−2A(−a2)′ +

1

2
(−a2)(−2a2A)′ = A′.

Some of the other components have already been determined in Sect. A. We list, for
further use, all δΓµ

αβ:

δΓ0
00 = A′, δΓ0

0i = A,i, δΓ0
ij = [2H(D − A) +D′] γij,

δΓi
00 = A,i, δΓi

0j = D′δij , δΓi
jk = D,kδ

i
j +D,jδ

i
k −D,iδjk

(3.250)
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(indices are raised with γij).
For δRµν we have the general formula

δRµν = ∂λδΓ
λ
νµ−∂νδΓ

λ
λµ+ δΓσ

νµΓ
λ
λσ +Γσ

νµδΓ
λ
λσ − δΓσ

λµΓ
λ
νσ −Γσ

λµδΓ
λ
νσ. (3.251)

We give the details for δR00,

δR00 = ∂λδΓ
λ
00 − ∂0δΓ

λ
λ0 + δΓσ

00Γ
λ
λσ + Γσ

00δΓ
λ
λσ − δΓσ

λ0Γ
λ
0σ − Γσ

λ0δΓ
λ
0σ. (3.252)

The individual terms on the right are:

∂λδΓ
λ
00 = (δΓ0

00)
′ + (δΓi

00),i = A′′ + A,i
,i,

−∂0δΓ
λ
λ0 = −A′′ − 3D′′,

δΓσ
00Γ

λ
λσ = δΓ0

00Γ
λ
λ0 + δΓi

00Γ
λ
λi = 4HA′ + Γ̄l

liA
,i,

Γσ
00δΓ

λ
λσ = Γ0

00δΓ
λ
λ0 + Γi

00δΓ
λ
λi = H(A′ + 3D′),

−δΓσ
λ0Γ

λ
0σ = −δΓ0

λ0Γ
λ
00 − δΓi

λ0Γ
λ
0i = −H(A′ + 3D′),

−Γσ
λ0δΓ

λ
0σ = −Γ0

λ0δΓ
λ
00 − Γi

λ0δΓ
λ
0i = −H(A′ + 3D′).

Summing up gives the desired result

δR00 = ∇2A + 3HA′ − 3D′′ − 3HD′. (3.253)

Similarly one finds (unpleasant exercise)

δR0j = 2(HA−D′),j , (3.254)

δRij = −(A +D)|ij +
[
−∇2D − (4H2 + 2H′)A−HA′

+(4H2 + 2H′)D − 5HD′ +D′′] γij. (3.255)

Using also the zeroth order expressions for the Ricci tensor

R00 = −3H′, Rij = [H′ + 2H2 + 2K]γij, R0i = 0, (3.256)

one finds for the Einstein tensor8

δG0
0 =

2

a2
[3H(HA−D′) +∇2D + 3KD], (3.257)

δG0
j = − 2

a2
[HA−D′],j , (3.258)

δGi
j =

2

a2

{

(2H′ +H2)A+HA′ −D′′

−2HD′ +KD +
1

2
∇2(A+D)

}

δij −
1

a2
(A+D)|i|j. (3.259)

These results can be derived less tediously with the help of the ’3+1 formalism’,
developed, for instance, in Sect.2.9 of [1]. This was sketched in [47].

C. Summary of notation and basic equations

Notation in cosmological perturbation theory is a nightmare. Unfortunately, we had
to introduce lots of symbols and many equations. For convenience, we summarize the
adopted notation and indicate the location of the most important formulae. Some of
them are repeated for further reference.

8Note that δRµ
ν = δgµλRλν + gµλδRλν .
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Recapitulation of the basic perturbation equations

For scalar perturbations we use the following gauge invariant amplitudes:
metric: Ψ, Φ (Bardeen potentials)

Ψ ≡ Aχ, Φ ≡ Dχ; (3.260)

total energy-momentum tensor T µν : ∆ = δQ, V ; instead of ∆ we also use ∆s = δχ,
and the relation

∆s = ∆− 3(1 + w)H
a

k
V. (3.261)

The basic equations, derived from Einstein’s field equations, and some of the conse-
quences, can be summarized in the harmonic decomposition as follows:
• constraint equations:

(k2 − 3K)Φ = 4πGρa2∆, (3.262)

Φ̇−HΨ = −4πG(ρ+ p)
a

k
V ; (3.263)

• relevant dynamical equation:

Φ + Ψ = −8πG
a2

k2
pΠ; (3.264)

• energy equation:

∆̇− 3Hw∆ = −
(

1− 3K

k2

)[

(1 + w)
k

a
V + 2HwΠ

]

; (3.265)

• momentum equation:

V̇ +HV =
k

a
Ψ+

1

1 + w

k

a

[

c2s∆+ wΓ− 2

3

k2 − 3K

k2
wΠ

]

. (3.266)

If ∆ is replaced in (3.265) and (3.266) by ∆s these equations become

∆̇s + 3H(c2s − w)∆s = −3(1 + w)Φ̇− (1 + w)
k

a
V − 3HwΓ, (3.267)

and

V̇ + (1− 3c2s)HV =
k

a
Ψ+

c2s
1 + w

k

a
∆s +

w

1 + w

k

a
Γ− 2

3

w

1 + w

k2 − 3K

k2

k

a
Π. (3.268)

multi-component systems :

T µ
ν =

∑

(α)

T µ
(α)ν , T ν

(α)µ;ν = Q(α)µ,
∑

α

Q(α)µ = 0. (3.269)

• additional unperturbed quantities, beside ρα, , pα, hα, cα, : Qα, qα, satisfy:

ρ =
∑

α

ρα, p =
∑

α

pα, h := ρ+ p =
∑

α

hα, (3.270)

Qα = 3Hhαqα,
∑

α

Qα = 0,
∑

α

hαqα = 0, (3.271)

ρ̇α = −3H(1− qα)hα. (3.272)
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• perturbations : gauge invariant amplitudes: ∆α,∆sα,∆cα,Πα,Γα,

ρ∆ =
∑

α

ρα∆cα (3.273)

=
∑

α

ρα∆α − a
∑

α

QαVα, (3.274)

ρ∆s =
∑

α

ρα∆sα, (3.275)

hV =
∑

α

hαVα, (3.276)

pΠ =
∑

α

pαΠα, (3.277)

pΓ = pΓint + pΓrel, (3.278)

pΓint =
∑

α

pαΓα, (3.279)

pΓrel =
∑

α

(c2α − c2s)ρα∆cα (3.280)

or

pΓrel =
1

2

∑

α,β

(c2α − c2β)
hαhβ

h
(1− qα)(1− qβ)

·
[

∆cα

(1 + wα)(1− qα)
− ∆cβ

(1 + wβ)(1− qβ)

]

; (3.281)

for the special case qα = 0, for all α:

pΓrel =
1

2

∑

α,β

(c2α − c2β)
hαhβ

h
Sαβ ; (3.282)

Sαβ : =
∆cα

1 + wα

− ∆cβ

1 + wβ

. (3.283)

• additional gauge invariant perturbations from δQ(α)µ:
energy: Eα, Ecα, Esα; momentum: Fα, Fcα; constraints:

∑

α

QαEcα = 0, (3.284)

∑

α

QαEα =
∑

α

(Qα)
′Vα, (3.285)

∑

α

hαFcα = 0. (3.286)

• dynamical equations for qα = Γα = 0 (⇒ Γint = 0); some of the equations below hold
only for two-component systems;

(
∆sα

1 + wα

)′
= −kVα − 3Φ′; (3.287)

eq. (3.228) for K = 0:

(
∆cα

1 + wα

)′
= −kVα + 3

a′

a
c2s

∆

1 + w
+ 3

a′

a

w

1 + w
Γ− 3

a′

a

w

1 + w

2

3
Π; (3.288)
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V ′
α +

a′

a
Vα = kΨ+

a′

a
Fα + k

c2α
1 + wα

∆α − 2

3

k2 − 3K

k
Πα; (3.289)

for Vαβ := Vα − Vβ:

V ′
αβ +

a′

a
(1− 3c2z)Vαβ

= k(c2α − c2β)
∆

1 + w
+ kc2zSαβ +

a′

a
Fαβ −

2

3

k2 − 3K

k
Παβ ; (3.290)

relation between Sαβ and Vαβ :
S ′
αβ = −kVαβ . (3.291)

When working with ∆sα it is natural to substitute in (3.289) ∆α with the help of (3.174)
in terms of ∆sα:

V ′
α +

a′

a
(1− 3c2α)Vα = kΨ +

a′

a
Fα + k

c2α
1 + wα

∆sα − 2

3

k2 − 3K

k

wα

1 + wα

Πα. (3.292)
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Chapter 4

Some Applications of Cosmological
Perturbation Theory

In this Chapter we discuss some applications of the general formalism. More relevant
applications will follow in later chapters.

Before studying realistic multi-component fluids, we consider first the simplest case
when one component, for instance CDM, dominates. First, we study, however, a general
problem.

Let us write down the basic equations (3.139) – (3.142) in the notation adopted later
(Aχ = Ψ, Dχ = Φ, δQ = ∆):

∆̇− 3Hw∆ = −(1 + w)
k

a

k2 − 3K

k2
V − 2H

k2 − 3K

k2
wΠ, (4.1)

V̇ +HV = −k

a
Φ +

1

1 + w

k

a

[

c2s∆+ wΓ− 8πG(1 + w)
a2

k2
pΠ− 2

3

k2 − 3K

k2
wΠ

]

, (4.2)

k2 − 3K

a2
Φ = 4πGρ∆, (4.3)

Φ̇ +HΦ = −4πG(ρ+ p)
a

k
V − 8πGH

a2

k2
pΠ. (4.4)

Recall also (3.121):

Φ + Ψ = −8πG
a2

k2
pΠ. (4.5)

Note that Φ = −Ψ for Π = 0.
From these perturbation equations we derived through elimination the second order

equation (3.143) for ∆, which we repeat for Π = 0 (vanishing anisotropic stresses) and
Γ = 0 (vanishing entropy production):

∆̈ + (2 + 3c2s − 6w)H∆̇ +

[

c2s
k2

a2
− 4πGρ(1 + w)(1 + 3c2s)

−3Ḣ(w + c2s) + 3H2(3c2s − 5w)
]

∆ = 0. (4.6)

Remarkably, this can be written as [48]

1 + w

a2H

[
H2

a(ρ+ p)

(
a3ρ

H
∆

)·]·
+ c2s

k2

a2
∆ = 0 (4.7)

(Exercise). Sometimes it is convenient to write this in terms of the conformal time for
the quantity ρa3∆. Making use of (ρa3)· = −3Hw(ρa3) (see (1.22)) one finds

(ρa3∆)′′ + (1 + 3c2s)H(ρa3∆)′ +
[
(k2 − 3K)c2s − 4πG(ρ+ p)a2

]
(ρa3∆) = 0. (4.8)
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Using (4.3) we obtain from (4.8) the following compact second order equation for Φ:

ρ+ p

H

[
H2

a(ρ+ p)

( a

H
Φ
)·
]·
+ c2s

k2

a2
Φ = 0. (4.9)

With (3.58) and (4.4) it is easy to see that for K = 0 and Π = 0 the curvature pertur-
bation can be written as

R =
H2

4πGa(ρ+ p)

( a

H
Φ
)·

(4.10)

Hence (4.9) again implies that R remains constant on large scales (csk/(aH) ≪ 1).

4.1 Non-relativistic limit

It is instructive to first consider a one-component non-relativistic fluid. The non-
relativistic limit of the second order equation (4.6) is

∆̈ + 2H∆̇ = 4πGρ∆− c2s

(
k

a

)2

∆. (4.11)

From this basic equation one can draw various conclusions.

The Jeans criterion

One sees from (4.11) that gravity wins over the pressure term ∝ c2s for k < kJ , where

k2
J

(cs
a

)2

= 4πGρ (4.12)

defines the comoving Jeans wave number. The corresponding Jeans length (wave length)
is

λJ =
2π

kJ
a =

(
πc2s
Gρ

)1/2

,
λJ

2π
≃ cs

H
. (4.13)

For λ < λJ we expect that the fluid oscillates, while for λ ≫ λJ an over-density will
increase.

Let us illustrate this for a polytropic equation of state p = const ργ . We consider,
as a simple example, a matter dominated Einstein-de Sitter model (K = 0), for which
a(t) ∝ t2/3, H = 2/(3t). Eq. (4.11) then becomes (taking ρ from the Friedmann equation,
ρ = 1/(6πGt2))

∆̈ +
4

3t
∆̇ +

(
L2

t2γ−2/3
− 2

3t2

)

∆ = 0, (4.14)

where L2 is the constant

L2 =
t2γ−2/3c2sk

2

a2
. (4.15)

The solutions of (4.14)are

∆±(t) ∝ t−1/6J∓5/6ν

(
Lt−ν

ν

)

, ν := γ − 4

3
> 0. (4.16)

The Bessel functions J oscillate for t ≪ L1/ν , whereas for t ≫ L1/ν the solutions behave
like

∆±(t) ∝ t−
1

6
± 5

6 . (4.17)
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Now, t > L1/ν signifies c2sk
2/a2 < 6πGρ. This is essentially again the Jeans criterion

k < kJ . At the same time we see that

∆+ ∝ t2/3 ∝ a, (4.18)

∆− ∝ t−1. (4.19)

Thus the growing mode increases like the scale factor. This means that the growth factor
in linear theory from recombination to redshifts of a few is only about 103. So, initial
fluctuations of ∼ 10−5 can not become of order unity until the present. Since long, this
is considered as strong evidence for the existence of a dominant dark matter component,
whose fluctuations could grow already long before recombination.

4.2 Large scale solutions

Consider, as an important application, wavelengths larger than the Jeans length, i.e.,
cs(k/aH) ≪ 1. Then we can drop the last term in equation (4.9) and solve for Φ in
terms of quadratures:

Φ(t,k) = C(k)
H

a

∫ t

0

4πGa(ρ+ p)

H2
dt+

H

a
d(k). (4.20)

We write this differently by using in the integrand the following background equation (
implied by (3.80))

4πGa(ρ+ p)

H2
=
( a

H

)·
− a

(

1− K

ȧ2

)

.

With this we obtain

Φ(t,k) = C(k)

[

1− H

a

∫ t

0

a

(

1− K

ȧ2

)

dt

]

+
H

a
d(k). (4.21)

Let us work this out for a mixture of dust (p = 0) and radiation (p = 1
3
ρ). We use

the ‘normalized’ scale factor ζ := a/aeq, where aeq is the value of a when the energy
densities of dust (CDM) and radiation are equal. Then (see Sect. 1.1.3)

ρ =
1

2
ζ−4 +

1

2
ζ−3, p =

1

6
ζ−4. (4.22)

Note that

ζ ′ = kxζ, x :=
Ha

k
. (4.23)

From now on we assume K = 0, Λ = 0. Then the Friedmann equation gives

H2 = H2
eq

ζ + 1

2
ζ−4, (4.24)

thus

x2 =
ζ + 1

2ζ2
1

ω2
, ω :=

1

xeq
=

k

(aH)eq
. (4.25)

In (4.21) we need the integral

H

a

∫ t

0

adt = Haeq
1

ζ

∫ η

0

ζ2dη =

√
ζ + 1

ζ3

∫ ζ

0

ζ2√
ζ + 1

dζ.
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As a result we get for the growing mode

Φ(ζ,k) = C(k)

[

1−
√
ζ + 1

ζ3

∫ ζ

0

ζ2√
ζ + 1

dζ

]

. (4.26)

From (4.3) and the definition of x we obtain

Φ =
3

2
x2∆, (4.27)

hence with (4.25)

∆ =
4

3
ω2C(k)

ζ2

ζ + 1

[

1−
√
ζ + 1

ζ3

∫ ζ

0

ζ2√
ζ + 1

dζ

]

. (4.28)

The integral is elementary. One finds that ∆ is proportional to

Ug =
1

ζ(ζ + 1)

[

ζ3 +
2

9
ζ2 − 8

9
ζ − 16

9
+

16

9

√

ζ + 1

]

. (4.29)

This is a well-known result.
The decaying mode corresponds to the second term in (4.21), and is thus proportional

to

Ud =
1

ζ
√
ζ + 1

. (4.30)

Limiting approximations of (4.29) are

Ug =

{
10
9
ζ2 : ζ ≪ 1
ζ : ζ ≫ 1.

(4.31)

For the potential Φ ∝ x2∆ the growing mode is given by

Φ(ζ) = Φ(0)
9

10

ζ + 1

ζ2
Ug. (4.32)

Thus

Φ(ζ) = Φ(0)

{
1 : ζ ≪ 1
9
10

: ζ ≫ 1.
(4.33)

In particular, Φ stays constant both in the radiation and in the matter dominated eras.
Recall that this holds only for cs(k/aH) ≪ 1. We shall later study eq. (4.9) for arbitrary
scales.

4.3 Solution of (2.6) for dust

Using the Poisson equation (4.3) we can write (4.9) in terms of ∆

1 + w

a2H

[
H2

a(ρ+ p)

(
a3ρ

H
∆

)·]·
+ c2s

k2

a2
∆ = 0. (4.34)

For dust this reduces to (using ρa3 = const)

[

a2H2

(
∆

H

)·]·
= 0. (4.35)
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The general solution of this equation is

∆(t,k) = C(k)H(t)

∫ t

0

dt′

a2(t′)H2(t′)
+ d(k)H(t). (4.36)

This result can also be obtained in Newtonian perturbation theory. The first term gives
the growing mode and the second the decaying one.

Let us rewrite (4.36) in terms of the redshift z. From 1 + z = a0/a we get dz =
−(1 + z)Hdt, so by (1.91)

dt

dz
= − 1

H0(1 + z)E(z)
, H(z) = H0E(z). (4.37)

Therefore, the growing mode Dg(z) can be written in the form

Dg(z) =
5

2
ΩME(z)

∫ ∞

z

1 + z′

E3(z′)
dz′. (4.38)

Here the normalization is chosen such that Dg(z) = (1+ z)−1 = a/a0 for ΩM = 1, ΩΛ =
0. This growth function is plotted in Fig. 7.12 of [5].

The dependence of the growth function on Λ becomes more explicit by writing the
integral in (4.27) in terms of the integration variable y = (ΩΛ/ΩM)(1 + z′)−3. One finds
that

(1 + z)Dg(z) =
5

6
x−5/6

√
1 + x

∫ x

0

dy

y1/6(1 + y)3/2
, (4.39)

where x = (ΩΛ/ΩM )(1 + z)−3. By construction, the right hand side is equal to 1 for
x = 0, so this function of x gives the suppression of the growth of matter fluctuations
by ΩΛ.

Let us also work out the peculiar velocity V for the growing mode. According to
(4.1) V = −(a/k)∆̇. For dust we can rewrite the expression for the growing mode in
(4.36) with the help of the equation above (4.21) as

∆(t,k) = C(k)
1

4πGρa2

[

1− H

a

∫ t

0

a(t′) dt′
]

.

This implies

V = −a

k
∆̇ =

C(k)

4πGρa2k
Ḣ

∫ t

0

a(t′) dt′. (4.40)

For a ΛCDM model this can be rewritten as

V (a,k) = −C(k)

k

1

H0

1

a1/2

∫ a

0

da√
ΩM + a3ΩΛ

. (4.41)

The remaining integral can be expressed in terms of the incomplete beta function.

4.4 A simple relativistic example

As an additional illustration we now solve (4.8) for a single perfect fluid with w = c2s =
const, K = Λ = 0. For a flat universe the background equations are then

ρ′ + 3
a′

a
(1 + w)ρ = 0,

(
a′

a

)2

=
8πG

3
a2ρ.
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Inserting the ansatz
ρa2 = Aη−ν , a = a0(η/η0)

β

we get
β2

η2
=

8πG

3
Aη−ν ⇒ ν = 2, A =

3

8πG
β2.

The energy equation then gives β = 2/(1+3w) (= 1 if radiation dominates). Let x := kη
and

f := xβ−2∆ ∝ ρa3∆.

Also note that k/(aH) = x/β. With all this we obtain from (4.8) for f
[
d2

dx2
+

2

x

d

dx
+ c2s −

β(β + 1)

x2

]

f = 0. (4.42)

The solutions are given in terms of Bessel functions:

f(x) = C0jβ(csx) +D0nβ(csx). (4.43)

This implies acoustic oscillations for csx ≫ 1, i.e., for β(k/aH) ≫ 1 (subhorizon
scales). In particular, if the radiation dominates (β = 1)

∆ ∝ x[C0j1(csx) +D0n1(csx)], (4.44)

and the growing mode is soon proportional to x cos(csx), while the term going with
sin(csx) dies out.

On the other hand, on superhorizon scales (csx ≪ 1) one obtains

f ≃ Cxβ +Dx−(β+1),

and thus

∆ ≃ Cx2 +Dx−(2β−1),

Φ ≃ 3

2
β2(C +Dx−(2β+1),

V ≃ 3

2
β

(

− 1

β + 1
Cx+Dx−2β

)

. (4.45)

We see that the growing mode behaves as ∆ ∝ a2 in the radiation dominated phase and
∆ ∝ a in the matter dominated era.

The characteristic Jeans wave number is obtained when the square bracket in (4.8)
vanishes. This gives

λJ =

(
πc2s
Gh

)1/2

, h = ρ+ p. (4.46)

—————–

Exercises. 1. Derive the exact expression for V . 2. Specialize the differential equation
(4.7) for Φ to the model of this section, and solve the resulting equation for w = c2s = 1/3
(radiation). Discuss the result.

—————–

Note. Equation (4.6) for radiation domination (w = c2s = 1/3) and K = 0 = Λ
becomes

∆̈ +H∆̇ +
1

3

k2

a2
∆ = −16π

3
Gρ∆.

As was pointed out in [48], several textbooks arrive instead at an incorrect equation.
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4.5 Generalizations to several components

Let us single out a component (α), for instance dark matter, and assume that it is
an ideal fluid and that its energy-momentum tensor is separately conserved. Then the
energy equation (3.208) becomes in the Qα-gauge

δ̇α + 3H(c2α − wα)δα = (1 + wα)(κ− 3HA).

(We do not put the gauge index Qα on the perturbation amplitudes.) From the momen-
tum equation (3.212) we obtain

A = − 1

1 + wα
c2αδα.

Inserting this into the previous equation gives

κ =
1

1 + wα

(δ̇α − 3Hwαδα).

Using these expressions in the Einstein equation (3.115), i.e.,

κ̇+ 2Hκ =
(k2

a2
− 3Ḣ

)

A + 4πG(δρ+ 3δp),

we obtain the following generalization of (4.6) for the individual component (α)

δ̈α + (2 + 3c2α − 6wα)Hδ̇α +

[

c2α
k2

a2
− 4πGρα(1 + wα)(1 + 3c2α)

−3Ḣ(wα + c2α) + 3H2(3c2α − 5wα)
]

δα = 4πG
∑

β 6=α

(δρβ + 3δpβ). (4.47)

The right hand side describes the coupling to the other components through gravitational
interaction. This equation can for instance be used for the study of the growth of the
dark matter density perturbation after recombination (wα = cα = 0). Coupled fluid
models that are important for the evolution of perturbations before recombination will
be studied in Chap. 7.

In Part III the general perturbation theory will be applied in attempts to understand
the generation of primordial perturbations from primordial quantum fluctuations.
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Part III

Inflation and Generation of
Fluctuations
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Chapter 5

Cosmological Perturbation Theory
for Scalar Field Models

To keep this chapter independent of Chap. 2, let us begin by repeating the set up of
Sect. 2.3.

We consider a minimally coupled scalar field ϕ, with Lagrangian density

L = −1

2
gµν∂µϕ∂νϕ− U(ϕ) (5.1)

and corresponding field equation
2ϕ = U,ϕ. (5.2)

As a result of this the energy-momentum tensor

T µ
ν = ∂µϕ∂νϕ− δµν

(
1

2
∂λϕ∂λϕ+ U(ϕ)

)

(5.3)

is covariantly conserved. In the general multi-component formalism (Sect. 3.4) we have,
therefore, Qϕ = 0.

The unperturbed quantities ρϕ, etc, are

ρϕ = −T 0
0 =

1

2a2
(ϕ′)2 + U(ϕ), (5.4)

pϕ =
1

3
T i

i =
1

2a2
(ϕ′)2 − U(ϕ), (5.5)

hϕ = ρϕ + pϕ =
1

a2
(ϕ′)2. (5.6)

Furthermore,

ρ′ϕ = −3
a′

a
hϕ. (5.7)

It is not very sensible to introduce a “velocity of sound” cϕ.

5.1 Basic perturbation equations

Now we consider small deviations from the ideal Friedmann behavior:

ϕ → ϕ0 + δϕ, ρϕ → ρϕ + δρ, etc. (5.8)

(The index 0 is only used for the unperturbed field ϕ.) Since Lξϕ0 = ξ0ϕ′
0 the gauge

transformation of δϕ is
δϕ → δϕ+ ξ0ϕ′

0. (5.9)
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Therefore,

δϕχ = δϕ− 1

a
ϕ′
0χ = δϕ− ϕ′

0(B + E ′) (5.10)

is gauge invariant (see (3.21)). Further perturbations are

δT 0
0 = − 1

a2

[

−ϕ
′2
0 A + ϕ′

0δϕ
′ + U,ϕa

2δϕ
]

, (5.11)

δT 0
i = − 1

a2
ϕ′
0δϕ,i, (5.12)

δT i
j = − 1

a2
[ϕ

′2
0 A− ϕ′

0δϕ
′ + U,ϕa

2δϕ]δij. (5.13)

This gives (recall (3.43))

δρ =
1

a2
[−ϕ

′2
0 A + ϕ′

0δϕ
′ + a2U,ϕδϕ], (5.14)

δp = pπL =
1

a2
[ϕ′

0δϕ
′ − ϕ

′2
0 A− a2U,ϕδϕ], (5.15)

Π = 0, Q = −ϕ̇0δϕ. (5.16)

Einstein equations

We insert these expressions into the general perturbation equations (3.91) – (3.98) and
obtain

κ = 3(HA− Ḋ)− 1

a2
∇2χ, (5.17)

1

a2
(∇2 + 3K)D +Hκ = −4πG[ϕ̇0δϕ̇− ϕ̇2

0A + U,ϕδϕ], (5.18)

κ+
1

a2
(∇2 + 3K)χ = 12πGϕ̇0δϕ, (5.19)

A +D = χ̇+Hχ. (5.20)

Equation (3.95) is in the present notation

κ̇ + 2Hκ = −
(

1

a2
∇2 + 3Ḣ

)

A + 4πG[δρ+ 3δp],

with
δρ+ 3δp = 2(−2ϕ̇2

0A + 2ϕ̇0δϕ̇− U,ϕδϕ).

If we also use (recall (3.80))

Ḣ = −4πGϕ̇2
0 +

K

a2

we obtain

κ̇ + 2Hκ = −
(∇2 + 3K

a2
+ 4πGϕ̇2

0

)

A + 8πG(2ϕ̇0δϕ̇− U,ϕδϕ). (5.21)

The two remaining equations (3.97) and (3.98) are:

(δρ)· + 3H(δρ+ δp) = (ρ+ p)(κ− 3HA)− 1

a2
∇2Q, (5.22)

and
Q̇+ 3HQ = −(ρ+ p)A− δp, (5.23)
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with the expressions (5.14) – (5.16). Since these last two equations express energy-
momentum ‘conservation’, they are not independent of the others if we add the field
equation for ϕ; we shall not make use of them below.

Eqs. (5.17) – (5.21) can immediately be written in a gauge invariant form:

κχ = 3(HAχ − Ḋχ), (5.24)

1

a2
(∇2 + 3K)Dχ +Hκχ = −4πG[ϕ̇0δϕ̇χ − ϕ̇2

0Aχ + U,ϕδϕχ], (5.25)

κχ = 12πGϕ̇0δϕχ, (5.26)

Aχ +Dχ = 0 (5.27)

κ̇χ + 2Hκχ = −
(∇2 + 3K

a2
+ 4πGϕ̇2

0

)

Aχ + 8πG(2ϕ̇0δϕ̇χ − U,ϕδϕχ). (5.28)

From now on we set K = 0. Use of (5.27) then gives us the following four basic
equations:

κχ = 3(Ȧχ +HAχ), (5.29)

1

a2
∇2Aχ −Hκχ = 4πG[ϕ̇0δϕ̇χ − ϕ̇2

0Aχ + U,ϕδϕχ], (5.30)

κχ = 12πGϕ̇0δϕχ, (5.31)

κ̇χ + 2Hκχ = − 1

a2
∇2Aχ − 4πGϕ̇2

0Aχ + 8πG(2ϕ̇0δϕ̇χ − U,ϕδϕχ). (5.32)

Recall also
4πGϕ̇2

0 = −Ḣ. (5.33)

From (5.29) and (5.31) we get

Ȧχ +HAχ = 4πGϕ̇0δϕχ. (5.34)

The difference of (5.32) and (5.30) gives (using also (5.29))

(Ȧχ +HAχ)
· + 3H(Ȧχ +HAχ) = 4πG(ϕ̇0δϕ̇χ − U,ϕδϕχ)

i.e.,

Äχ + 4HȦχ + (Ḣ + 3H2)Aχ = 4πG(ϕ̇0δϕ̇χ − U,ϕδϕχ). (5.35)

Beside (5.34) and (5.35) we keep (5.30) in the form (making use of (5.33))

1

a2
∇2Aχ − 3HȦχ − (Ḣ + 3H2)Aχ = 4πG(ϕ̇0δϕ̇χ + U,ϕδϕχ). (5.36)

Scalar field equation

We now turn to the ϕ equation (5.2). Recall (the index 0 denotes in this subsection the
t-coordinate)

g00 = −(1 + 2A), g0j = −aB,j , gij = a2[γij + 2Dγij + 2E|ij];

g00 = −(1 − 2A), g0j = −1

a
B,j, gij =

1

a2
[γij − 2Dγij − 2E|ij];

√−g = a3
√
γ(1 + A+ 3D +∇2E.
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Up to first order we have (note that ∂jϕ and g0j are of first order)

2ϕ =
1√−g

∂µ(
√−ggµν∂νϕ) =

1√−g
(
√−gg00ϕ̇)· +

1

a2
∇2δϕ− 1

a
ϕ̇0∇2B.

Using the zeroth order field equation (2.34), we readily find

δϕ̈+ 3Hδϕ̇+

(

− 1

a2
∇2 + U,ϕϕ

)

δϕ =

(Ȧ− 3Ḋ −∇2Ė + 3HA− 1

a
∇2B)ϕ̇0 − (3Hϕ̇0 + 2U,ϕ)A.

Recalling the definition of κ,

κ = 3(HA− Ḋ)− 1

a
∇2(B + aĖ),

we finally obtain the perturbed field equation in the form

δϕ̈+ 3Hδϕ̇+

(

− 1

a2
∇2 + U,ϕϕ

)

δϕ = (κ + Ȧ)ϕ̇0 − (3Hϕ̇0 + 2U,ϕ)A. (5.37)

By putting the index χ at all perturbation amplitudes one obtains a gauge invariant
equation. Using also (5.29) one arrives at

δϕ̈χ + 3Hδϕ̇χ +

(

− 1

a2
∇2 + U,ϕϕ

)

δϕχ = 4ϕ̇0Ȧχ − 2U,ϕAχ. (5.38)

Our basic – but not independent – equations are (5.34), (5.35), (5.36) and (5.38).

5.2 Consequences and reformulations

In (3.58) we have introduced the curvature perturbation (recall also (5.16))

R := DQ = Dχ −
H

ϕ̇0
δϕχ = D − H

ϕ̇0
δϕ. (5.39)

It will turn out to be convenient to work also with

u = −zR, z :=
aϕ̇0

H
, (5.40)

thus

u = a

[

δϕχ −
ϕ̇0

H
Dχ

]

= a

[

δϕ− ϕ̇0

H
D

]

. (5.41)

This amplitude will play an important role, because we shall obtain from the previous
formulae the simple equation

u′′ −∇2u− z′′

z
u = 0. (5.42)

This is a Klein-Gordon equation with a time-dependent mass.
We next rewrite the basic equations in terms of the conformal time:

∇2Aχ − 3HA′
χ − (H′ + 3H2)Aχ = 4πG(ϕ′

0δϕ
′
χ + U,ϕa

2δϕχ), (5.43)
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A′
χ +HAχ = 4πGϕ′

0δϕχ, (5.44)

A′′
χ + 3HA′

χ + (H′ + 2H2)Aχ = 4πG(ϕ′
0δϕ

′
χ − U,ϕa

2δϕχ), (5.45)

δϕ′′
χ + 2Hδϕ′

χ −∇2δϕχ + U,ϕϕa
2δϕχ = 4ϕ′

0A
′
χ − 2U,ϕa

2Aχ. (5.46)

Let us first express u (or R) in terms of Aχ. From (4.40), (4.39) we obtain in a first
step

4πGzu = 4πGz2Aχ + 4πG
z2H
ϕ′
0

δϕχ.

For the first term on the right we use the unperturbed equation (see (5.33))

4πGϕ
′2
0 = H2 −H′, (5.47)

and in the second term we make use of (5.44). Collecting terms gives

4πGzu =

(
a2Aχ

H

)′
. (5.48)

Next, we derive an equation for Aχ alone. For this we subtract (5.43) from (5.45)
and use (5.44) to express δϕχ in terms of Aχ and A′

χ. Moreover we make use of (5.47)
and the unperturbed equation (2.34),

ϕ′′
0 + 2Hϕ′

0 + U,ϕ(ϕ0)a
2 = 0. (5.49)

Detailed derivation: The quoted equations give

A′′
χ + 6HA′

χ −∇2Aχ + 2(H′ + 2H2)Aχ =

−8πGU,ϕa
2δϕχ =

2

ϕ′
0

(ϕ′′
0 + 2Hϕ′

0)(A
′
χ +HAχ),

thus
A′′

χ + 2(H− ϕ′′
0/ϕ

′
0)A

′
χ −∇2Aχ + 2(H′ −Hϕ′′

0/ϕ
′
0)Aχ = 0.

Rewriting the coefficients of Aχ, A
′
χ slightly, we obtain the important equation:

A′′
χ + 2

(a/ϕ′
0)

′

a/ϕ′
0

A′
χ −∇2Aχ + 2ϕ′

0(H/ϕ′
0)

′Aχ = 0. (5.50)

Now we return to (5.48) and write this, using (5.47), as follows:

u

z
= Aχ +

A′
χ +HAχ

L
, (5.51)

where

L = 4πG
z2H
a2

= 4πG(ϕ′
0)

2/H = H−H′/H. (5.52)

Differentiating (5.51) implies

(u

z

)′
= A′

χ +
A′′

χ + (HAχ)
′

L
− A′

χ +HAχ

L2
L′

or, making use of (4.52) and (4.50),

L
(u

z

)′
= (H−H′/H)A′

χ − 2
(a/ϕ′

0)
′

a/ϕ′
0

A′
χ +∇2Aχ

−2ϕ′
0(H/ϕ′

0)
′Aχ + (HAχ)

′ − (A′
χ +HAχ)

(ϕ
′2
0 /H)′

ϕ
′2
0 /H

.
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From this one easily finds the simple equation

4πG
Hz2

a2

(u

z

)′
= ∇2Aχ. (5.53)

Finally, we derive the announced eq. (5.42). To this end we rewrite the last equation
as

∇2Aχ = 4πG
H
a2

(zu′ − z′u),

from which we get

∇2A′
χ = 4πG

(H
a2

)′
(zu′ − z′u) + 4πG

H
a2

(zu′′ − z′′u).

Taking the Laplacian of (4.51) gives

4πG
H
a2

z∇2u = L∇2Aχ +∇2A′
χ +H∇2Aχ.

Combining the last two equations and making use of (5.52) shows that indeed (5.42)
holds.

Summarizing, we have the basic equations

u′′ −∇2u− z′′

z
u = 0, (5.54)

∇2Aχ = 4πG
H
a2

(zu′ − z′u), (5.55)

(
a2Aχ

H

)′
= 4πGzu. (5.56)

We now discuss some important consequences of these equations. The first concerns
the curvature perturbation R = −u/z (original definition in (5.39)). In terms of this
quantity eq. (5.55) can be written as

Ṙ
H

=
1

1−H′/H2

1

(aH)2
(−∇2Aχ). (5.57)

The right-hand side is of order (k/aH)2, hence very small on scales much larger than the
Hubble radius. It is common practice to use the terms “Hubble length” and “horizon”
interchangeably, and to call length scales satisfying k/aH ≪ 1 to be super-horizon.
(This can cause confusion; ‘super-Hubble’ might be a better term, but the jargon can
probably not be changed anymore.)

We have studied Ṙ already at the end of Sect. 3.3. I recall (3.138):

Ṙ =
H

1 + w

[
2

3
c2s

1

(Ha)2
∇2Dχ − wΓ− 2

3
w∇2Π

]

. (5.58)

This general equation also holds for our scalar field model, for which Π = 0, Dχ = −Aχ.
The first term on the right in (5.58) is again small on super-horizon scales. So the non-
adiabatic piece pΓ = δp − c2sδρ must also be small on large scales. This means that
the perturbations are adiabatic. We shall show this more directly further below, by
deriving the following expression for Γ:

pΓ = − U,ϕ

6πGHϕ̇

1

a2
∇2Aχ. (5.59)
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After inflation, when relativistic fluids dominate the matter content, eq. (5.58) still
holds. The first term on the right is small on scales larger than the sound horizon. Since
Γ and Π are then not important, we see that for super-horizon scales R remains constant
also after inflation. This will become important in the study of CMB anisotropies.

Later, it will be useful to have a handy expression of Aχ in terms of R. According
to (3.58) and (3.57) we have

R = Dχ +
H

a(ρ+ p)
Qχ. (5.60)

We rewrite this by combining (3.99) and (3.101)

R = Dχ −
H

4πGa2(ρ+ p)
(HAχ −D′

χ). (5.61)

At this point we specialize again to K = 0, and use (3.80) in the form

4πGa2(ρ+ p) = H2(1−H′/H2)

and obtain

R = Dχ −
1

εH(HAχ −D′
χ), (5.62)

where
ε := 1−H′/H2. (5.63)

If Π = 0 then Dχ = −Aχ, so

−R = Aχ +
1

εH(HAχ + A′
χ), (5.64)

I claim that for a constant R

Aχ = −
(

1− H
a2

∫

a2dη

)

R. (5.65)

We prove this by showing that (5.65) satisfies (5.64). Differentiating the last equation
gives by the same equation and (5.63) our claim.

As a special case we consider (always for K = 0) w = const. Then, as shown in Sect.
4.4,

a = a0(η/η0)
β, β =

2

3w + 1
. (5.66)

Thus
H
a2

∫

a2dη =
β

2β + 1
,

hence

Aχ = −3(w + 1)

3w + 5
R. (5.67)

This will be important later.
Derivation of (5.59): By definition

pΓ = δp− c2sδρ, c2s = ṗ/ρ̇ ⇒ pΓ =
ρ̇δp− ṗδρ

ρ̇
. (5.68)
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Now, by (5.7) and (5.5)

ρ̇ = −3Hϕ̇2, ṗ = ϕ̇(ϕ̈− U,ϕ) = −ϕ̇(3Hϕ̇+ 2U,ϕ),

and by (5.14) and (5.15)

δρ = −ϕ̇2A+ ϕ̇δϕ̇+ U,ϕδϕ , δp = ϕ̇δϕ̇− ϕ̇2A− U,ϕδϕ.

With these expressions one readily finds

pΓ = −2

3

U,ϕ

Hϕ̇
[−ϕ̈δϕ+ ϕ̇(δϕ̇− ϕ̇A)]. (5.69)

Up to now we have not used the perturbed field equations. The square bracket on the
right of the last equation appears in the combination (5.18)-H· (5.19) for the right hand
sides. Since the right hand side of (5.69) must be gauge invariant, we can work in the
gauge χ = 0, and obtain (for K = 0) from (5.18), (5.19)

1

a2
∇2A = 4πG[−ϕ̈δϕ+ ϕ̇(δϕ̇− ϕ̇A)],

thus (5.59) since in the longitudinal gauge A = Aχ.
Application. We return to eq. (5.57) and use there (5.59) to obtain

Ṙ = 4πG
ρp

U̇
Γ. (5.70)

As a result of (5.59) Γ is small on super-horizon scales, and hence (5.70) tells us that
R is almost constant (as we knew before).

The crucial conclusion is that the perturbations are adiabatic, which is not obvious
(I think). For multi-field inflation this is, in general, not the case (see, e.g., [49]).
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Chapter 6

Quantization, Primordial Power
Spectra

The main goal of this Chapter is to derive the primordial power spectra that are gener-
ated as a result of quantum fluctuations during an inflationary period.

6.1 Power spectrum of the inflaton field

For the quantization of the scalar field that drives the inflation we note that the equation
of motion (5.42) for the scalar perturbation (5.41),

u = a

[

δϕχ −
ϕ̇0

H
Dχ

]

= a

[

δϕχ +
ϕ′
0

HAχ

]

, (6.1)

is the Euler-Lagrange equation for the effective action

Seff =
1

2

∫

d3xdη

[

(u′)2 − (∇u)2 +
z′′

z
u2

]

. (6.2)

The normalization is chosen such that Seff reduces to the correct action when gravity
is switched off. (In [45] this action is obtained by considering the quadratic piece of the
full action with Lagrange density (2.26), but this calculation is extremely tedious.)

The effective Lagrangian of (6.1) is

L =
1

2

[

(u′)2 − (∇u)2 +
z′′

z
u2

]

. (6.3)

This is just a free theory with a time-dependent mass m2 = −z′′/z. Therefore the
quantization is straightforward. Once u is quantized the quantization of Ψ = Aχ is then
also fixed (see eq. (5.55)).

The canonical momentum is

π =
∂L
∂u′ = u′, (6.4)

and the canonical commutation relations are the usual ones:

[û(η,x), û(η,x′)] = [π̂(η,x), π̂(η,x′)] = 0, [û(η,x), π̂(η,x′)] = iδ(3)(x− x′). (6.5)

Let us expand the field operator û(η,x) in terms of eigenmodes uk(η)e
ik·x of eq.

(5.42), for which

u′′
k +

(

k2 − z′′

z

)

uk = 0. (6.6)
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The time-independent normalization is chosen to be

u∗
ku

′
k − uku

′∗
k = −i. (6.7)

In the decomposition

û(η,x) = (2π)−3/2

∫

d3k
[

uk(η)âke
ik·x + u∗

k(η)â
†
ke

−ik·x
]

(6.8)

the coefficients âk, â
†
k are annihilation and creation operators with the usual commuta-

tion relations:
[âk, âk′ ] = [â†k, â

†
k′ ] = 0, [âk, â

†
k′] = δ(3)(k− k′). (6.9)

With the normalization (6.7) these imply indeed the commutation relations (6.5).
(Translate (6.8) with the help of (5.55) into a similar expansion of Ψ, whose mode
functions are determined by uk(η).)

The modes uk(η) are chosen such that at very short distances (k/aH → ∞) they
approach the plane waves of the gravity free case with positive frequences

uk(η) ∼
1√
2k

e−ikη (k/aH ≫ 1). (6.10)

In the opposite long-wave regime, where k can be neglected in (6.6), we see that the
growing mode solution are

uk ∝ z (k/aH ≪ 1), (6.11)

i.e., uk/z and thus R is constant on super-horizon scales. This has to be so on the basis
of what we saw in Sect. 5.2. The power spectrum is conveniently defined in terms of R.
We have (we do not put a hat on R)

R(η,x) = (2π)−3/2

∫

Rk(η)e
ik·xd3k, (6.12)

with

Rk(η) =

[
uk(η)

z
âk +

u∗
k(η)

z
â†−k

]

. (6.13)

The power spectrum is defined by (see also Appendix A)

〈0|RkR†
k′ |0〉 =:

2π2

k3
PR(k)δ

(3)(k− k′). (6.14)

From (6.13) we obtain

PR(k) =
k3

2π2

|uk(η)|2
z2

. (6.15)

Below we shall work this out for the inflationary models considered in Chap. 5.
Before, we should address the question why we considered the two-point correlation for
the Fock vacuum relative to our choice of modes uk(η) (often called the Bunch-Davies
vacuum). A priori, the initial state could contain all kinds of excitations, for instance
a thermal distribution. These would, however, be redshifted away by the enormous
inflationary expansion, and the final power spectrum on interesting scales, much larger
than the Hubble length, should be largely independent of possible initial excitations.
Plausibility arguments for the choice of the Bunch-Davies vacuum state are discussed
in [50].
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There is also the important question of how the quantum fields and (vacuum) expec-
tations of products of them can be reinterpreted on large scales at the end of inflation
in terms of classical random fields. There must be some kind of decoherence at work,
but it is not obvious how this happens. A necessary condition is that the commutator
[û(x, η), û(x′, η′)] can be neglected. It is easy to express this as a Fourier integral of
products of the mode functions uk(η) for different times η. Using expressions for these
valid well outside the horizon, e.g. (6.25) below, one can see explicitly that such modes
do not contribute to the commutator. Unfortunately, I can not say more about this
issue.

6.1.1 Power spectrum for power-law inflation

For power law inflation one can derive an exact expression for (6.15). For the mode
equation (6.6) we need z′′/z. To compute this we insert in the definition (5.40) of z
the results of Sect. 2.3.1, giving immediately z ∝ a(t) ∝ tp. In addition (2.40) implies
t ∝ η1/1−p, so a(η) ∝ ηp/1−p. Hence,

z′′

z
=

(

ν2 − 1

4

)
1

η2
, (6.16)

where

ν2 − 1

4
=

p(2p− 1)

(p− 1)2
. (6.17)

Using this in (6.6) gives the mode equation

u′′
k +

(

k2 − ν2 − 1/4

η2

)

uk = 0. (6.18)

This can be solved in terms of Bessel functions. Before proceeding with this we note two
further relations that will be needed later. First, from H = p/t and a(t) = a0t

p we get

η = − 1

aH

1

1− 1/p
. (6.19)

In addition,
z

a
=

ϕ̇

H
=

√
p

4π

MP l/t

(p/t)
=

1√
4πp

MP l,

so

ε := − Ḣ

H2
=

1

p
=

4π

M2
P l

z2

a2
. (6.20)

Let us now turn to the mode equation (6.18). According to [51], 9.1.49, the functions

w(z) = z1/2Cν(λz), Cν ∝ H
(1)
ν , H

(2)
ν , ... satisfy the differential equation

w′′ +

(

λ2 − ν2 − 1/4

z2

)

w = 0. (6.21)

From the asymptotic formula for large z ([51], 9.2.3),

H(1)
ν ∼

√

2

πz
ei(z−

1

2
νπ− 1

4
π) (−π < arg z < π), (6.22)
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we see that the correct solutions are

uk(η) =

√
π

2
ei(ν+

1

2
)π
2 (−η)1/2H(1)

ν (−kη). (6.23)

Indeed, since −kη = (k/aH)(1 − 1/p)−1, k/aH ≫ 1 means large −kη, hence (6.23)
satisfies (6.10). Moreover, the Wronskian is normalized according to (6.7) (use 9.1.9 in
[51]).

In what follows we are interested in modes which are well outside the horizon:
(k/aH) ≪ 1. In this limit we can use (9.1.9 in [51])

iH(1)
ν (z) ∼ 1

π
Γ(ν)

(
1

2
z

)−ν

(z → 0) (6.24)

to find

uk(η) ≃ 2ν−3/2ei(ν−1/2)π/2 Γ(ν)

Γ(3/2)

1√
2k

(−kη)−ν+1/2. (6.25)

Therefore, by (6.19) and (6.20)

|uk| = 2ν−3/2 Γ(ν)

Γ(3/2)
(1− ε)ν−1/2 1√

2k

(
k

aH

)−ν+1/2

. (6.26)

The form (6.26) will turn out to hold also in more general situations studied below,
however, with a different ε. We write (6.26) as

|uk| = C(ν)
1√
2k

(
k

aH

)−ν+1/2

, (6.27)

with

C(ν) = 2ν−3/2 Γ(ν)

Γ(3/2)
(1− ε)ν−1/2 (6.28)

(recall ν = 3
2
+ 1

p−1
).

The power spectrum is thus

PR(k) =
k3

2π2

∣
∣
∣
∣

uk(η)

z2

∣
∣
∣
∣

2

=
k3

2π2

1

z2
C2(ν)

1

2k

(
k

aH

)1−2ν

. (6.29)

For z we could use (6.20). There is, however, a formula which holds more generally:
From the definition (2.40) of z and (2.38) we get

z = −M2
P l

4π

a

H

dH

dϕ
. (6.30)

Inserting this in the previous equation we obtain for the power spectrum on super-
horizon scales

PR(k) = C2(ν)
4

M4
P l

H4

(dH/dϕ)2

(
k

aH

)3−2ν

. (6.31)

For power-law inflation a comparison of (6.20) and (6.30) shows that

M2
P l

4π

(dH/dϕ)2

H2
=

1

p
= ε. (6.32)
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The asymptotic expression (6.31), valid for k/aH ≪ 1, remains, as we know, constant
in time1. Therefore, we can evaluate it at horizon crossing k = aH :

PR(k) = C2(ν)
4

M4
P l

H4

(dH/dϕ)2

∣
∣
∣
∣
k=aH

. (6.33)

We emphasize that this is not the value of the spectrum at the moment when the
scale crosses outside the Hubble radius. We have just rewritten the asymptotic value for
k/aH ≪ 1 in terms of quantities at horizon crossing.

Note also that C(ν) ≃ 1. The result (6.33) holds, as we shall see below, also in the
slow-roll approximation.

6.1.2 Power spectrum in the slow-roll approximation

We now define two slow-roll parameters and rewrite them with the help of (2.37) and
(2.38):

ε = − Ḣ

H2
=

4π

M2
P l

ϕ̇2

H2
=

M2
P l

4π

(
dH/dϕ

H(ϕ)

)2

, (6.34)

δ = − ϕ̈

Hϕ̇
=

M2
P l

4π

d2H/dϕ2

H
(6.35)

(| ε |, | δ |≪ 1 in the slow-roll approximation). These parameters are approximately
related to εU , ηU introduced in (2.45) and (2.46), as we now show. From (2.36) for
K = 0 and (2.37) we obtain

H2(1− ε

3
) =

8π

3M2
P l

U(ϕ). (6.36)

For small | ε | we obtain from this the following approximate expressions for the slow-roll
parameters:

ε ≃ M2
P l

16π

(
U,ϕ

U

)2

= εU , (6.37)

δ ≃ M2
P l

8π

U,ϕϕ

U
− M2

P l

16π

(
U,ϕ

U

)2

= ηU − εU . (6.38)

(In the literature the letter η is often used instead of δ, but η is already occupied for
the conformal time.)

We use these small parameters to approximate various quantities, such as the effective
mass z′′/z.

First, we note that (6.34) and (6.30) imply the relations2

ε = 1− H′

H2
=

4π

M2
P l

z2

a2
. (6.39)

1Let us check this explicitly. Using (6.32) we can write (6.31) as

PR(k) = C2(ν)
1

πM2
Pl

H2

ε

(
k

aH

)3−2ν

,

and we thus have to show that H2(aH)2ν−3 is time independent. This is indeed the case since aH ∝
1/η, H = p/t, t ∝ η1/(1−p) ⇒ H ∝ η−1/(1−p).

2Note also that
ä

a
≡ Ḣ +H2 = (1− ε)H2,

so ä > 0 for ε < 1.
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According to (6.35) we have δ = 1 − ϕ′′/ϕ′H. For the last term we obtain from the
definition z = aϕ′/H

ϕ′′

ϕ′H =
z′

zH − (1−H′/H2).

Hence

δ = 1 + ε− z′

zH . (6.40)

Next, we look for a convenient expression for the conformal time. From (6.39) we get

ε

aHda = εdη = dη − (H′/H2)dη = dη + d

(
1

H

)

,

so

η = − 1

H +

∫
ε

aHda. (6.41)

Now we determine z′′/z to first order in ε and δ. From (6.40), i.e., z′/z = H(1+ε−δ),
we get

z′′

z
−
(
z′

z

)2

= (ε′ − δ′)H + (1 + ε− δ)H′,

hence

z′′/z = H2

[
ε′ − δ′

H + (1 + ε− δ)(2− δ)

]

. (6.42)

We can consider ε′, δ′ as of second order: For instance, by (6.39)

ε′ =
4π

M2
P l

2zz′

a2
− 2εH

or
ε′ = 2Hε(ε− δ). (6.43)

Treating ε, δ as constant, eq. (6.41) gives η = −(1/H) + εη, thus

η = − 1

H
1

1− ε
. (6.44)

This generalizes (6.19), in which ε = 1/p (see (6.20)). Using this in (6.42) we obtain to
first order

z′′

z
=

1

η2
(2 + 2ε− 3δ).

We write this as (6.16), but with a different ν:

z′′

z
=

(

ν2 − 1

4

)
1

η2
, ν :=

1 + ε− δ

1− ε
+

1

2
. (6.45)

As a result of all this we can immediately write down the power spectrum in the
slow-roll approximation. From the derivation it is clear that the formula (6.33) still
holds, and the same is true for (6.28). Since ν is close to 3/2 we have C(ν) ≃ 1. In
sufficient approximation we thus finally obtain the important result:

PR(k) =
4

M4
P l

H4

(dH/dϕ)2

∣
∣
∣
∣
k=aH

=
1

πM2
P l

H2

ε

(
k

aH

)3−2ν

=
1

πM2
P l

H2

ε

∣
∣
∣
∣
k=aH

. (6.46)

This spectrum is nearly scale-free. This is evident if we use the formula (6.31), from
which we get

n− 1 :=
d lnPR(k)

d ln k
= 3− 2ν = 2δ − 4ε, (6.47)

so n is close to unity.
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Exercise. Show that (6.47) follows also from the first equation in (6.46).
Solution: In a first step we get

n− 1 =
d

dϕ
ln

[
H4

(dH/dϕ)2

∣
∣
∣
∣
k=aH

]
dϕ

d ln k
.

For the last factor we note that k = aH implies

d ln k =
da

a
+

dH

H
⇒ d ln k

dϕ
=

H

ϕ̇
+

dH/dϕ

H

or, with (2.37),

d ln k

dϕ
=

4π

M2
P l

H

dH/dϕ

[

M2
P l

4π

(
dH/dϕ

H

)2

− 1

]

.

Hence, using (6.34),
dϕ

d ln k
=

M2
P l

4π

dH/dϕ

H

1

ε− 1
.

Therefore,

n− 1 =
M2

P l

4π

dH/dϕ

H

1

ε− 1

[

4
dH/dϕ

H
− 2

d2H/dϕ2

dH/dϕ

]

=
1

ε− 1
(4ε− 2δ)

by (6.34) and (6.35).

6.1.3 Power spectrum for density fluctuations

Let PΦ(k) be the power spectrum for the Bardeen potential Φ = Dχ. The latter is related
to the density fluctuation ∆ by the Poisson equation (3.3),

k2Φ = 4πGρa2∆. (6.48)

Recall also that for Π = 0 we have Φ = −Ψ (= −Aχ), and according to (5.67) the
following relation for a period with w = const.

Φ =
3(w + 1)

3w + 5
R, (6.49)

and thus

P
1/2
Φ (k) =

3(w + 1)

3w + 5
P

1/2
R (k). (6.50)

Inserting (6.46) gives for the primordial spectrum on super-horizon scales

PΦ(k) =

[
3(w + 1)

3w + 5

]2
4

M4
P l

H4

(dH/dϕ)2

∣
∣
∣
∣
k=aH

. (6.51)

From (6.48) we obtain

∆(k) =
2(w + 1)

3w + 5

(
k

aH

)2

R(k), (6.52)

and thus for the power spectrum of ∆:

P∆(k) =
4

9

(
k

aH

)4

PΦ(k) =
4

9

[
3(w + 1)

3w + 5

]2(
k

aH

)4

PR(k). (6.53)
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During the plasma era until recombination the primordial spectra (6.46) and (6.51)
are modified in a way that will be studied in Part III of these lectures. The modification is
described by the so-called transfer function3 T (k, z), normalized such that T (k) ≃ 1 for
(k/aH) ≪ 1. Including this, we have in the (dark) matter dominated era (in particular
at the time of recombination)

P∆(k) =
4

25

(
k

aH

)4

P prim
R (k)T 2(k), (6.54)

where P prim
R (k) denotes the primordial spectrum ((6.46) for our simple model of infla-

tion).

Remark. Using the fact that R is constant on super-horizon scales allows us to es-
tablish the relation between ∆H(k) := ∆(k, η) |k=aH and ∆(k, η) on these scales. From
(6.52) we see that

∆(k, η) =

(
k

aH

)2

∆H(k). (6.55)

In particular, if | R(k) |∝ kn−1, thus | ∆(k, η) |2= Akn+3, then

| ∆H(k) |2= Akn−1, (6.56)

and this is independent of k for n = 1. In this case the density fluctuation for each mode
at horizon crossing has the same magnitude. This explains why the case n = 1 – also
called the Harrison-Zel’dovich spectrum – is called scale free.

6.2 Generation of gravitational waves

In this section we determine the power spectrum of gravitational waves by quantizing
tensor perturbations of the metric.

These are parametrized as follows

gµν = a2(η)[γµν + 2Hµν ], (6.57)

where a2(η)γµν is the Friedmann metric (γµ0 = 0, γij: metric of (Σ, γ)), and Hµν satisfies
the transverse traceless (TT) gauge conditions

H00 = H0i = H i
i = Hi

j
|j = 0. (6.58)

The tensor perturbation amplitudes Hij remain invariant under gauge transforma-
tions (3.14). Indeed, as in Sect. 3.1.4, one readily finds

Lξg
(0) = 2a2(η)

{
−(Hξ0 + (ξ0)′)dη2 + (ξ′i − ξ0|i)dx

idη

+(Hγijξ
0 + ξi|j)dx

idxj
}
.

Decomposing ξµ into scalar and vector parts gives the scalar and vector contributions
of Lξg

(0), but there are obviously no tensor contributions.
The perturbations of the Einstein tensor belonging to Hµν are derived in the Ap-

pendix to this Chapter. The result is:

δG0
0 = δG0

j = δGi
0 = 0,

δGi
j =

1

a2

[

(H i
j)

′′ + 2
a′

a
(H i

j)
′ + (−∇2 + 2K)H i

j

]

. (6.59)

3For more on this, see Sect. 7.2.4, where the z-dependence of T (k, z) is explicitly split off.

97



We claim that the quadratic part of the Einstein-Hilbert action is

S(2) =
M2

P l

16π

∫
[
(H i

k)
′(Hk

i)
′ −H i

k|lH
k
i
|l − 2KH i

kH
k
i

]
a2(η)dη

√
γd3x. (6.60)

(Remember that the indices are raised and lowered with γij.) Note first that
√−gd4x =√

γa4(η)dηd3x+ quadratic terms in Hij, because Hij is traceless. A direct derivation of
(6.60) from the Einstein-Hilbert action would be extremely tedious (see [45]). It suffices,
however, to show that the variation of (6.60) is just the linearization of the general
variation formula (see Sect. 2.3 of [1])

δS = −M2
P l

16π

∫

Gµνδgµν
√−gd4x (6.61)

for the Einstein-Hilbert action

S =
M2

P l

16π

∫

R
√−gd4x. (6.62)

Now, we have after the usual partial integrations,

δS(2) = −M2
P l

8π

∫ [
(a2H i

k)
′)′

a2
+ (−∇2 + 2K)H i

k

]

δHk
ia

2(η)dη
√
γd3x.

Since δHk
i =

1
2
δgki this is, with the expression (6.59), indeed the linearization of (6.61).

We absorb in (6.60) the factor a2(η) by introducing the rescaled perturbation

P i
j(x) :=

(
M2

P l

8π

)1/2

a(η)H i
j(x). (6.63)

Then S(2) becomes, after another partial integration,

S(2) =
1

2

∫ [

(P i
k)

′(P k
i)
′ − P i

k|lP
k
i
|l +

(
a′′

a
− 2K

)

P i
kP

k
i

]

dη
√
γd3x. (6.64)

In what follows we take again K = 0. Then we have the following Fourier decompo-
sition: Let ǫij(k, λ) be the two polarization tensors, satisfying

ǫij = ǫji, ǫii = 0, kiǫij(k, λ) = 0, ǫi
j(k, λ)ǫj

i(k, λ′)∗ = δλλ′ ,

ǫij(−k, λ) = ǫ∗ij(k, λ), (6.65)

then

P i
j(η,x) = (2π)−3/2

∫

d3k
∑

λ

vk,λ(η)ǫ
i
j(k, λ)e

ik·x. (6.66)

In terms of vk,λ(η) the action becomes

S(2) =
1

2

∫

dη
∑

λ

∫

d3k

[

|v′k,λ|2 −
(

k2 − a′′

a

)

|vk,λ|2
]

,

as for two scalar fields in Minkowski spacetime, each with an effective mass a′′/a. The
field is now quantized by interpreting vk,λ(η) as the operator

v̂k,λ(η) = vk(η)âk,λ + v∗k(η)â
†
−k,λ, (6.67)
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where vk(η)ǫij(k, λ)e
ik·x satisfies the field equation4 corresponding to the action (6.64),

that is (for K = 0)

v′′k +

(

k2 − a′′

a

)

vk = 0. (6.68)

(Instead of z′′/z in (6.6) we now have the “mass” a′′/a.)
In the long-wavelength regime the growing mode now behaves as vk ∝ a, hence vk/a

remains constant.
Again we have to impose the normalization (6.7):

v∗kv
′
k − vkv

′∗
k = −i, (6.69)

and the asymptotic behavior

vk(η) ∼
1√
2k

e−ikη (k/aH ≫ 1). (6.70)

The decomposition (6.66) translates to

H i
j(η,x) = (2π)−3/2

∫

d3k
∑

λ

ĥk,λ(η)ǫ
i
j(k, λ)e

ik·x, (6.71)

where

ĥk,λ(η) =

(
8π

M2
P l

)1/2
1

a
v̂k,λ(η). (6.72)

We define the power spectrum of gravitational waves by

2π2

k3
Pg(k)δ

(3)(k− k′) =
∑

λ

〈0|ĥk,λĥ
†
k′,λ|0〉 (6.73)

thus
∑

λ

〈0|v̂k,λv̂†k′,λ|0〉 =
M2

P la
2

8π

2π2

k3
Pg(k)δ

(3)(k− k′). (6.74)

Using (6.67) for the left-hand side we obtain instead of (6.15)5

Pg(k) = 2
8π

M2
P la

2

k3

2π2
|vk(η)|2. (6.75)

The factor 2 on the right is due to the two polarizations. Note that

〈Hij(η,x)H
ij(η,x)〉 =

∫
dk

k
Pg(η, k). (6.76)

6.2.1 Power spectrum for power-law inflation

For the modes vk(η) we need a′′/a. From

a′′

a
= (aH)′/a = H2 +H′ = 2H2

[

1− 1

2
(1−H′/H2)

]

4We ignore possible tensor contributions to the energy-momentum tensor.
5In the literature one often finds an expression for Pg(k) which is 4 times larger, because the power

spectrum is defined in terms of hij = 2Hij .

99



and (6.39) we obtain the generally valid formula

a′′

a
= 2H2(1− ε/2). (6.77)

For power-law inflation we had ε = 1/p, a(η) ∝ ηp/(1−p), thus

H =
p

p− 1

1

η

and hence
a′′

a
=

(

µ2 − 1

4

)
1

η2
, µ :=

3

2
+

1

p− 1
. (6.78)

This shows that for power-law inflation vk(η) is identical to uk(η). Therefore, we
have by eq. (6.27)

|vk| = C(µ)
1√
2k

(
k

aH

)−µ+1/2

, (6.79)

with

C(µ) = 2µ−3/2 Γ(µ)

Γ(3/2)
(1− ε)µ−1/2. (6.80)

Inserting this in (6.75) gives

Pg(k) =
16π

M2
P l

k3

2π2

1

a2
C2(µ)

1

2k

(
k

aH

)1−2µ

. (6.81)

or

Pg(k) = C2(µ)
4

π

(
H

MP l

)2(
k

aH

)3−2µ

. (6.82)

Alternatively, we have

Pg(k) = C2(µ)
4

π

H2

M2
P l

∣
∣
∣
∣
k=aH

. (6.83)

6.2.2 Slow-roll approximation

From (6.77) and (6.44) we obtain again the first equation in (6.78), but with a different
µ:

µ =
1

1− ε
+

1

2
. (6.84)

Hence vk(η) is equal to uk(η) if ν is replaced by µ. The formula (6.83), with C(µ) given
by (6.80), remains therefore valid, but now µ is given by (6.84), where ε is the slow-roll
parameter in (6.34) or (6.39). Again C(µ) ≃ 1.

The power index for tensor perturbations,

nT (k) :=
d lnPg(k)

d ln k
, (6.85)

can be read off from (6.82):
nT ≃ −2ε, (6.86)

showing that the power spectrum is almost flat6.

6The result (6.87) can also be obtained from (6.83). Making use of an intermediate result in the
solution of the Exercise at the end of Sect. 6.1.2 and (6.34), we get

nT =
d lnH2

dϕ

dϕ

d ln k
=

2ε

ε− 1
≃ −2ε.
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Consistency equation

Let us collect some of the important formulas:

P
1/2
R (k) = 2

H2

M2
P l|dH/dϕ|

∣
∣
∣
∣
k=aH

=
1√

πMP l

H√
ε

∣
∣
∣
∣
k=aH

, (6.87)

P 1/2
g (k) =

2√
π

H

MP l

∣
∣
∣
∣
k=aH

, (6.88)

n− 1 = 2δ − 4ε, (6.89)

nT = −2ε. (6.90)

The relative amplitude of the two spectra (scalar and tensor) is thus given by

r :=
4Pg

PR
= 16ε. (6.91)

More importantly, we obtain the consistency condition

nT = −r/8, (6.92)

which is characteristic for inflationary models. In principle this can be tested with CMB
measurements, but there is a long way before this can be done in practice.

For attempts to discriminate among various single-field inflationary models on the
basis of WMAP and SDSS data, see [69] and [52].

6.2.3 Stochastic gravitational background radiation

The spectrum of gravitational waves, generated during the inflationary era and stretched
to astronomical scales by the expansion of the Universe, contributes to the background
energy density. Using the results of the previous section we can compute this.

I first recall a general formula for the effective energy-momentum tensor of gravita-
tional waves. (For detailed derivations see Sect. 4.4 of [1].)

By ‘gravitational waves’ we mean propagating ripples in curvature on scales much
smaller than the characteristic scales of the background spacetime (the Hubble radius
for the situation under study). For sufficiently high frequency waves it is meaningful
to associate them – in an averaged sense – an energy-momentum tensor. Decomposing
the full metric gµν into a background ḡµν plus fluctuation hµν , the effective energy-
momentum tensor is given by the following expression

T
(GW )
αβ =

1

32πG

〈
hµν|αh

µν
|β
〉
, (6.93)

if the gauge is chosen such that hµν
|ν = 0, hµ

µ = 0. Here, a vertical stroke indicates
covariant derivatives with respect to the background metric, and 〈· · ·〉 denotes a four-
dimensional average over regions of several wave lengths.

For a Friedmann background we have in the TT gauge for hµν = 2Hµν :
hµ0 = 0, hij|0 = hij,0, thus

T
(GW )
00 =

1

8πG

〈

ḢijḢ
ij
〉

. (6.94)

As in (6.71) we perform (for K = 0) a Fourier decomposition

Hij(η,x) = (2π)−3/2

∫

d3k
∑

λ

hλ(η,k)ǫij(k, λ)e
ik·x. (6.95)
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The gravitational background energy density, ρg, is obtained by taking the space-time
average in (6.94). At this point we regard hλ(η,k) as a random field, indicated by a
hat (since it is on macroscopic scales equivalent to the original quantum field ĥλ(η,k)),
and replace the spatial average by the stochastic average (for which we use the same
notation). Clearly, this is only justified if some ergodicity property holds. This issue will
appear again in Part IV, and we shall devote Appendix C for some clarifications.

The power spectrum at time η is defined by
〈

ĥλ(η,k)ĥ
∗
λ′(η,k′)

〉

= δλλ′δ(3)(k− k′)
π2

k3
Pg(k, η). (6.96)

The normalization is chosen such that (6.76) holds. The time evolution of the stochastic
variables ĥλ(η,k)) is determined by that of the mode functions hk(η). This implies for
the spectral density of gravitational waves

k
dρg(k)

dk
=

M2
P l

8πa2

〈∣
∣
∣
∣

h′
k(η)

hk(ηi)

∣
∣
∣
∣

2
〉

Pg(k, ηi), (6.97)

where ηi is some early time, and 〈· · ·〉 denotes from now on the average over several
periods (this is often dropped). When the radiation is well inside the horizon, we can
replace h′

k by khk.
The differential equation (6.68) reads in terms of hk(η)

h′′ + 2
a′

a
h′ + k2h = 0. (6.98)

For the matter dominated era (a(η) ∝ η2) this becomes

h′′ +
4

η
h′ + k2h = 0.

Using 9.1.53 of [51] one sees that this is satisfied by j1(kη)/kη. Furthermore, by
10.1.4 of the same reference, we have 3j1(x)/x → 1 for x → 0 and

(
j1(x)

x

)′
= −1

x
j2(x) → 0 (x → 0).

So the correct solution is
hk(η)

hk(0)
= 3

j1(kη)

kη
, (6.99)

if the modes cross inside the horizon during the matter dominated era. Note also that

j1(x) =
sin x

x2
− cosx

x
. (6.100)

For modes which enter the horizon earlier, we introduce a transfer function Tg(k) by

hk(η)

hk(0)
=: 3

j1(kη)

kη
Tg(k), (6.101)

that has to be determined numerically from the differential equation (6.98).7 We can
then write the result (6.97) as

k
dρg(k)

dk
=

M2
P l

8π

k2

a2
P prim
g (k)|Tg(k)|2

〈[
3j1(kη)

kη

]2
〉

, (6.102)

7After neutrino decoupling an accurate treatment should include tensor contributions to the energy-
momentum tensor due to neutrino free-streaming. This would lead to an integro-differential equation.
(This has been solved numerically for instance in [54].)
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Figure 6.1: Differential energy density (5.108) of the stochastic background of inflation-
produced gravitational waves. The normalization of the upper curve, representing
the scale-invariant limit, is arbitrary. The blue curves are normalized to the COBE
quadrupole, and show the result for nT = −0.003, − 0.03, and -0.3. (Adapted from
[53].)

where P prim
g (k) denotes the primordial power spectrum. This holds in particular at the

present time η0 (a0 = 1). Since the time average 〈cos2 kη〉 = 1
2
, we finally obtain for

Ωg(k) := ρg(k)/ρcrit

dΩg(k)

d ln k
=

3

2
P prim
g (k)|Tg(k)|2

1

(kη0)2(H0η0)2
. (6.103)

Here one may insert the inflationary result (6.83), giving

dΩg(k)

d ln k
=

6

π

H2

M2
P l

∣
∣
∣
∣
k=aH

|Tg(k)|2
1

(kη0)2(H0η0)2
. (6.104)

Numerical results

Since the normalization in (6.83) can not be predicted, it is reasonable to choose it, for
illustration, to be equal to the observed CMB normalization at large scales. (In reality
the tensor contribution is presumably only a small fraction of this; see (6.91).) Then one
obtains the result shown in Fig. 6.1, taken from [53]. This shows that the spectrum of the
stochastic gravitational background radiation is predicted to be flat in the interesting
region, with dΩg/d ln(kη0) ∼ 10−14. Unfortunately, this is too small to be detectable by
the future LISA interferometer in space.

It would be of great importance if one day the stochastic gravitational wave back-
ground could be detected, because it has been formed in the very early Universe. In the
high frequency region, accessible to wide-band interferometers, the spectrum depends on
the expansion rate after inflation and thus on poorly known physics. For a recent review
we refer to [55]. 6.2, taken from this reference, shows the spectrum of relict gravitational
radiation for a minimal ΛCDM scenario for various values of r. For orientation, recall
that νeq := keq/2π ≃ 10−17 Hz, and νp = kp/2π ≃ 10−18 Hz, where kp is the ‘pivot’
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Figure 6.2: GW spectra for ΛCDM models. Obviously, the background is too small to
be within reach by wide-band detectors. From [55].

wave-number used by WMAP (corresponding to l ≈ 30). The Ligo/Virgo frequency
band is ∼ 10 - 100 Hz.

This relic spectrum was obtained from a numerical integration of the evolutionary
equations for the transfer function and the background geometry across the matter-
radiation transition. The coupling to the anisotropic neutrino stress (see Appendix E)
is included.

————
Exercise. Consider a massive free scalar field φ (mass m) and discuss the quantum

fluctuations for a de Sitter background (neglecting gravitational back reaction). Compute
the power spectrum as a function of conformal time for m/H < 3/2.

Hint: Work with the field aφ as a function of conformal time.
Remark : This exercise was solved at an astonishingly early time (∼ 1940) by E.

Schrödinger.
————

6.3 Appendix to Chapter 6:

Einstein tensor for tensor perturbations

In this Appendix we derive the expressions (6.59) for the tensor perturbations of the
Einstein tensor.

The metric (6.57) is conformal to g̃µν = γµν + 2Hµν . We first compute the Ricci
tensor R̃µν of this metric, and then use the general transformation law of Ricci tensors
for conformally related metrics (see eq. (2.264) of [1]).

Let us first consider the simple case K = 0, that we considered in Sect. 6.2. Then
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γµν is the Minkowski metric. In the following computation of R̃µν we drop temporarily
the tildes.

The Christoffel symbols are immediately found (to first order in Hµν)

Γµ
00 = Γ0

0i = 0, Γ0
ij = H ′

ij, Γi
0j = (H i

j)
′,

Γi
jk = H i

j,k +H i
k,j −Hjk

,i. (6.105)

So these vanish or are of first order small. Hence, up to higher orders,

Rµν = ∂λΓ
λ
νµ − ∂νΓ

λ
λµ. (6.106)

Inserting (6.105) and using the TT conditions (6.58) readily gives

R00 = 0, R0i = 0, (6.107)

Rij = ∂λΓ
λ
ij − ∂jΓ

λ
λi = ∂0Γ

0
ij + ∂kΓ

k
ij − ∂jΓ

0
0i − ∂jΓ

k
ki

= H ′′
ij + (Hk

i,j +Hk
j,i −Hij

,k),k.

Thus
Rij = H ′′

ij −∇2Hij. (6.108)

Now we use the quoted general relation between the Ricci tensors for two metrics
related as gµν = ef g̃µν . In our case ef = a2(η), hence

∇̃µf = 2Hδµ0, ∇̃µ∇̃νf = ∂µ(2Hδν0)− Γλ
µν2Hδλ0

= 2H′δµ0δν0 − 2HH ′
µν , ∇̃2f = g̃µν∇̃µ∇̃νf = 2H′.

As a result we find

Rµν = R̃µν + (−2H′ + 2H2)δµ0δν0 + (H′ + 2H2)g̃µν + 2HH ′
µν , (6.109)

thus

δR00 = δR0i = 0,

δRij = H ′′
ij −∇2Hij + 2(H′ + 2H2)Hij + 2HH ′

ij. (6.110)

From this it follows that

δR = g(0)µνδRµν + δgµνR(0)
µν = 0. (6.111)

The result (6.59) for the Einstein tensor is now easily obtained.

Generalization to K 6= 0

The relation (6.109) still holds. For the computation of R̃µν we start with the following
general formula for the Christoffel symbols (again dropping tildes).

δΓµ
αβ = γµν(Hνα|β +Hνβ|α −Hαβ|ν) (6.112)

(see [1], eq. (2.93)). For the computation of the covariant derivatives Hαβ|µ with respect
to the unperturbed metric γµν , we recall the unperturbed Christoffel symbols (3.231)
with a → 1,

Γ0
00 = Γ0

i0 = Γi
00 = Γ0

ij = Γi
0j = 0, Γi

jk = Γ̄i
jk. (6.113)
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One readily finds
Hµ0|ν = 0, Hij|0 = H ′

ij, Hij|k = Hij‖k, (6.114)

where the double stroke denotes covariant differentiation on (Σ, γ). Therefore,

δΓ0
00 = δΓ0

i0 = δΓi
00 = 0, δΓ0

ij = H ′
ij, δΓi

0j = (H i
j)

′

δΓi
jk = H i

j‖k +H i
k‖j −Hjk

‖i. (6.115)

With these expressions we can compute δRµν ,using the formula (3.251). The first of
the following two equations

δR00 = 0, δR0i = 0 (6.116)

is immediate, while one finds in a first step δR0i = Hk
j‖k, and this vanishes because of

the TT condition. A bit more involved is the computation of the remaining components.
From (3.251) we have

δRij = ∂λδΓ
λ
ij − ∂jδΓ

λ
λi + δΓσ

jiΓ
λ
λσ + Γσ

jiδΓ
λ
λσ − δΓσ

λiΓ
λ
jσ − Γσ

λiδΓ
λ
jσ

= H ′′
ij + ∂lδΓ

l
ij − ∂jδΓ

l
li + δΓs

jiΓ
l
ls + Γs

jiδΓ
l
ls − δΓs

liΓ
l
js − Γs

liδΓ
l
js.

But
δΓl

ls = H l
l‖s +H l

s‖l −Hls
‖l = 0,

so
δRij = H ′′

ij + ∂lδΓ
l
ij + δΓs

jiΓ
l
ls − δΓs

liΓ
l
js − Γs

liδΓ
l
js = H ′′

ij + (δΓl
ij)‖l

or
δRij = H ′′

ij +H l
i‖jl +H l

j‖il −Hij‖l
‖l. (6.117)

In order to impose the TT conditions , we make use of the Ricci identity8

H l
i‖jl = H l

i‖jl + 3KHij,

giving
δRij = H ′′

ij + 6KHij −∇2Hij. (6.118)

8On (Σ, γ) we have:

H l
i‖jl −H l

i‖jl = Rl
sljH

s
i +Ri

s
ljH

l
s = 3KHij.
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Part IV

Microwave Background Anisotropies
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Introduction

Investigations of the cosmic microwave background have presumably contributed most
to the remarkable progress in cosmology during recent years. Beside its spectrum, which
is Planckian to an incredible degree, we also can study the temperature fluctuations over
the “cosmic photosphere” at a redshift z ≈ 1100. Through these we get access to crucial
cosmological information (primordial density spectrum, cosmological parameters, etc).
A major reason for why this is possible relies on the fortunate circumstance that the
fluctuations are tiny (∼ 10−5 ) at the time of recombination. This allows us to treat the
deviations from homogeneity and isotropy for an extended period of time perturbatively,
i.e., by linearizing the Einstein and matter equations about solutions of the idealized
Friedmann-Lemâıtre models. Since the physics is effectively linear, we can accurately
work out the evolution of the perturbations during the early phases of the Universe,
given a set of cosmological parameters. Confronting this with observations, tells us a lot
about the cosmological parameters as well as the initial conditions, and thus about the
physics of the very early Universe. Through this window to the earliest phases of cosmic
evolution we can, for instance, test general ideas and specific models of inflation.

Let me add in this introduction some qualitative remarks, before we start with a
detailed treatment. Long before recombination (at temperatures T > 6000K, say) pho-
tons, electrons and baryons were so strongly coupled that these components may be
treated together as a single fluid. In addition to this there is also a dark matter compo-
nent. For all practical purposes the two interact only gravitationally. The investigation
of such a two-component fluid for small deviations from an idealized Friedmann behavior
is a well-studied application of cosmological perturbation theory, and will be treated in
Chapter 7.

At a later stage, when decoupling is approached, this approximate treatment breaks
down because the mean free path of the photons becomes longer (and finally ‘infinite’
after recombination). While the electrons and baryons can still be treated as a single
fluid, the photons and their coupling to the electrons have to be described by the general
relativistic Boltzmann equation. The latter is, of course, again linearized about the ide-
alized Friedmann solution. Together with the linearized fluid equations (for baryons and
cold dark matter, say), and the linearized Einstein equations one arrives at a complete
system of equations for the various perturbation amplitudes of the metric and matter
variables. Detailed derivations will be given in Chap. 8. There exist widely used codes,
e.g. CMBFAST [58], that provide the CMB anisotropies – for given initial conditions –
to a precision of about 1%. A lot of qualitative and semi-quantitative insight into the
relevant physics can, however, be gained by looking at various approximations of the
basic dynamical system.

Let us first discuss the temperature fluctuations. What is observed is the temperature
autocorrelation:

C(ϑ) :=

〈
∆T (n)

T
· ∆T (n′)

T

〉

=

∞∑

l=2

2l + 1

4π
ClPl(cosϑ),

where ϑ is the angle between the two directions of observation n,n′, and the av-
erage is taken ideally over all sky. The angular power spectrum is by definition
l(l+1)
2π

Cl versus l (ϑ ≃ π/l).
A characteristic scale, which is reflected in the observed CMB anisotropies, is the

sound horizon at last scattering, i.e., the distance over which a pressure wave can prop-
agate until decoupling. This can be computed within the unperturbed model and sub-
tends about half a degree on the sky for typical cosmological parameters. For scales
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larger than this sound horizon the fluctuations have been laid down in the very early
Universe. These have first been detected by the COBE satellite. The (gauge invariant
brightness) temperature perturbation Θ = ∆T/T is dominated by the combination of
the intrinsic temperature fluctuations and gravitational redshift or blueshift effects. For
example, photons that have to climb out of potential wells for high-density regions are
redshifted. We shall show in Sect. 9.5 that these effects combine for adiabatic initial con-
ditions to 1

3
Ψ, where Ψ is one of the two gravitational Bardeen potentials. The latter, in

turn, is directly related to the density perturbations. For scale-free initial perturbations
and almost vanishing spatial curvature the corresponding angular power spectrum of
the temperature fluctuations turns out to be nearly flat (Sachs-Wolfe plateau; see Fig.
9.1 ).

On the other hand, inside the sound horizon before decoupling, acoustic, Doppler,
gravitational redshift, and photon diffusion effects combine to the spectrum of small
angle anisotropies. These result from gravitationally driven synchronized acoustic oscil-
lations of the photon-baryon fluid, which are damped by photon diffusion (Sect. 9.2).

A particular realization of Θ(n), such as the one accessible to us (all sky map from our
location), cannot be predicted. Theoretically, Θ is a random field Θ(x, η,n), depending
on the conformal time η, the spatial coordinates, and the observing direction n. Its
correlation functions should be rotationally invariant in n, and respect the symmetries
of the background time slices. If we expand Θ in terms of spherical harmonics,

Θ(n) =
∑

lm

almYlm(n),

the random variables alm have to satisfy9

〈alm〉 = 0, 〈a⋆lmal′m′〉 = δll′δmm′Cl(η),

where the Cl(η) depend only on η. Hence the correlation function at the present time
η0 is given by the previous expression with Cl = Cl(η0), and the bracket now denotes
the statistical average. Thus,

Cl =
1

2l + 1

〈
l∑

m=−l

a⋆lmalm

〉

.

The standard deviations σ(Cl) measure a fundamental uncertainty in the knowledge we
can get about the Cl’s. These are called cosmic variances, and are most pronounced for
low l. In simple inflationary models the alm are Gaussian distributed, hence

σ(Cl)

Cl

=

√

2

2l + 1
.

Therefore, the limitation imposed on us (only one sky in one universe) is small for large
l.

Exercise. Derive the last equation.
Solution: The claim is a special case of the following general fact: Let ξ1, ξ2, ..., ξn be

independent Gaussian random variables with mean 0 and variance 1, and let

ζ =
1

n

n∑

i=1

ξ2i .

9A formal proof of this can easily be reduced to an application of Schur’s Lemma for the group
SU(2) (Exercise).
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Then the variance and standard deviation of ζ are

var(ζ) =
2

n
, σ(ζ) =

√

2

n
.

To show this, we use the equation of Bienaymé

var(ζ) =
1

n2

n∑

i=1

var(ξ2i ),

and the following formula for the variance for each ξ2i :

var(ξ2) = 〈ξ4〉 − 〈ξ2〉2 = 1 · 3− 1 = 2

(the even moments of ξ are m2k = 1 · 3 · · · · (2k − 1)).
Alternatively, we can use the fact that

∑n
i=1 ξ

2
i is χ2

n-distributed, with distribution
function (p = n/2, λ = 1/2):

f(x) =
λp

Γ(p)
xp−1e−λx

for x > 0, and 0 otherwise. This gives the same result.
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Chapter 7

Tight Coupling Phase

Long before recombination, photons, electrons and baryons are so strongly coupled that
these components may be treated as a single fluid, indexed by r in what follows. Beside
this we have to include a CDM component for which we we use the index d (for ‘dust’
or dark). For practical purposes these two fluids interact only gravitationally. In what
follows we ignore fluctuations of the neutrinos.

7.1 Basic equations

We begin by specializing the basic equations, derived in Chapter 3 and collected in Sect.
3.5.C to the situation just described. Beside neglecting the spatial curvature (K = 0),
we may assume qα = Γα = 0, Eα = Fα = 0 (no intrinsic entropy production of each
component, and no energy and momentum exchange between r and d). In addition, it
is certainly a good approximation to neglect in this tight coupling era the anisotropic
stresses Πα. Then Ψ = −Φ and since Γint = 0 the amplitude Γ for entropy production
is proportional to

S := Sdr =
∆cd

1 + wd
− ∆cr

1 + wr
,

w

1 + w
Γ =

hdhr

h2
(c2d − c2r)S. (7.1)

We also recall the definition (3.223)

c2z =
hr

h
c2d +

hd

h
c2r . (7.2)

The energy and momentum equations are

∆′ − 3
a′

a
w∆ = −k(1 + w)V, (7.3)

V ′ +
a′

a
V = kΨ+ k

c2s
1 + w

∆+ k
w

1 + w
Γ. (7.4)

By (3.291) the derivative of S is given by

S ′ = −kVdr, (7.5)

and that of Vdr follows from (3.290):

V ′
dr +

a′

a
(1− 3c2z)Vdr = k(c2d − c2r)

∆

1 + w
+ kc2zS. (7.6)
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In the constraint equation (3.262) we use the Friedmann equation for K = 0,

8πGρ

3H2
= 1, (7.7)

and obtain

Φ = −Ψ =
3

2

(
Ha

k

)2

∆. (7.8)

It will be convenient to introduce the comoving wave number in units of the Hubble
length x := Ha/k and the renormalized scale factor ζ := a/aeq, where aeq is the scale
factor at the ‘equality time’ (see Sect. 1.2.5). Then the last equation becomes

Φ = −Ψ =
3

2
x2∆. (7.9)

Using ζ ′ = kxζ and introducing the operator D := ζd/dζ we can write (7.3) as

(D − 3w)∆ = −1

x
(1 + w)V. (7.10)

Similarly, (7.4) (together with (7.1)) gives

(D + 1)V =
Ψ

x
+

c2s
x

∆

1 + w
+

1

x

hdhr

h2
(c2d − c2r)S. (7.11)

We also rewrite (7.5) and (7.6)

DS = −1

x
Vdr, (7.12)

(D + 1− 3c2z)Vdr =
1

x
(c2d − cr)

∆

1 + w
+

1

x
c2zS. (7.13)

It will turn out to be useful to work alternatively with the equations of motion for
Vα and

Xα :=
∆cα

1 + wα
(α = r, d). (7.14)

From (3.289) we obtain

V ′
α +

a′

a
Vα = kΨ+ k

c2α
1 + wα

∆α, (7.15)

Here, we replace ∆α by ∆cα with the help of (3.174) and (3.175), implying (in the
harmonic decomposition)

∆α = ∆cα + 3(1 + wα)
a′

a

1

k
(Vα − V ). (7.16)

We then get

V ′
α +

a′

a
(1− 3c2α)Vα = kΨ+ kc2αXα − 3

a′

a
c2αV. (7.17)

From (3.288) we find, using (7.1),

X ′
α = −kVα + 3

a′

a
c2s

∆

1 + w
+ 3

a′

a

hdhr

h2
(c2d − c2r)S. (7.18)
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Rewriting the last two equations as above, we arrive at the system

(D + 1− 3c2α)Vα =
Ψ

x
+

c2α
x
Xα − 3c2αV, (7.19)

DXα = −Vα

x
+ 3c2s

∆

1 + w
+ 3

hdhr

h2
(c2d − c2r)S. (7.20)

This system is closed, since by (7.1), (3.27) and (3.276)

S = Xd −Xr,
∆

1 + w
=
∑

α

hα

h
Xα, V =

∑

α

hα

h
Vα. (7.21)

Note also that according to (3.222)

∆

1 + w
= Xr +

hd

h
S = Xd −

hr

h
S. (7.22)

From these basic equations we now deduce second order equations for the pair (∆, S),
respectively, for Xα (α = r, d). For doing this we note that for any function f, f ′ =
(a′/a)Df , in particular (using (3.80) and (3.62))

Dx = −1

2
(3w + 1)x, Dw = −3(1 + w)(c2s − w). (7.23)

The result of the somewhat tedious but straightforward calculation is [56]:

D2∆+

[
1− 3w

2
+ 3c2s − 6w

]

D∆

+

[
c2s
x2

− 3w + 9(c2s − w) +
3

2
(3w2 − 1)

]

∆ =
1

x2

hrhd

ρh
(c2r − c2d)S,

(7.24)

D2S +

[
1− 3w

2
− 3c2z

]

DS +
c2z
x2

S =
c2r − c2d

x2(1 + w)
∆ (7.25)

for the pair ∆, S, and

D2Xα +

[
1− 3w

2
− 3c2α

]

DXα

+

{
c2α
x2

− hα

h

[
3

2
(1 + w) +

3

2
(1− 3w)c2α + 9c2α(c

2
s − c2α) + 3Dc2α

]}

Xα

= 3
hβ

h

[

(c2β − c2α)D +
1 + w

2
+

1− 3w

2
c2β + 3c2β(c

2
s − c2β) +Dc2β

]

Xβ

(7.26)

for the pair Xα.

Alternative system for tight coupling limit

Instead of the first order system (7.17), (7.18) one may work with similar equations for
the amplitudes ∆sα and Vα. From (3.292) we obtain instead of (7.17) for Πα = Fα = 0

V ′
α +

a′

a
(1− 3c2α)Vα = kΨ+ k

c2α
1 + wα

∆sα. (7.27)
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Beside this we have Eq. (3.287)

(
∆sα

1 + wα

)′
= −kVα − 3Φ′. (7.28)

To this we add the following consequence of the constraint equations (3.262), (3.263)
and the relations (3.261), (3.275), (3.276):

k2Ψ = −4πGa2
∑

α

[

ρα∆sα + 3
aH

k
ρα(1 + wα)Vα

]

. (7.29)

Instead one can also use, for instance for generating numerical solutions, the following
first order differential equation that is obtained similarly

k2Ψ+ 3
a′

a
(Ψ′ +

a′

a
Ψ) = −4πGa2

∑

α

ρα∆sα. (7.30)

Adiabatic and isocurvature perturbations

These differential equations have to be supplemented with initial conditions. Two lin-
early independent types are considered for some very early stage, for instance at the end
of the inflationary era:

• adiabatic perturbations: all Sαβ = 0, but R 6= 0;

• isocurvature perturbations: some Sαβ 6= 0, but R = 0.

Recall that R measures the spatial curvature for the slicing Q = 0. According to the
initial definition (3.58) of R and the Eqs. (7.9), (7.10) we have

R = Φ− xV =
x2

1 + w

[

D +
3

2
(1− w)

]

∆. (7.31)

Explicit forms of the two-component differential equations

At this point we make use of the equation of state for the two-component model under
consideration. It is convenient to introduce a parameter c by

R :=
3ρb
4ργ

=
ζ

c
⇒ Ωd

Ωb
=

3c

4
− 1. (7.32)
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We then have for various background quantities

ρd
ρeq

=
1

2

(

1− 4

3c

)
1

ζ3
, pd = 0,

ρr
ρeq

=
2

3

ζ + 3c/4

c

1

ζ4
,

pr
ρeq

=
1

6

1

ζ4
,

ρ

ρeq
=

1

2
(ζ + 1)

1

ζ4
,

p

ρeq
=

1

6

1

ζ4
,

hr

h
=

4

3

ζ + c

c(ζ + 4/3)
,

hd

h
=

(

1− 4

3c

)
ζ

ζ + 4/3
,

w =
1

3(ζ + 1)
, wr =

c

4ζ + 3c
, wd = 0,

c2d = 0, c2r =
1

3

c

ζ + c
, c2s =

4

9

1

ζ + 4/3
, c2z =

1

3

(c− 4/3)ζ

(ζ + c)(ζ + 4/3)
,

H2 = H2
eq

ζ + 1

2

1

ζ4
, x2 =

ζ + 1

2ζ2
1

ω2
, ω :=

1

xeq

=

(
k

aH

)

eq

. (7.33)

Since we now know that the dark matter fraction is much larger than the baryon
fraction, we write the basic equations only in the limit c → ∞. (For finite c these are
given in [56].) Eq.(7.26) leads to the pair

D2Xr +

(
1

2

ζ

1 + ζ
− 1

)

DXr

+

{
2

3

ω2ζ2

1 + ζ
+

4

3

1

ζ + 4/3

[
ζ

ζ + 4/3
− 2

]}

Xr =

[
3

2

ζ

ζ + 1
− ζ

ζ + 4/3
D

]

Xd,

(7.34)
{

D2 +
1

2

ζ

1 + ζ
D − 3

2

ζ

1 + ζ

}

Xd =
4

3

1

ζ + 4/3

[

D + 2− ζ

ζ + 4/3

]

Xr. (7.35)

From (6.24) and (6.25) we obtain on the other hand

D2∆+

(

−1 +
5

2

ζ

ζ + 1
− ζ

ζ + 4/3

)

D∆

+

{

−2 +
3

4
ζ +

1

2

(
ζ

ζ + 1

)2

− 3ζ2

ζ + 1
+

9ζ2

4(ζ + 4/3)

}

∆

=
8

9
ω2 ζ2

(ζ + 1)2(ζ + 4/3)
[ζS − (ζ + 1)∆] , (7.36)

D2S +

(
1

2

1

ζ + 1
− 1

ζ + 4/3

)

ζDS

+
2

3
ω2 ζ3

(ζ + 1)(ζ + 4/3)
S =

2

3
ω2 ζ2

ζ + 4/3
∆. (7.37)

We also note that (7.31) becomes

R =
1

2ω2

ζ + 1

ζ2(ζ + 4/3)

[

(ζ + 1)D +
3

2
ζ + 1

]

∆. (7.38)

We can now define more precisely what we mean by the two types of primordial
initial perturbations by considering solutions of our perturbation equations for ζ ≪ 1.
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• adiabatic (or curvature) perturbations: growing mode behaves as

∆ = ζ2
[

1− 17

16
ζ + · · ·

]

− ω2

15
ζ4[1− · · ·],

S =
ω2

32
ζ4
[

1− 28

25
ζ + · · ·

]

; ⇒ R =
9

8ω2
(1 +O(ζ)). (7.39)

• isocurvature perturbations: growing mode behaves as

∆ =
ω2

6
ζ3
[

1− 17

10
ζ + · · ·

]

,

S = 1− ω2

18
ζ3 [1− · · ·] ; ⇒ R =

1

4
ζ(1 +O(ζ)). (7.40)

From (7.21) and (7.22) we obtain the relation between the two sets of perturbation
amplitudes:

Xr =
ζ + 1

ζ + 4/3
∆− ζ

ζ + 4/3
S, Xd =

ζ + 1

ζ + 4/3
∆ +

4

3

1

ζ + 4/3
S, (7.41)

∆ =
1

ζ + 1

(
4

3
Xr + ζXd

)

, S = Xd −Xr. (7.42)

Let us also write the alternative system (7.27) – (7.30) explicitly in terms of the
independent variable ζ . As before one finds

D

(
∆sα

1 + wα

)

= −Vα

x
− 3DΦ, (7.43)

(D + 1− 3c2α)Vα = −Φ

x
+

1

x

c2α
1 + wα

∆sα, (7.44)

and for Φ:

Φ + 3x2(DΦ + Φ) =
3

2
x2
∑

α

ρα
ρ
∆sα, (7.45)

Φ =
3

2
x2
∑

α

ρα
ρ
[∆sα + 3x(1 + wα)Vα]. (7.46)

With (7.33), i.e.,

x2 =
ζ + 1

2ζ2
1

ω2
,

ρd
ρ

=
1

2

ζ

ζ + 1
,

ρr
ρ

=
1

2

1

ζ + 1
,

everything is explicit. The initial conditions for the growing modes follow from the ex-
pansions (7.39), (7.40), once we have expressed the five amplitudes ∆sα(ζ), Vα(ζ), Φ(ζ)
in terms of ∆ and S.

Φ is related to ∆ by (7.9). From (3.219) we obtain

∆sα

1 + wα

= Xα − 3xV.

For the last term we use (7.10), which implies

3xV = −3
x2

1 + w
(D − 3w)∆. (7.47)
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The amplitudes Xα are given in terms of ∆, S by (7.41). Vα is obtained from (7.12) and
(7.47).

From these equations it is now easy to determine the initial conditions for our first
order differential equations. For adiabatic perturbations one finds for the growing modes

Φ(0) =
2

3
R, ∆sd(0) = R, ∆sr(0) =

4

3
R, Vd(0) = Vr(0) = 0. (7.48)

Note that, as a result of (7.12), the difference Vd − Vr must vanish for small ζ as O(ζ3).

7.2 Analytical and numerical analysis

The system of linear differential equations (7.34) – (7.37) has been discussed analytically
in great detail in [56]. One learns, however, more about the physics of the gravitationally
coupled fluids in a mixed analytical-numerical approach.

7.2.1 Solutions for super-horizon scales

For super-horizon scales (x ≫ 1) Eq. (7.12) implies that S is constant. If the mode
enters the horizon in the matter dominated era, then the parameter ω in (7.33) is small.
For ω ≪ 1 Eq. (7.36) reduces to

D2∆+

(

−1 +
5

2

ζ

ζ + 1
− ζ

ζ + 4/3

)

D∆

+

{

−2 +
3

4
ζ +

1

2

(
ζ

ζ + 1

)2

− 3ζ2

ζ + 1
+

9ζ2

4(ζ + 4/3)

}

∆

=
8

9
ω2 ζ3

(ζ + 1)2(ζ + 4/3)
S. (7.49)

For adiabatic modes we are led to the homogeneous equation already studied in Sect.
4.1, with the two independent solutions Ug and Ud given in (4.29) and (4.30). Recall
that the Bardeen potentials remain constant both in the radiation and in the matter
dominated eras. According to (4.33) Φ decreases to 9/10 of the primordial value Φprim.

For isocurvature modes we can solve (7.41) with the Wronskian method, and obtain
for the growing mode [56]

∆iso =
4

15
ω2Sζ3

3ζ2 + 22ζ + 24 + 4(3ζ + 4)
√
1 + ζ

(ζ + 1)(3ζ + 4)[1 + (1 + ζ)1/2]4
. (7.50)

thus

∆iso ≃
{

1
6
ω2Sζ3 : ζ ≪ 1
4
15
ω2Sζ : ζ ≫ 1.

(7.51)

7.2.2 Horizon crossing

We now study the behavior of adiabatic modes more closely, in particular what happens
in horizon crossing.
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Crossing in radiation dominated era

When the mode enters the horizon in the radiation dominated phase we can neglect in
(7.36) the term proportional to S for ζ < 1. As long as the radiation dominates ζ is
small, whence (7.36) gives in leading order

(D2 −D − 2)∆ = −2

3
ω2ζ2∆. (7.52)

(This could also be directly obtained from (7.24), setting c2s ≃ 1/3, w ≃ 1/3.) Since
D2 −D = ζ2d2/dζ2 this perturbation equation can be written as

[

ζ2
d2

dζ2
+

(
2

3
ω2ζ2 − 2

)]

∆ = 0. (7.53)

Instead of ζ we choose as independent variable the comoving sound horizon rs times
k. We have

rs =

∫

csdη =

∫

cs
dη

dζ
dζ,

with cs ≃ 1/
√
3, dζ/dη = kxζ = aHζ = (aH)/(aH)eq)(k/ω)ζ ≃ (k/ω

√
2), thus ζ ≃

(k/
√
2ω)η and

u := krs ≃
√

2

3
ωζ ≃ kη/

√
3. (7.54)

Therefore, (7.53) is equivalent to

[
d2

du2
+

(

1− 2

u2

)]

∆ = 0. (7.55)

This differential equation is well-known. According to 9.1.49 of [51] the functions w(x) ∝
x1/2Cν(λx), Cν ∝ H

(1)
ν , H

(2)
ν , satisfy

w′′ +

(

λ− ν2 − 1
4

x2

)

w = 0. (7.56)

Since jν(x) =
√

π/2xJν+1/2(x), nν(x) =
√

π/2xYν+1/2(x), we see that ∆ is a linear
combination of uj1(u) and un1(u):

∆(ζ) = Cuj1(u) +Dun1(u); u =

√

2

3
ωζ (u = krs =

kη√
3
). (7.57)

Now,

xj1(x) =
1

x
sin x− cosx, xn1(x) = −1

x
cosx− sin x. (7.58)

On super-horizon scales u = krs ≪ 1, and uj1(u) ≈ u ∝ a, while un1(u) ≈ −1/u ∝ 1/a.
Thus the first term in (7.57) corresponds to the growing mode. If we only keep this, we
have

∆(ζ) ≈ C

(
1

u
sin u− cosu

)

. (7.59)

Once the mode is deep within the Hubble horizon only the cos-term survives. This is
an important result, because if this happens long before recombination we can use for
adiabatic modes the initial condition

∆(η) ∝ cos[krs(η)]. (7.60)
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We conclude that all adiabatic modes are temporally correlated (synchronized), while
they are spatially uncorrelated (random phases). This is one of the basic reasons for the
appearance of acoustic peaks in the CMB anisotropies. Note also that, as a result of
(7.9) and (7.33), Φ ∝ ∆/ζ2 ∝ ∆/u2, i.e.,

Ψ = 3Ψ(prim)

[
sin u− u cosu

u3

]

. (7.61)

Thus: If the mode enters the horizon during the radiation dominated era, its potential
begins to decay.

As an exercise show that for isocurvature perturbations the cos in (7.60) has to be
replaced by the sin (out of phase).

We could have used in the discussion above the system (7.34) and (7.35). In the same
limit it reduces to

(

D2 −D − 2 +
2

3
ω2ζ2

)

Xr ≃ 0, D2Xd ≃ (D + 2)Xr. (7.62)

As expected, the equation for Xr is the same as for ∆. One also sees that Xd is driven
by Xr, and is growing logarithmically for ω ≫ 1.

The previous analysis can be improved by not assuming radiation domination and
also including baryons (see [56]). It turns out that for ω ≫ 1 the result (7.60) is not
much modified: The cos-dependence remains, but with the exact sound horizon; only
the amplitude is slowly varying in time ∝ (1 +R)−1/4.

Since the matter perturbation is driven by the radiation, we may use the potential
(7.61) and work out its influence on the matter evolution. It is more convenient to do
this for the amplitude ∆sd (instead of ∆cd), making use of the equations (7.27) and
(7.28) for α = d:

∆′
sd = −kVd − 3Φ′, V ′

d = −a′

a
Vd − kΦ. (7.63)

Let us eliminate Vd:

∆′′
sd = −V ′

d − 3Φ′′ =
a′

a
kVd + k2Φ− 3Φ′′ =

a′

a
(−∆′

sd − 3Φ′) + k2Φ− 3Φ′′.

The resulting equation

∆′′
sd +

a′

a
∆′

sd = k2Φ− 3Φ′′ − 3
a′

a
Φ′ (7.64)

can be solved with the Wronskian method. Two independent solutions of the homoge-
neous equation are ∆sd = const. and ∆sd = ln(a). These determine the Green’s function
in the standard manner. One then finds in the radiation dominated regime (for details,
see [5], p.198)

∆sd(η) = AΦprim ln(Bkη), (7.65)

with A ≃ 9.0, B ≃ 0.62.

Matter dominated approximation

As a further illustration we now discuss the matter dominated approximation. For this
(ζ ≫ 1) the system (7.34), (7.35) becomes

(

D2 − 1

2
D +

2

3
ω2ζ

)

Xr =

(

−D +
3

2

)

Xd, (7.66)

(

D2 +
1

2
D − 3

2

)

Xd = 0. (7.67)
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As expected, the equation for Xd is independent of Xr, while the radiation perturbation
is driven by the dark matter. The solution for Xd is

Xd = Aζ +Bζ−3/2. (7.68)

Keeping only the growing mode, (7.66) becomes

d

dζ

(

ζ
dXr

dζ

)

− 1

2

dXr

dζ
+

2

3
ω2

(

Xr −
3A

4ω2

)

= 0. (7.69)

Substituting

Xr =:
3A

4ω2
+ ζ−3/4f(ζ),

we get for f(ζ) the following differential equation

f ′′ = −
(

3

16

1

ζ2
+

2

3

ω2

ζ

)

f. (7.70)

For ω ≫ 1 we can use the WKB approximation

f =
ζ1/4√
ω
exp

(

±i

√

8

3
ωζ1/2

)

,

implying the following oscillatory behavior of the radiation

Xr =
3A

4ω2
+B

1√
ωζ

exp

(

±i

√

8

3
ωζ1/2

)

. (7.71)

A look at (7.42) shows that this result forXd, Xr implies the constancy of the Bardeen
potentials in the matter dominated era.

7.2.3 Sub-horizon evolution

For ω ≫ 1 one may expect on physical grounds that the dark matter perturbation Xd

eventually evolves independently of the radiation. Unfortunately, I can not see this from
the basic equations (7.34), (7.35). Therefore, we choose a different approach, starting
from the alternative system (7.27) – (7.29). This implies

∆′
sd = −kVd − 3Φ′, (7.72)

V ′
d = −a′

a
Vd − kΦ, (7.73)

k2Φ = 4πGa2[ρd∆sd + · · ·]. (7.74)

As an approximation, we drop in the last equation the radiative1 and velocity contribu-
tions that have not been written out. Then we get a closed system which we again write
in terms of the variable ζ :

D∆sd = −1

x
Vd − 3DΦ, (7.75)

DVd = −Vd −
1

x
Φ, (7.76)

Φ ≃ 3

4

1

ω2

1

ζ
∆sd. (7.77)

1The growth in the matter perturbations implies that eventually ρd∆sd > ρr∆sr even if ∆sd < ∆sr .
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In the last equation we used ρd = (ζ/ζ + 1)ρ, (7.7) and the expression (7.33) for x2.
For large ω we can easily deduce a second order equation for ∆sd: Applying D to

(7.75) and using (7.76) gives

D2∆sd = −1

x
DVd +

1

x2
(Dx)Vd − 3D2Φ

=
1

x2
Φ+

1

2
(1− 3w)

1

x
Vd − 3D2Φ

=
1

x2
Φ− 1

2
(1− 3w)D∆sd −

3

2
(1− 3w)DΦ− 3D2Φ.

Because of (7.77) the last two terms are small, and we end up (using again (7.33)) with

{

D2 +
1

2

ζ

1 + ζ
D − 3

2

ζ

1 + ζ

}

∆sd = 0, (7.78)

known in the literature as the Meszaros equation. Note that this agrees, as was to be
expected, with the homogeneous equation belonging to (7.35).

The Meszaros equation can be solved analytically. On the basis of (7.68) one may
guess that one solution is linear in ζ . Indeed, one finds that

Xd(ζ) = D1(ζ) = ζ + 2/3 (7.79)

is a solution. A linearly independent solution can then be found by quadratures. It is
a general fact that f(ζ) := ∆sd/D1(ζ) must satisfy a differential equation which is first
order for f ′. One readily finds that this equation is

(1 +
3ζ

2
)f ′′ +

1

4ζ(ζ + 1)
[21ζ2 + 24ζ + 4]f ′ = 0.

The solution for f ′ is
f ′ ∝ (ζ + 2/3)−2ζ−1(ζ + 1)−1/2.

Integrating once more provides the second solution of (7.78)

D2(ζ) = D1(ζ) ln

[√
1 + ζ + 1√
1 + ζ − 1

]

− 2
√

1 + ζ. (7.80)

For late times the two solutions approach to those found in (7.68).
The growing and the decaying solutions D1, D2 have to be superposed such that a

match to (7.65) is obtained.

7.2.4 Transfer function, numerical results

According to (4.32),(4.33) the early evolution of Φ on super-horizon scales is given by2

Φ(ζ) = Φ(prim) 9

10

ζ + 1

ζ2
Ug ≃

9

10
Φ(prim) , for ζ ≫ 1. (7.81)

At sufficiently late times in the matter dominated regime all modes evolve identically
with the growth function Dg(ζ) given in (4.38). I recall that this function is normalized
such that it is equal to a/a0 when we can still ignore the dark energy (at z > 10, say).
The growth function describes the evolution of ∆, thus by the Poisson equation (4.3) Φ

2The origin of the factor 9/10 is best seen from the constancy of R for super-horizon perturbations,
and Eq. (5.67).
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grows with Dg(a)/a. We therefore define the transfer function T (k) by (we choose the
normalization a0 = 1)

Φ(k, a) = Φ(prim) 9

10

Dg(a)

a
T (k) (7.82)

for late times. This definition is chosen such that T (k) → 1 for k → 0, and does not
depend on time.

At these late times ρM = ΩMa−3ρcrit, hence the Poisson equation gives the following
relation between Φ and ∆

Φ =
(a

k

)2

4πGρM∆ =
3

2

1

ak2
H2

0ΩM∆.

Therefore, (7.82) translates to

∆(a) =
3

5

k2

ΩMH2
0

Φ(prim)Dg(a)T (k). (7.83)

The transfer function can be determined by solving numerically the pair (7.24),
(7.25) of basic perturbation equations. One can derive even a reasonably good analytic
approximation by putting our previous results together (for details see again [5], Sect.
7.4). For a CDM model the following accurate fitting formula to the numerical solution
in terms of the variable q̃ = k/keq, where keq is defined such that the corresponding
value of the parameter ω in (7.33) is equal to 1 (i.e., keq = aeqHeq =

√
2ΩMH0/

√
aeq,

using (1.91)) was given in [57]:

TBBKS(q̃) =
ln(1 + 0.171q̃)

0.171q̃
[1 + 0.284q̃ + (1.18q̃)2 + (0.399q̃)3 + (0.490q̃)4]−1/4. (7.84)

Note that q̃ depends on the cosmological parameters through the combination3 ΩMh0,
usually called the shape parameter Γ. In terms of the variable q = k/(Γh0Mpc−1) (7.84)
can be written as

TBBKS(q) =
ln(1 + 2.34q)

2.34q
[1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4]−1/4. (7.85)

This result for the transfer function is based on a simplified analysis. The tight cou-
pling approximation is no more valid when the decoupling temperature is approached.
Moreover, anisotropic stresses and baryons have been ignored. We shall reconsider the
transfer function after having further developed the basic theory in the next chapter. It
will, of course, be very interesting to compare the theory with available observational
data. For this one has to keep in mind that the linear theory only applies to suffi-
ciently large scales. For late times and small scales it has to be corrected by numerical
simulations for nonlinear effects.

For a given primordial power spectrum, the transfer function determines the power
spectrum after the ‘transfer regime’ (when all modes evolve with the growth function
Dg). From (7.83) we obtain for the power spectrum of ∆

P∆(z) =
9

25

k4

Ω2
MH4

0

P
(prim)
Φ D2

g(z)T
2(k). (7.86)

We choose P
(prim)
Φ ∝ kn−1 and the amplitude such that

P∆(z) = δ2H

(
k

H0

)3+n

T 2(k)

(
Dg(z)

Dg(0)

)2

. (7.87)

3since k is measured in units of h0 Mpc−1 and aeq = 4.15× 10−5/(ΩMh2
0).
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Note that P∆(0) = δ2H for k = H0. The normalization factor δH has to be determined
from observations (e.g. from CMB anisotropies at large scales). Comparison of (7.86)
and (7.87) and use of (6.50) implies

P
(prim)
R (k) =

9

4
P

(prim)
Φ (k) =

25

4
δ2H

(
ΩM

Dg(0)

)2(
k

H0

)n−1

. (7.88)

Using (7.84) we see that for k ≫ keq P∆ grows as ln2(k/keq).
————
Exercise. Solve the five first order differential equations (7.43), (7.44) for α = d, r

and (7.45) with the adiabatic initial conditions (7.48) numerically. Determine, in par-
ticular, the transfer function defined in (7.82). (A standard code gives this in less than
a second.)

————
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Chapter 8

Boltzmann Equation in GR

For the description of photons and neutrinos before recombination we nee the general
relativistic version of the Boltzmann equation.

8.1 One-particle phase space, Liouville

operator for geodesic spray

For what follows we first have to develop some kinematic and differential geometric tools.
Our goal is to generalize the standard description of Boltzmann in terms of one-particle
distribution functions.

Let g be the metric of the spacetime manifold M . On the cotangent bundle T ∗M =
⋃

p∈M T ∗
pM we have the natural symplectic 2-form ω, which is given in natural bundle

coordinates1(xµ, pν) by
ω = dxµ ∧ dpµ. (8.1)

(For an intrinsic description, see Chap. 6 of [59].) So far no metric is needed. The pair
(T ∗M,ω) is always a symplectic manifold.

The metric g defines a natural diffeomorphism between the tangent bundle TM and
T ∗M which can be used to pull ω back to a symplectic form ωg on TM . In natural
bundle coordinates the diffeomorphism is given by (xµ, pα) 7→ (xµ, pα = gαβp

β), hence

ωg = dxµ ∧ d(gµνp
ν). (8.2)

On TM we can consider the “Hamiltonian function”

L =
1

2
gµνp

µpν (8.3)

and its associated Hamiltonian vector field Xg, determined by the equation

iXg
ωg = dL. (8.4)

It is not difficult to show that in bundle coordinates

Xg = pµ
∂

∂xµ
− Γµ

αβp
αpβ

∂

∂pµ
(8.5)

1If xµ are coordinates of M then the dxµ form in each point p ∈ M a basis of the cotangent space
T ∗
pM . The bundle coordinates of β ∈ T ∗

pM are then (xµ, βν) if β = βνdx
ν and xµ are the coordinates

of p. With such bundle coordinates one can define an atlas, by which T ∗M becomes a differentiable
manifold.
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(Exercise). The Hamiltonian vector field Xg on the symplectic manifold (TM, ωg) is the
geodesic spray. Its integral curves satisfy the canonical equations:

dxµ

dλ
= pµ, (8.6)

dpµ

dλ
= −Γµ

αβp
αpβ. (8.7)

The geodesic flow is the flow of the vector field Xg.
Let Ωωg

be the volume form belonging to ωg, i.e., the Liouville volume

Ωωg
= const ωg ∧ · · · ∧ ωg,

or (g = det(gαβ))

Ωωg
= (−g)(dx0 ∧ dx1 ∧ dx2 ∧ dx3) ∧ (dp0 ∧ dp1 ∧ dp2 ∧ dp3)

≡ (−g)dx0123 ∧ dp0123. (8.8)

The one-particle phase space for particles of mass m is the following submanifold of
TM :

Φm = {v ∈ TM | v future directed, g(v, v) = −m2}. (8.9)

This is invariant under the geodesic flow. The restriction ofXg to Φm will also be denoted
by Xg. Ωωg

induces a volume form Ωm (see below) on Φm, which is also invariant under
Xg:

LXg
Ωm = 0. (8.10)

Ωm is determined as follows (known from Hamiltonian mechanics): Write Ωωg
in the

form
Ωωg

= −dL ∧ σ,

(this is always possible, but σ is not unique), then Ωm is the pull-back of Ωωg
by the

injection i : Φm → TM ,
Ωm = i∗σ. (8.11)

While σ is not unique (one can, for instance, add a multiple of dL), the form Ωm is
independent of the choice of σ (show this). In natural bundle coordinates a possible
choice is

σ = (−g)dx0123 ∧ dp123

(−p0)
,

because

−dL ∧ σ = [−gµνp
µdpν + · · ·] ∧ σ = (−g)dx0123 ∧ gµ0p

µdp0 ∧ dp123

p0
= Ωωg

.

Hence,
Ωm = η ∧Πm, (8.12)

where η is the volume form of (M, g),

η =
√−gdx0123, (8.13)

and

Πm =
√−g

dp123

|p0|
, (8.14)

with p0 > 0, and gµνp
µpν = −m2.
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We shall need some additional tools. Let Σ be a hypersurface of Φm transversal to
Xg. On Σ we can use the volume form

volΣ = iXg
Ωm | Σ. (8.15)

Now we note that the 6-form
ωm := iXg

Ωm (8.16)

on Φm is closed,
dωm = 0, (8.17)

because
dωm = diXg

Ωm = LXg
Ωm = 0

(we used dΩm = 0 and (8.10)). From (8.12) we obtain

ωm = (iXg
η) ∧Πm + η ∧ iXg

Πm. (8.18)

In the special case when Σ is a “time section”, i.e., in the inverse image of a spacelike
submanifold ofM under the natural projection Φm → M , then the second term in (8.18)
vanishes on Σ, while the first term is on Σ according to (8.5) equal to ipη ∧ Πm, p =
pµ∂/∂xµ. Thus, we have on a time section2 Σ

volΣ = ωm | Σ = ipη ∧Πm. (8.19)

Let f be a one-particle distribution function on Φm, defined such that the number
of particles in a time section Σ is

N(Σ) =

∫

Σ

fωm. (8.20)

The particle number current density is

nµ(x) =

∫

Pm(x)

fpµΠm, (8.21)

where Pm(x) is the fiber over x in Φm (all momenta with 〈p, p〉 = −m2). Similarly,, one
defines the energy-momentum tensor, etc.

Let us show that

nµ
;µ =

∫

Pm

(
LXg

f
)
Πm. (8.22)

We first note that (always in Φm)

d(fωm) =
(
LXg

f
)
Ωm. (8.23)

Indeed, because of (8.17) the left-hand side of this equation is

df ∧ ωm = df ∧ iXg
Ωm =

(
iXg

df
)
∧ Ωm =

(
LXg

f
)
Ωm.

Now, let D be a domain in Φm which is the inverse of a domain D̄ ⊂ M under the
projection Φm → M . Then we have on the one hand by (8.18), setting iXη ≡ Xµσµ,

∫

∂D

fωm =

∫

∂D̄

σµ

∫

Pm(x)

pµfΠm =

∫

∂D̄

σµn
µ =

∫

∂D̄

inη =

∫

D̄

(∇ · n)η.

2Note that in Minkowski spacetime we get for a constant time section volΣ = dx123 ∧ dp123.
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On the other hand, by (8.23) and (8.12)
∫

∂D

fωm =

∫

D

d(fωm) =

∫

D

(
LXg

f
)
Ωm =

∫

D̄

η

∫

Pm(x)

(
LXg

f
)
Πm.

Since D̄ is arbitrary, we indeed obtain (8.22).
The divergence of the energy-momentum tensor

T µν =

∫

Pm

pµpνfΠm (8.24)

is given by

T µν
;ν =

∫

Pm

pµ
(
LXg

f
)
Πm. (8.25)

This follows from the previous proof by considering instead of nν the vector field Nν :=
vµT

µν , where vµ is geodesic in x.

8.2 The general relativistic Boltzmann

equation

Let us first consider particles for which collisions can be neglected (e.g. neutrinos at
temperatures much below 1 MeV). Then the conservation of the particle number in a
domain that is comoving with the flow φs of Xg means that the integrals

∫

φs(Σ)

fωm,

Σ as before a hypersurface of Φm transversal to Xg, are independent of s. We now show
that this implies the collisionless Boltzmann equation

The proof of this expected result proceeds as follows. Consider a ‘cylinder’ G, sweping
by Σ under the flow φs in the interval [0, s] (see Fig. 8.1), and the integral

∫

G
LXg

fΩm =

∫

∂G
fωm

(we used Eq. (8.23)). Since iXg
ωm = iXg

(iXg
Ωm) = 0, the integral over the mantle of

the cylinder vanishes, while those over Σ and φs(Σ) cancel (conservation of particles).
Because Σ and s are arbitrary, we conclude that (8.26) must hold.

From (8.22) and (8.23) we obtain, as expected, the conservation of the particle num-
ber current density: nµ

;µ = 0.
With collisions, the Boltzmann equation has the symbolic form

LXg
f = C[f ] , (8.27)

where C[f ] is the “collision term”. For the general form of this in terms of the invariant
transition matrix element for a two-body collision, see (B.9). In Appendix B we also
work this out explicitly for photon-electron scattering.

By (8.25) and (8.27) we have
T µν

;ν = Qµ, (8.28)

with

Qµ =

∫

Pm

pµC[f ]Πm. (8.29)
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integral
curve of
Xg

ϕs(Σ)

Σ

G

Figure 8.1: Picture for the proof of (8.26).

8.3 Perturbation theory (generalities)

We consider again small deviations from Friedmann models, and set correspondingly

f = f (0) + δf. (8.30)

How does δf change under a gauge transformation? At first sight one may think that
we simply have δf → δf +LTξf

(0), where Tξ is the lift of the vector field ξ, defining the
gauge transformation, to the tangent bundle. (We recall that Tξ is obtained as follows:
Let φs be the flow of ξ and consider the flow Tφs on TM, Tφs = tangent map. Then
Tξ is the vector field belonging to Tφs.) Unfortunately, things are not quite as simple,
because f is only defined on the one-particle subspace of TM , and this is also perturbed
when the metric is changed. One way of getting the right transformation law is given in
[47]. Here, I present a more pedestrian, but simpler derivation.

First, we introduce convenient independent variables for the distribution function.
For this we choose an adapted orthonormal frame {eµ̂, µ̂ = 0, 1, 2, 3} for the perturbed
metric (3.16), which we recall

g = a2(η)
{
−(1 + 2A)dη2 − 2B,i dx

idη + [(1 + 2D)γij + 2E|ij]dx
idxj

}
. (8.31)

e0̂ is chosen to be orthogonal to the time slices η = const, whence

e0̂ =
1

α

(
∂η + βi∂i

)
, α = 1 + A, βi = B,i. (8.32)

This is indeed normalized and perpendicular to ∂i. At the moment we do not need
explicit expressions for the spatial basis eî tangential to η = const.

From
p = pµ̂eµ̂ = pµ∂µ

we see that p0̂/α = p0. From now on we consider massless particles and set3 q = p0̂,
whence

q = a(1 + A)p0. (8.33)

3This definition of q is only used in the present subsection. Later, after eqn. (8.63), q will denote the
comoving momentum aq.
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Furthermore, we use the unit vector γi = pî/q. Then the distribution function can be
regarded as a function of η, xi, q, γi, and this we shall adopt in what follows. For the
case K = 0, which we now consider for simplicity, the unperturbed tetrad is { 1

a
∂η,

1
a
∂i},

and for the unperturbed situation we have q = ap0, pi = p0γi.
As a further preparation we interpret the Lie derivative as an infinitesimal coordinate

change. Consider the infinitesimal coordinate transformation

x̄µ = xµ − ξµ(x), (8.34)

then to first order in ξ
(Lξg)µν (x) = ḡµν(x)− gµν(x), (8.35)

and correspondingly for other tensor fields. One can verify this by a direct comparison
of the two sides. For the simplest case of a function F ,

F̄ (x)− F (x) = F (x+ ξ)− F (x) = ξµ∂µF = LξF.

Under the transformation (8.34) and its extension to TM the pµ transform as

p̄µ = pµ − ξµ,νp
ν .

We need the transformation law for q. From

q̄ = a(η̄)[1 + Ā(x̄)]p̄0

and the transformation law (3.18) of A,

A → A+
a′

a
ξ0 + ξ0

′

,

we get
q̄ = a(η)[1−Hξ0][1 + A(x)Hξ0 + ξ0

′

][p0 − ξ0,νp
ν ].

The last square bracket is equal to p0(1− ξ0
′ − ξ0,iγ

i). Using also (8.33) we find

q̄ = q − qξ0,iγ
i. (8.36)

Since the unperturbed distribution function f (0) depends only on q and η, we conclude
from this that

δf → δf + q
∂f (0)

∂q
ξ0,iγ

i + ξ0f (0)′ . (8.37)

Here, we use the equation of motion for f (0). For massless particles this is an equilibrium
distribution that is stationary when considered as a function of the comoving momentum
aq. This means that

∂f (0)

∂η
+

∂f (0)

∂q
q′ = 0

for (aq)′ = 0, i.e., q′ = −Hq. Thus,

f (0)′ −Hq
∂f (0)

∂q
= 0. (8.38)

If this is used in (8.37) we get

δf → δf + q
∂f (0)

∂q
[Hξ0 + ξ0,iγ

i] . (8.39)
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Since this transformation law involves only ξ0, we can consider various gauge invariant
distribution functions, such as (δf)χ, (δf)Q. From (3.21), χ → χ+ aξ0, we find

Fs := (δf)χ = δf − q
∂f (0)

∂q
[H(B + E ′) + γi(B + E ′),i]. (8.40)

Fs reduces to δf in the longitudinal gauge, and we shall mainly work with this gauge
invariant perturbation. In the literature sometimes Fc := (δf)Q is used. Because of
(3.49), v−B → (v−B)− ξ0, we obtain Fc from (8.40) in replacing B+E ′ by −(v−B):

Fc := (δf)Q = δf + q
∂f (0)

∂q
[H(v −B) + γi(v − B),i]. (8.41)

Since by (3.56) (v − B) + (B + E ′) = V , we find the relation

Fc = Fs + q
∂f (0)

∂q
[HV + γiV,i]. (8.42)

Instead of v, V we could also use the baryon velocities vb, Vb.

8.4 Liouville operator in the

longitudinal gauge

We want to determine the action of the Liouville operator L := LXg
on Fs. The simplest

way to do this is to work in the longitudinal gauge B = E = 0.
In this section we do not assume a vanishing K. It is convenient to introduce an

adapted orthonormal (to first order) tetrad

e0 =
1

a(1 + A)
∂η, ei =

1

a(1 +D)
êi, (8.43)

where êi is an orthonormal basis for the unperturbed space (Σ, γ). Its dual basis will be
denoted by ϑ̂i, and that of eµ by θµ. We have

θ0 = (1 + A)θ̄0, θi = (1 +D)θ̄i, (8.44)

where
θ̄0 = a(η)dη, θ̄i = a(η)ϑ̂i. (8.45)

Connection forms. The unperturbed connection forms have been obtained in Sect.
1.1.2. In the present notation they are

ω̄i
0 = ω̄0

i =
a′

a2
θ̄i, ω̄i

j = ω̂i
j , (8.46)

where ω̂i
j are the connection forms of (Σ, γ) relative to ϑ̂i.

For the determination of the perturbations δωµ
ν of the connection forms we need

dθµ. In the following calculation we make use of the first structure equations, both for
the unperturbed and the actual metric. The former, together with (8.46), implies that
the first term in

dθ0 = (1 + A)dθ̄0 + dA ∧ θ̄0
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vanishes. Using the notation dA = A′dη + A|iθ̄
i = A|µθ̄

µ we obtain

dθ0 = A|iθ̄
i ∧ θ̄0. (8.47)

Similarly,

dθi = (1+D)dθ̄i+dD∧ θ̄i = (1+D)[−ω̄i
j∧ θ̄j− ω̄i

0∧ θ̄0]+D|j θ̄
j∧ θ̄i+D|0θ̄

0∧ θ̄i. (8.48)

On the other hand, inserting ωµ
ν = ω̄µ

ν + δωµ
ν into dθµ = −ωµ

ν ∧ θν , and comparing
first orders, we obtain the equations

−δω0
i ∧ θ̄i − ω̄0

i ∧ (Dθ̄i)
︸ ︷︷ ︸

0

= −A|iθ̄
0 ∧ θ̄i, (8.49)

−δωi
0 ∧ θ̄0 − δωi

j ∧ θ̄j − ω̄i
0 ∧ Aθ̄0 − ω̄i

j ∧Dθ̄j =

−Dω̄i
j ∧ θ̄j −Dω̄i

0 ∧ θ̄0 +D|j θ̄
j ∧ θ̄i +D|0θ̄

0 ∧ θ̄i. (8.50)

Eq. (8.49) requires
δω0

i = A|iθ̄
0 + (∝ θ̄i). (8.51)

Let us try the guess
δωi

j = −D|iθ̄
j +D|j θ̄

i (8.52)

and insert this into (8.50). This gives

−δωi
0 ∧ θ̄0 − Aω̄i

0 ∧ θ̄0 = −Dω̄i
0 ∧ θ̄0 +D|0θ̄

0 ∧ θ̄i, (8.53)

and this is satisfied if the last term in (8.51) is chosen according to

δω0
i = A|iθ̄

0 − (A−D)ω̄0
i +

1

a
D′θ̄i. (8.54)

Since the first structure equations are now all satisfied (to first order) our guess (8.52)
is correct, and we have determined all δωµ

ν .
From (8.46) and (8.54) we get to first order

ωi
0 =

[
a′

a2
(1− A) +

1

a
D′
]

θi + A|iθ
0. (8.55)

We shall not need ωi
j explicitly, except for the property ωi

j(e0) = 0, which follows from
(7.45) and (7.51).

We take the spatial components pi of the momenta p relative to the orthonormal
tetrad {eµ} as independent variables of f (beside x). Then

Lf = pµeµ(f)− ωi
α(p)p

α ∂f

∂pi
(p = pµeµ). (8.56)

Derivation. Eq. (8.56) follows from (8.5) and the result of the following consideration.
Let X =

∑n+1
i=1 ξi∂i be a vector field on a domain of Rn+1 and let Σ be a hypersurface

in Rn+1, parametrized by

ϕ : U ⊂ Rn → Rn+1, (x1, · · ·xn) 7→ (x1, · · ·xn, g(x1, · · ·xn)),
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to which X is tangential. Furthermore, let f be a function on Σ, which we regard as a
function of x1, · · ·, xn. I claim that

X(f) =
n∑

i=1

ξi
∂(f ◦ ϕ)

∂xi
. (8.57)

This can be seen as follows: Extend f in some manner to a neighborhood of Σ (at least
locally). Then

X(f) | Σ =

n∑

i=1

(

ξi
∂f

∂xi
+ ξn+1 ∂f

∂xn+1

)
∣
∣
∣
∣
∣
xn+1=g(x1,···xn)

. (8.58)

Now, we have on Σ : dg−dxn+1 = 0 and thus 〈dg−dxn+1, X〉 = 0 since X is tangential.
Using (8.58) this implies

ξn+1 =
n∑

i=1

ξi
∂g

∂xi
,

whence (7.57) gives by the chain rule

X(f) | Σ =
n∑

i=1

ξi
(
∂f

∂xi
+

∂f

∂xn+1

∂g

∂xi

)

=
n∑

i=1

ξi
∂(f ◦ ϕ)

∂xi
.

This fact was used in (8.56) for the vector field

Xg = pµeµ − ωµ
α(p)p

α ∂

∂pµ
. (8.59)

Lf to first order. For Lf we need

pµeµ(f) = p0
1

a
(1−A)f ′ + piei(f) = p0

1

a
(1− A)f ′ + pi

1

a
êi(δf)

and

ωi
α(p)p

α ∂

∂pi
= ωi

0(p)p
0 ∂

∂pi
+ ωi

j(p)p
j ∂

∂pi

= [ωi
0(e0)p

0 + ωi
0(p)]p

0 ∂

∂pi
+ [ωi

j(e0)p
0 + ωi

j(p)]p
j ∂

∂pi
.

From (8.55) we get ωi
0(e0) = A|i, and

ωi
0(p) =

[
a′

a2
(1− A) +

1

a
D′
]

pi.

Furthermore, the Gauss equation implies ωi
j(p) = ω̃i

j(p), where ω̃
i
j are the connection

forms of the spatial metric (see Appendix A of [1]).
As an intermediate result we obtain

Lf = (1−A)
p0

a
f ′ +

pi

a
êi(δf)

−
[

ω̃i
j(p)p

j + (p0)2A|i +
p0

a
D′pi + p0

a′

a2
(1− A)pi

]
∂f

∂pi
. (8.60)
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From now on we use as independent variables η, xi, p, γi = pi/p (p = [
∑

i(p
i)2]1/2).

We have
∂f

∂pi
=

pi
p

∂f

∂p
+

1

p

(
δli − pip

l/p2
) ∂f

∂γl
. (8.61)

Contracting this with ω̃i
j(p)p

j , appearing in (8.60), the first term on the right in (8.61)
gives no contribution (antisymmetry of ω̃i

j), and since ∂f/∂γl is of first order we can
replace ω̃i

j by the connection forms of the unperturbed metric a2γij; these are the same

as the connection forms ω̂i
j of γij relative to ϑ̂i. What remains is thus

ω̂i
j(p)

pj

p

(
δli − pip

l/p2
) ∂δf

∂γl
= ω̂i

j(p)
pj

p

∂δf

∂γi
=

p

a
γjγkΓ̂i

jk
∂δf

∂γi
.

Inserting this and (8.61) into (8.60) gives in zeroth order for the Liouville operator

(Lf)(0) = p0

a

(

f (0)′ −Hp
∂f (0)

∂p

)

,

and the first order contribution is

−A(Lf)(0) +
p0

a
(δf)′ +

pi

a
êi(δf)−

p

a
γjγkΓ̂i

jk
∂δf

∂γi

− (p0)2

ap
êi(A)p

i∂f
(0)

∂p
− p0

a
D′p

∂f (0)

∂p
− p0

a
Hp

∂δf

∂p
.

Therefore, we obtain for the Liouville operator, up to first order,

a

p0
Lf = (1−A)

(

f (0)′ −Hp
∂f (0)

∂p

)

+ (δf)′ −Hp
∂δf

∂p

+
pi

p0
êi(δf)−

p

p0
γjγkΓ̂i

jk
∂δf

∂γi
− p

[

D′ +
p0

p
γiêi(A)

]
∂f (0)

∂p
.

(8.62)

As a first application we consider the collisionless Boltzmann equation for m = 0.
In zeroth order we get the equation (8.38) (q in that equation is our present p). The
perturbation equation becomes

(δf)′ −Hp
∂δf

∂p
+ γiêi(δf)− γjγkΓ̂i

jk
∂δf

∂γi
−
[
D′ + γiêi(A)

]
p
∂f (0)

∂p
= 0.

(8.63)

It will be more convenient to write this in terms of the comoving momentum, which we
denote by q, q = ap. (This slight change of notation is unfortunate, but should not give
rise to confusions, because the equations at the beginning of Sect. 8.3, with the earlier
meaning q ≡ p, will no more be used. But note that (8.39) – (8.42) remain valid with
the present meaning of q.) Eq. (8.63) then becomes

(∂η + γiêi)δf − Γ̂i
jkγ

jγk ∂δf

∂γi
−
[
D′ + γiêi(A)

]
q
∂f (0)

∂q
= 0. (8.64)

It is obvious how to write this in gauge invariant form

(∂η + γiêi)Fs − Γ̂i
jkγ

jγk∂Fs

∂γi
=
[
Φ′ + γiêi(Ψ)

]
q
∂f (0)

∂q
. (8.65)
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(From this the collisionless Boltzmann equation follows in any gauge; write this out.)
In the special case K = 0 we obtain for the Fourier amplitudes, with µ := k̂ · γ,

F ′
s + iµkFs = [Φ′ + ikµΨ] q

∂f (0)

∂q
. (8.66)

This equation can be used for neutrinos as long as their masses are negligible (the
generalization to the massive case is easy).

8.5 Boltzmann equation for photons

The collision term for photons due to Thomson scattering on electrons will be derived in
Appendix B. We shall find that in the longitudinal gauge, ignoring polarization effects4,

C[f ] = xeneσTp

[

〈δf〉 − δf − q
∂f (0)

∂q
γiêi(vb) +

3

4
Qijγ

iγj

]

. (8.67)

On the right, xene is the unperturbed free electron density (xe = ionization fraction),
σT the Thomson cross section, and vb the scalar velocity perturbation of the baryons.
Furthermore, we have introduced the spherical averages

〈δf〉 =
1

4π

∫

S2

δf dΩγ, (8.68)

Qij =
1

4π

∫

S2

[γiγj −
1

3
δij ]δf dΩγ . (8.69)

(Because of the tight coupling of electrons and ions we can take ve = vb.)
Since the left-hand side of (8.64) is equal to (a/p0)Lf , the linearized Boltzmann

equation becomes

(∂η + γiêi)δf − Γ̂i
jkγ

jγk ∂δf

∂γi
−
[
D′ + γiêi(A)

]
q
∂f (0)

∂q

= axeneσT

[

〈δf〉 − δf − q
∂f (0)

∂q
γiêi(vb) +

3

4
Qijγ

iγj

]

.

(8.70)

This can immediately be written in a gauge invariant form, by replacing

δf → Fs, vb → Vb, A → Ψ, D → Φ. (8.71)

In our applications to the CMB we work with the gauge invariant (integrated) bright-
ness temperature perturbation

Θs(η, x
i, γj) =

∫

Fsq
3dq

/

4

∫

f (0)q3dq. (8.72)

(The factor 4 is chosen because of the Stephan-Boltzmann law, according to which
δρ/ρ = 4δT/T.) It is simple to translate the Boltzmann equation for Fs to a kinetic
equation for Θs. Using ∫

q
∂f (0)

∂q
q3dq = −4

∫

f (0)q3dq

4The polarization dependence of Thomson scattering, and the resulting Boltzmann equations for
the density matrix and the Stokes parameters are treated in Appendix E; see also [9].
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we obtain for the convective part (from the left-hand side of the Boltzmann equation
for Fs)

Θ′
s + γiêi(Θs)− Γ̂i

jkγ
jγk ∂Θs

∂γi
+ Φ′ + γiêi(Ψ).

The collision term gives

τ ′(θ0 −Θs + γiêiVb +
1

16
γiγjΠij),

with τ ′ = xeneσTa/a0, θ0 = 〈Θs〉 (spherical average), and

1

12
Πij :=

1

4π

∫

[γiγj −
1

3
δij ]Θs dΩγ . (8.73)

The basic equation for Θs is thus

(Θs +Ψ)′ + γiêi(Θs +Ψ)− Γ̂i
jkγ

jγk ∂

∂γi
(Θs +Ψ) =

(Ψ′ − Φ′) + τ ′(θ0 −Θs + γiêiVb +
1

16
γiγjΠij). (8.74)

This equation clearly also holds for the (unintegrated) brightness temperature fluctua-
tion, (δT/T )(η, xi, q, γi), defined by

δf = −q
∂f (0)

∂q
(δT/T ), (8.75)

since the Thomson cross section is energy independent.
In a mode decomposition we get for K = 0 (I drop from now on the index s on Θ):

Θ′ + ikµ(Θ + Ψ) = −Φ′ + τ ′[θ0 −Θ− iµVb −
1

10
θ2P2(µ)] (8.76)

(recall Vb → −(1/k)Vb). The last term on the right comes about as follows. We expand
the Fourier modes Θ(η, ki, γj) in terms of Legendre polynomials

Θ(η, ki, γj) =
∞∑

l=0

(−i)lθl(η, k)Pl(µ), µ = k̂ · γ, (8.77)

and note that
1

16
γiγjΠij = − 1

10
θ2P2(µ) (8.78)

(Exercise). The expansion coefficients θl(η, k) in (8.77) are the brightness moments5.
The lowest three have simple interpretations. We show that in the notation of Chap. 3:

θ0 =
1

4
∆sγ , θ1 = Vγ , θ2 =

5

12
Πγ . (8.79)

5In the literature the normalization of the θl is sometimes chosen differently: θl → (2l+ 1)θl.
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Derivation of (8.79). We start from the general formula (see Sect. 8.1)

T µ
(γ)ν =

∫

pµpνf(p)
d3p

p0
=

∫

pµpνf(p)pdp dΩγ. (8.80)

According to the general parametrization (3.156) we have

δT 0
(γ)0 = −δργ = −

∫

p2δf(p)pdp dΩγ. (8.81)

Similarly, in zeroth order

T
(0)0
(γ) 0 = −ρ(0)γ = −

∫

p2f (0)(p)pdp dΩγ . (8.82)

Hence,
δργ

ρ
(0)
γ

=

∫
q3δf dq dΩγ

∫
q3f (0)dq dΩγ

. (8.83)

In the longitudinal gauge we have ∆sγ = δργ/ρ
(0)
γ , Fs = δf and thus by (8.72) and

(8.77)

∆sγ = 4
1

4π

∫

Θ dΩγ = 4θ0.

Similarly,

T i
(γ)0 = −hγv

|i
γ =

∫

pip0δfpdp dΩγ

or

v|iγ =
3

4ρ
(0)
γ

∫

γiδfp3dp dΩγ . (8.84)

With (8.82) and (8.72) we get

V |i
γ =

3

4π

∫

γiΘ dΩγ. (8.85)

For the Fourier amplitudes this gauge invariant equation gives (Vγ → −(1/k)Vγ)

−iVγ k̂
i =

3

4π

∫

γiΘ dΩγ

or

−iVγ =
3

4π

∫

µΘ dΩγ.

Inserting here the decomposition (8.77) leads to the second relation in (8.79).
For the third relation we start from (3.156) and (8.80)

δT i
(γ)j = δpγδ

i
j + p(0)γ

(

Π
|i
γ|j −

1

3
δij∇2Πγ

)

=

∫

pipjδfp dp dΩγ.

From this and (8.81) we see that δpγ = 1
3
δργ , thus Γγ = 0 (no entropy production with

respect to the photon fluid). Furthermore, since p
(0)
γ = 1

3
ρ
(0)
γ we obtain with (8.73)

Π
|i
γ|j −

1

3
δij∇2Πγ = 4 · 3 1

4π

∫

[γiγj −
1

3
δij]Θ dΩγ = Πi

j.

In momentum space (Πγ → (1/k2)Πγ) this becomes

−(k̂ik̂j −
1

3
δij)Πγ = Πi

j

or, contracting with γiγ
j and using (8.78), the desired result.
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Hierarchy for moment equations

Now we insert the expansion (8.77) into the Boltzmann equation (8.76). Using the
recursion relations for the Legendre polynomials,

µPl(µ) =
l

2l + 1
Pl−1(µ) +

l + 1

2l + 1
Pl+1(µ), (8.86)

we obtain

∞∑

l=0

(−i)lθ′lPl + ik

∞∑

l=0

(−i)lθl

[
l

2l + 1
Pl−1 +

l + 1

2l + 1
Pl+1

]

+ ikΨP1

= −Φ′P0 − τ ′

[ ∞∑

l=1

(−i)lθlPl − iVbP1 −
1

10
θ2P2

]

.

Comparing the coefficients of Pl leads to the following hierarchy of ordinary differential
equations for the brightness moments θl(η):

θ′0 = −1

3
kθ1 − Φ′, (8.87)

θ′1 = k
(

θ0 +Ψ− 2

5
θ2

)

− τ ′(θ1 − Vb), (8.88)

θ′2 = k
(2

3
θ1 −

3

7
θ3

)

− τ ′
9

10
θ2, (8.89)

θ′l = k
( l

2l − 1
θl−1 −

l + 1

2l + 3
θl+1

)

, l > 2. (8.90)

At this point it is interesting to compare the first moment equation (8.88) with the
phenomenological equation (3.214) for γ:

V ′
γ = kΨ+

k

4
∆sγ −

1

6
kΠγ +HFγ. (8.91)

On the other hand, (8.88) can be written with (8.79) as

V ′
γ = kΨ+

k

4
∆sγ −

1

6
kΠγ − τ ′(Vγ − Vb). (8.92)

The two equations agree if the phenomenological force Fγ is given by

HFγ = −τ ′(Vγ − Vb). (8.93)

From the general relation (3.203) we then obtain

Fb = −hγ

hb
Fγ = −4ργ

3ρb
Fγ . (8.94)

8.6 Tensor contributions to the Boltzmann equation

Considering again only the case K = 0, the metric (6.57) for tensor perturbations
becomes

gµν = a2(η)[ηµν + 2Hµν ], (8.95)

where the Hµν satisfy the TT gauge conditions (6.58). An adapted orthonormal tetrad
is

θ0 = a(η)dη, θi = a(δij +H i
j)dx

j . (8.96)
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Relative to this the connection forms are (Exercise):

ω0
i =

a′

a2
θi +

1

a
H ′

ijθ
j , ωi

j =
1

2a
(H i

k,j −Hjk
,i)θk. (8.97)

For Lf we get from (8.56) to first order

Lf =
p0

a
f ′ + pi

1

a
êi(f)− ωi

0(p)p
0 ∂f

∂pi
− ωi

j(p)p
j ∂f

∂pi

=
p0

a

[

f ′ +
pi

p0
∂if −

(
Hpi +H ′

ijp
j
) ∂f

∂pi

]

.

Passing again to the variables η, xi, p, γi we obtain instead of (8.62)

a

p0
Lf = f (0)′ −Hp

∂f (0)

∂p

+ (δf)′ −Hp
∂δf

∂p
+

pi

p0
∂i(δf)−H ′

ijγ
iγjp

∂f (0)

∂p
. (8.98)

Instead of (8.64) we now obtain the following collisionless Boltzmann equation

(∂η + γi∂i)δf −H ′
ijγ

iγjq
∂f (0)

∂q
= 0. (8.99)

For the temperature (brightness) perturbation this gives

(∂η + γi∂i)Θ = −H ′
ijγ

iγj . (8.100)

This describes the influence of tensor modes on Θ. The evolution of these tensor
modes is described according to (6.59) by

H ′′
ij + 2HH ′

ij −∇2Hij = 0, (8.101)

if we neglect tensor perturbations of the energy-momentum tensor. We shall study the
implications of the last two equations for the CMB fluctuations in Sect. 9.6.
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Chapter 9

The Physics of CMB Anisotropies

We have by now developed all ingredients for a full understanding of the CMB
anisotropies. In the present chapter we discuss these for the CDM scenario and pri-
mordial initial conditions suggested by inflation (derived in Part III). Other scenarios,
involving for instance topological defects, are now strongly disfavored.

We shall begin by collecting all independent perturbation equations, derived in previ-
ous chapters. There are fast codes that allow us to solve these equations very accurately,
given a set of cosmological parameters. It is, however, instructive to discuss first various
qualitative and semi-quantitative aspects. Finally, we shall compare numerical results
with observations, and discuss what has already come out of this, which is a lot. In this
connection we have to include some theoretical material on polarization effects, because
WMAP has already provided quite accurate data for the so-called E-polarization.

The B-polarization is much more difficult to get, and is left to future missions (Planck
satellite, etc). This is a very important goal, because accurate data will allow us to
determine the power spectrum of the gravity waves.

For further reading I recommend Chap. 8 of [5] and the the two research articles
[60], [61]. For a well written review and extensive references, see [62].

9.1 The complete system of perturbation

equations

For references in later sections, we collect below the complete system of (independent)
perturbation equations for scalar modes and K = 0 (see Sects. 3.5.C and 8.5). Let me
first recall and add some notation.

Unperturbed background quantities: ρα, pα denote the densities and pressures for the
species α = b (baryons and electrons), γ (photons), c (cold dark matter); the total
density is the sum ρ =

∑

α ρα, and the same holds for the total pressure p. We also use
wα = pα/ρα, w = p/ρ. The sound speed of the baryon-electron fluid is denoted by cb,
and R is the ratio 3ρb/4ργ .

Here is the list of gauge invariant scalar perturbation amplitudes:

• δα := ∆sα, δ := ∆s : density perturbations (δρα/ρα, δρ/ρ in the longitudinal
gauge); clearly: ρ δ =

∑
ραδα.

• Vα, V : velocity perturbations; ρ(1 + w)V =
∑

α ρα(1 + wα)Vα.

• θl, Nl : brightness moments for photons and neutrinos.
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• Πα,Π : anisotropic pressures; Π = Πγ +Πν . For the lowest moments the following
relations hold:

δγ = 4θ0, Vγ = θ1, Πγ =
12

5
θ2, (9.1)

and similarly for the neutrinos.

• Ψ,Φ: Bardeen potentials for the metric perturbation.

As independent amplitudes we can choose: δb, δc, Vb, Vc,Φ,Ψ, θl, Nl. The basic evolu-
tion equations consist of three groups.

• Fluid equations :

δ′c = −kVc − 3Φ′, (9.2)

V ′
c = −aHVc + kΨ; (9.3)

δ′b = −kVb − 3Φ′, (9.4)

V ′
b = −aHVb + kc2bδb + kΨ + τ ′(θ1 − Vb)/R. (9.5)

• Boltzmann hierarchies for photons (Eqs. (8.87) – (8.90)) (and the collisionless
neutrinos):

θ′0 = −1

3
kθ1 − Φ′, (9.6)

θ′1 = k
(

θ0 +Ψ− 2

5
θ2

)

− τ ′(θ1 − Vb), (9.7)

θ′2 = k
(2

3
θ1 −

3

7
θ3

)

− τ ′
9

10
θ2, (9.8)

θ′l = k
( l

2l − 1
θl−1 −

l + 1

2l + 3
θl+1

)

, l > 2. (9.9)

• Einstein equations : We only need the following algebraic ones for each mode:

k2Φ = 4πGa2ρ
[

δ + 3
aH

k
(1 + w)V

]

, (9.10)

k2(Φ + Ψ) = −8πGa2p Π. (9.11)

In arriving at these equations some approximations have been made which are harm-
less 1, except for one: We have ignored polarization effects in Thomson scattering. For
quantitative calculations these have to be included. Moreover, polarization effects are
highly interesting, as I shall explain later. We shall take up this topic in Sect. 9.7.

In praxis one can truncate the hierarchies for photons and neutrinos at l ≈ 10 and
then determines the higher multipoles with the help of the integral representation (9.51)
derived later.

9.2 Acoustic oscillations

In this section we study the photon-baryon fluid. Our starting point is the following
approximate system of equations. For the baryons we use (9.4) and (9.5), neglecting the

1In the notation of Sect. 3.3 we have set qα = Γα = 0, and are thus ignoring certain intrinsic entropy
perturbations within individual components.
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term proportional to c2b . We truncate the photon hierarchy, setting θl = 0 for l ≥ 3. So
we consider the system of first order equations:

θ′0 = −1

3
kθ1 − Φ′, (9.12)

θ′1 = k
(

θ0 +Ψ− 2

5
θ2

)

− τ ′(θ1 − Vb), (9.13)

δ′b = −kVb − 3Φ′, (9.14)

V ′
b = −aHVb + kc2bδb + kΨ+ τ ′(θ1 − Vb)/R, (9.15)

and (9.8). This is, of course, not closed (Φ and Ψ are “external” potentials).
As long as the mean free path of photons is much shorter than the wavelength of the

fluctuation, the optical depth through a wavelength ∼ τ ′/k is large2. Thus the evolution
equations may be expanded in the small parameter k/τ ′.

In lowest order we obtain θ1 = Vb, θl = 0 for l ≥ 2, thus δ′b = 3θ′0 (= 3δ′γ/4).
Going to first order, we can replace in the following form of (9.15)

θ1 − Vb = τ ′−1R

[

V ′
b +

a′

a
θ1 − kΨ

]

(9.16)

on the right Vb by θ1:

θ1 − Vb = τ ′−1R

[

θ′1 +
a′

a
θ1 − kΨ

]

. (9.17)

We insert this in (9.13), and set in first order also θ2 = 0:

θ′1 = k(θ0 +Ψ)−R

[

θ′1 +
a′

a
Vb − kΨ

]

. (9.18)

Using a′/a = R′/R, we obtain from this

θ′1 =
1

1 +R
kθ0 + kΨ− R′

1 +R
θ1. (9.19)

Combining this with (9.12), we obtain by eliminating θ1 the driven oscillator equation:

θ′′0 +
R

1 +R

a′

a
θ′0 + c2sk

2θ0 = F (η), (9.20)

with

c2s =
1

3(1 +R)
, F (η) = −k2

3
Ψ− R

1 +R

a′

a
Φ′ − Φ′′. (9.21)

According to (3.186) and (3.187) cs is the velocity of sound in the approximation cb ≈ 0.
It is suggestive to write (9.20) as (meff ≡ 1 +R)

(meffθ
′
0)

′ +
k2

3
(θ0 +meffΨ) = −(meffΦ

′)′. (9.22)

This equation provides a lot of insight, as we shall see. It may be interpreted as
follows: The change in momentum of the photon-baryon fluid is determined by a com-
petition between pressure restoring and gravitational driving forces.

2Estimate τ ′/k as a function of redshift z > zrec and (aH/k).
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Let us, in a first step, ignore the time dependence of meff (i.e., of the baryon-photon
ratio R), then we get the forced harmonic oscillator equation

meffθ
′′
0 +

k2

3
θ0 = −k2

3
meffΨ− (meffΦ

′)′. (9.23)

The effective mass meff = 1 + R accounts for the inertia of baryons. Baryons also
contribute gravitational mass to the system, as is evident from the right hand side of the
last equation. Their contribution to the pressure restoring force is, however, negligible.

We now ignore in (9.23) also the time dependence of the gravitational potentials
Φ,Ψ. With (9.21) this then reduces to

θ′′0 + k2c2sθ0 = −1

3
k2Ψ. (9.24)

This simple harmonic oscillator under constant acceleration provided by gravitational
infall can immediately be solved:

θ0(η) = [θ0(0) + (1 +R)Ψ] cos(krs) +
1

kcs
θ̇0(0) sin(krs)− (1 +R)Ψ, (9.25)

where rs(η) is the comoving sound horizon
∫
csdη.

We know (see (7.60)) that for adiabatic initial conditions there is only a cosine term.
Since we shall see that the “effective” temperature fluctuation is ∆T = θ0+Ψ, we write
the result as

∆T (η, k) = [∆T (0, k) +RΨ] cos(krs(η))−RΨ. (9.26)

Discussion

In the radiation dominated phase (R = 0) this reduces to ∆T (η) ∝ cos krs(η), which
shows that the oscillation of θ0 is displaced by gravity. The zero point corresponds to
the state at which gravity and pressure are balanced. The displacement −Ψ > 0 yields
hotter photons in the potential well since gravitational infall not only increases the
number density of the photons, but also their energy through gravitational blue shift.
However, well after last scattering the photons also suffer a redshift when climbing out of
the potential well, which precisely cancels the blue shift. Thus the effective temperature
perturbation we see in the CMB anisotropies is indeed ∆T = θ0+Ψ, as we shall explicitly
see later.

It is clear from (9.25) that a characteristic wave-number is k = π/rs(ηdec)
≈ π/csηdec. A spectrum of k-modes will produce a sequence of peaks with wave numbers

km = mπ/rs(ηdec), m = 1, 2, ... . (9.27)

Odd peaks correspond to the compression phase (temperature crests), whereas even
peaks correspond to the rarefaction phase (temperature troughs) inside the potential
wells. Note also that the characteristic length scale rs(ηdec), which is reflected in the
peak structure, is determined by the underlying unperturbed Friedmann model. This
comoving sound horizon at decoupling depends on cosmological parameters, but not on
ΩΛ. Its role will further be discussed below.

Inclusion of baryons not only changes the sound speed, but gravitational infall leads
to greater compression of the fluid in a potential well, and thus to a further displacement
of the oscillation zero point (last term in (9.25)). This is not compensated by the redshift
after last scattering, since the latter is not affected by the baryon content. As a result all
peaks from compression are enhanced over those from rarefaction. Hence, the relative
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heights of the first and second peak is a sensitive measure of the baryon content. We
shall see that the inferred baryon abundance from the present observations is in complete
agreement with the results from big bang nucleosynthesis.

What is the influence of the slow evolution of the effective mass meff = 1 + R?
Well, from the adiabatic theorem we know that for a slowly varying meff the ratio
energy/frequency is an adiabatic invariant. If A denotes the amplitude of the oscillation,
the energy is 1

2
meffω

2A2. According to (9.21) the frequency ω = kcs is proportional to

m
−1/2
eff . Hence A ∝ ω−1/2 ∝ m

1/4
eff ∝ (1 +R)−1/4.

Photon diffusion. In second order we do no more neglect θ2 and use in addition
(9.8),

θ′2 = k
(2

3
θ1 −

3

7
θ3

)

− τ ′
9

10
θ2, (9.28)

with θ3 ≃ 0. This gives in leading order

θ2 ≃
20

27
τ ′−1kθ1. (9.29)

If we neglect in the Euler equation for the baryons the term proportional to a′/a, then
the first order equation (9.17) reduces to

Vb = θ1 − τ ′−1R[θ′1 − kΨ]. (9.30)

We use this in (9.16) without the term with a′/a, to get

θ1 − Vb = τ ′−1R[θ′1 − kΨ]− R2

τ ′2
(θ′′1 − kΨ′). (9.31)

This is now used in (9.13) with the approximation (9.29) for θ2. One finds

(1 + R)θ′1 = k[θ0 + (1 +R)Ψ]− 8

27

k2

τ ′
θ1 +

R2

τ ′
(θ′′1 − kΨ′). (9.32)

In the last term we use the first order approximation of this equation, i.e.,

(1 +R)(θ′1 − kΨ) = kθ0,

and obtain

(1 +R)θ′1 = k[θ0 + (1 +R)Ψ]− 8

27

k2

τ ′
θ1 +

k

τ ′
R2

1 +R
θ′0. (9.33)

Finally, we eliminate in this equation θ′1 with the help of (9.12). After some rearrange-
ments we obtain

θ′′0 +
k2

3τ ′

[
R2

(1 +R)2
+

8

9

1

1 +R

]

θ′0 +
k2

3(1 + R)
θ0 = −k2

3
Ψ−Φ′′ − 8

27

k2

3τ ′
1

1 +R
Φ′. (9.34)

The term proportional to θ′0 in this equation describes the damping due to photon dif-
fusion. Let us determine the characteristic damping scale.

If we neglect in the homogeneous equation the time dependence of all coefficients,
we can make the ansatz θ0 ∝ exp(i

∫
ωdη). (We thus ignore variations on the expansion

time scale a/ȧ in comparison with those at the oscillator frequency ω.) The dispersion
law is determined by

−ω2 + i
ω

3

k2

τ ′

[
R2

(1 +R)2
+

8

9

1

1 +R

]

+
k2

3

1

1 +R
= 0,
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giving

ω = ±kcs + i
k2

6

1

τ ′
R2 + 8

9
(1 +R)

(1 +R)2
. (9.35)

So acoustic oscillations are damped as exp[−k2/k2
D], where

k2
D =

1

6

∫
1

τ ′
R2 + 8

9
(1 +R)

(1 +R)2
dη. (9.36)

This is sometimes written in the form

k2
D =

1

6

∫
1

τ ′
R2 + 4

5
f−1
2 (1 +R)

(1 +R)2
dη. (9.37)

Our result corresponds to f2 = 9/10. In some books and papers one finds f2 = 1. If
we would include polarization effects, we would find f2 = 3/4. The damping of acoustic
oscillations is now clearly observed.

Sound horizon The sound horizon determines according to (9.27) the position of the
first peak. We compute now this important characteristic scale.

The comoving sound horizon at time η is

rs(η) =

∫ η

0

cs(η
′)dη′. (9.38)

Let us write this as a redshift integral, using 1 + z = a0/a(η), whence by (1.91) for
K 6= 0

dη = − 1

a0

dz

H(z)
= −|ΩK |1/2

dz

E(z)
. (9.39)

Thus

rs(z) = |ΩK |1/2
∫ ∞

z

cs(z
′)

dz′

E(z′)
. (9.40)

This is seen at present under the (small) angle

θs(z) =
rs(z)

r(z)
, (9.41)

where r(z) is given by (1.93) and (1.94):

r(z) = S
(

|ΩK |1/2
∫ z

0

dz′

E(z′)

)

. (9.42)

Before decoupling the sound velocity is given by (9.21), with

R =
3

4

Ωb

Ωγ

1

1 + z
. (9.43)

We are left with two explicit integrals. For zdec we can neglect in (9.40) the curvature
and Λ terms. The integral can then be done analytically, and is in good approximation
proportional to (ΩM)−1/2 (Exercise). Note that (9.42) is closely related to the angular
diameter distance to the last scattering surface (see (1.34) and (1.99)). A numerical
calculation shows that θs(zdec) depends mainly on the curvature parameter ΩK . For
a typical model with ΩΛ = 2/3, Ωbh

2
0 = 0.02, ΩMh2

0 = 0.16, n = 1 the parameter
sensitivity is approximately [62]

∆θs
θs

≈ 0.24
∆(ΩMh2

0)

ΩMh2
0)

− 0.07
∆(Ωbh

2
0)

Ωbh2
0

+ 0.17
∆ΩΛ

ΩΛ
+ 1.1

∆Ωtot

Ωtot
.
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9.3 Formal solution for the moments θl

We derive in this section a useful integral representation for the brightness moments at
the present time. The starting point is the Boltzmann equation (8.76) for the brightness
temperature fluctuations Θ(η, k, µ),

(Θ + Ψ)′ + ikµ(Θ + Ψ) = Ψ′ − Φ′ + τ ′[θ0 −Θ− iµVb −
1

10
θ2P2(µ)]. (9.44)

This is of the form of an inhomogeneous linear differential equation

y′ + g(x)y = h(x),

whose solution can be written as (variation of constants)

y(x) = e−G(x)

{

y0 +

∫ x

x0

h(x′)eG(x′)dx′
}

,

with

G(x) =

∫ x

x0

g(u)du.

In our case g = ikµ + τ ′, h = τ ′[θ0 + Ψ − iµVb − 1
10
θ2P2(µ)] + Ψ′ − Φ′. Therefore, the

present value of Θ + Ψ can formally be expressed as

(Θ + Ψ)(η0, µ; k) =
∫ η0

0

dη
[

τ ′(θ0 +Ψ− iµVb −
1

10
θ2P2) + Ψ′ − Φ′

]

e−τ(η,η0)eikµ(η−η0),

(9.45)

where

τ(η, η0) =

∫ η0

η

τ ′dη (9.46)

is the optical depth. The combination τ ′e−τ is the (conformal) time visibility function.
It has a simple interpretation: Let p(η, η0) be the probability that a photon did not
scatter between η and today (η0). Clearly, p(η − dη, η0) = p(η, η0)(1 − τ ′dη). Thus
p(η, η0) = e−τ(η,η0), and the visibility function times dη is the probability that a photon
last scattered between η and η + dη. The visibility function is therefore strongly peaked
near decoupling. This is very useful, both for analytical and numerical purposes.

In order to obtain an integral representation for the multipole moments θl, we insert
in (9.45) for the µ-dependent factors the following expansions in terms of Legendre
polynomials:

e−ikµ(η0−η) =
∑

l

(−i)l(2l + 1)jl(k(η0 − η))Pl(µ), (9.47)

−iµe−ikµ(η0−η) =
∑

l

(−i)l(2l + 1)j′l(k(η0 − η))Pl(µ), (9.48)

(−i)2P2(µ)e
−ikµ(η0−η) =

∑

l

(−i)l(2l + 1)
1

2
[3j′′l + jl]Pl(µ). (9.49)

Here, the first is well-known. The others can be derived from (9.47) by using the recursion
relations (8.86) for the Legendre polynomials and the following ones for the spherical
Bessel functions

ljl−1 − (l + 1)jl+1 = (2l + 1)j′l, (9.50)
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or by differentiation of (9.47) with respect to k(η0 − η). Using the definition (8.77) of
the moments θl, we obtain for l ≥ 2 the following useful formula:

θl(η0)

2l + 1
=

∫ η0

0

dηe−τ(η)
[

(τ ′θ0 + τ ′Ψ+Ψ′ − Φ′)jl(k(η0 − η)) + τ ′Vbj
′
l + τ ′

1

20
θ2(3j

′′
l + jl)

]

.

(9.51)

Sudden decoupling approximation. In a reasonably good approximation we
can replace the visibility function by the δ-function, and obtain with ∆η ≡ η0 −
ηdec, Vb(ηdec) ≃ θ1(ηdec) the instructive result

θl(η0, k)

2l + 1
≃ [θ0 +Ψ](ηdec, k)jl(k∆η) + θ1(ηdec, k)j

′
l(k∆η) + ISW +Quad. (9.52)

Here, the quadrupole contribution (last term) is not important. ISW denotes the inte-
grated Sachs-Wolfe effect:

ISW =

∫ η0

0

dη(Ψ′ − Φ′)jl(k(η0 − η)), (9.53)

which only depends on the time variations of the Bardeen potentials between recombi-
nation and the present time.

The interpretation of the first two terms in (9.52) is quite obvious: The first describes
the fluctuations of the effective temperature θ0 + Ψ on the cosmic photosphere, as we
would see them for free streaming between there and us, if the gravitational potentials
would not change in time. (Ψ includes blue- and redshift effects.) The dipole term has
to be interpreted, of course, as a Doppler effect due to the velocity of the baryon-photon
fluid. It turns out that the integrated Sachs-Wolfe effect enhances the anisotropy on
scales comparable to the Hubble length at recombination.

In this approximate treatment we have to know – beside the ISW – only the effective
temperature θ0+Ψ and the velocity moment θ1 at decoupling. The main point is that Eq.
(9.52) provides a good understanding of the physics of the CMB anisotropies. Note that
the individual terms are all gauge invariant. In gauge dependent methods interpretations
would be ambiguous.

9.4 Angular correlations of temperature

fluctuations

The system of evolution equations has to be supplemented by initial conditions. We
can not hope to be able to predict these, but at best their statistical properties (as,
for instance, in inflationary models). Theoretically, we should thus regard the brightness
temperature perturbation Θ(η, xi, γj) as a random field. Of special interest is its angular
correlation function at the present time η0. Observers measure only one realization of
this, which brings unavoidable cosmic variances (see the Introduction to Part IV).

For further elaboration we insert (8.77) into the Fourier expansion of Θ, obtaining

Θ(η,x,γ) = (2π)−3/2

∫

d3k
∑

l

θl(η, k)Gl(x,γ;k), (9.54)

where
Gl(x,γ;k) = (−i)lPl(k̂ · γ) exp(ik · x). (9.55)
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With the addition theorem for the spherical harmonics the Fourier transform is thus

Θ(η,k,γ) =
∑

lm

Ylm(γ)
4π

2l + 1
θl(η, k) (−i)lY ∗

lm(k̂). (9.56)

This has to be regarded as a stochastic field of k (parametrized by γ ). The randomness
is determined by the statistical properties at an early time, for instance after inflation.
If we write Θ as (dropping η) R(k)× (Θ(k,γ)/R(k)), the second factor evolves deter-
ministically and is independent of the initial amplitudes, while the stochastic properties
are completely determined by those of R(k). In terms of the power spectrum of R(k),

〈R(k)R∗(k′)〉 = 2π2

k3
PR(k)δ

3(k − k′) (9.57)

(see (6.14)), we thus have for the correlation function in momentum space

〈Θ(k,γ)Θ∗(k′,γ′)〉 = 2π2

k3
PR(k)δ

3(k − k′)
Θ(k, k̂ · γ)

R(k)

Θ∗(k, k̂ · γ′)

R∗(k)
. (9.58)

Because of the δ-function the correlation function in x-space is

〈Θ(x,γ)Θ(x,γ′)〉 =
∫

d3k

(2π)3

∫

d3k′〈Θ(k,γ)Θ(k′,γ′)〉. (9.59)

Inserting here (9.56) and (9.58) finally gives

〈Θ(x,γ)Θ(x,γ′)〉 = 1

4π

∑

l

(2l + 1)ClPl(γ · γ′), (9.60)

with

(2l + 1)2

4π
Cl =

∫ ∞

0

dk

k

∣
∣
∣
∣

θl(k)

R(k)

∣
∣
∣
∣

2

PR(k). (9.61)

Instead of R(k) we could, of course, use another perturbation amplitude. Note also
that we can take R(k) and PR(k) at any time. If we choose an early time when PR(k)

is given by its primordial value, P
(prim)
R (k), then the ratios inside the absolute value,

θl(k)/R(k), are two-dimensional CMB transfer functions.

9.5 Angular power spectrum for large scales

The angular power spectrum is defined as l(l+ 1)Cl versus l. For large scales, i.e., small
l, observed first with COBE, the first term in Eq. (9.52) dominates. Let us have a closer
look at this so-called Sachs-Wolfe contribution.

For large scales (small k) we can neglect in the first equation (9.6) of the Boltzmann
hierarchy the term proportional to k: θ′0 ≈ −Φ′ ≈ Ψ′, neglecting also Π (i.e., θ2) on large
scales. Thus

θ0(η) ≈ θ0(0) + Ψ(η)−Ψ(0). (9.62)

To proceed, we need a relation between θ0(0) and Ψ(0). This can be obtained by look-
ing at superhorizon scales in the tight coupling limit, using the results of Sect. 7.1.
(Alternatively, one can investigate the Boltzmann hierarchy in the radiation dominated
era.)
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From (8.79) and (3.175) or (3.219) we get (recall x = Ha/k)

θ0 =
1

4
∆sγ =

1

4
∆cγ − xV.

The last term can be expressed in terms of ∆, making use of (7.10) for w = 1/3,

xV = −3

4
x2(D − 1)∆.

Moreover, we have from (7.41)

3

4
∆cγ =

ζ + 1

ζ + 4/3
∆− ζ

ζ + 4/3
S.

Putting things together, we obtain for ζ ≪ 1

θ0 =

[
3

4
x2(D − 1) +

1

4

]

∆− 1

4
ζS, (9.63)

thus

θ0 ≃
3

4
x2(D − 1)∆− 1

4
ζS, (9.64)

on superhorizon scales (x ≫ 1).
For adiabatic perturbations we can use here the expansion (7.39) for ω ≪ 1 and get

with (7.9)

θ0(0) ≃
3

4
x2∆ = −1

2
Ψ(0). (9.65)

For isocurvature perturbations, the expansion (7.40) gives

θ0(0) = Ψ(0) = 0. (9.66)

Hence, the initial condition for the effective temperature is

(θ0 +Ψ)(0) =

{
1
2
Ψ(0) : (adiabatic)

0 : (isocurvature).
(9.67)

If this is used in (9.62) we obtain

θ0(η) = Ψ(η)− 3

2
Ψ(0) for adiabatic perturbations.

On large scales (4.33) gives for ζ ≫ 1, in particular for ηrec,

Ψ(η) =
9

10
Ψ(0). (9.68)

Thus we obtain the result (Sachs-Wolfe)

(θ0 +Ψ)(ηdec) =
1

3
Ψ(ηdec) for adiabatic perturbations. (9.69)

On the other hand, we obtain for isocurvature perturbations with (9.66) θ0(η) =
Ψ(η), thus

(θ0 +Ψ)(ηdec) = 2Ψ(ηdec) for isocurvature perturbations. (9.70)
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Note the factor 6 difference between the two cases. The Sachs-Wolfe contribution to the
θl is therefore

θSWl (k)

2l + 1
=

{
1
3
Ψ(ηdec)jl(k∆η) : (adiabatic)
2Ψ(ηdec)jl(k∆η) : (isocurvature).

(9.71)

We express at this point Ψ(ηdec) in terms of the primordial values of R and S.
For adiabatic perturbations R is constant on superhorizon scales (see (3.138)), and
according to (5.67) we have in the matter dominated era Ψ = −3

5
R. On the other hand,

for isocurvature perturbations the entropy perturbation S is constant on superhorizon
scales (see Sect. 7.2.1), and for ζ ≫ 1 we have according to (7.46) and (7.9) Ψ = −1

5
S.

Hence we find

(θ0 +Ψ)(ηdec) = −1

5
(R(prim) + 2S(prim)). (9.72)

The result (9.71) inserted into (9.61) gives the the dominant Sachs-Wolfe contribution
to the coefficients Cl for large scales (small l). For adiabatic initial fluctuations we obtain
with (9.72)

CSW
l =

4π

25

∫ ∞

0

dk

k
|jl(k∆η)|2 P (prim)

R (k). (9.73)

Here we insert (7.88) and obtain

CSW
l ≃ πH1−n

0 δ2H

(
ΩM

Dg(0)

)2 ∫ ∞

0

dk

k2−n
|jl(k∆η)|2 . (9.74)

The integral can be done analytically. Eq. 11.4.34 in [51] implies as a special case

∫ ∞

0

t−λ[Jµ(at)]
2dt =

Γ(2µ−λ+1
2

)

2λa1−λΓ(µ+ 1)Γ(λ+1
2
)

× 2F1

(
2µ− λ+ 1

2
,
−λ + 1

2
;µ+ 1; 1

)

. (9.75)

Since

jl(x) =

√
π

2x
Jl+ 1

2

(x)

the integral in (9.74) is of the form (9.75). If we also use Eq. 15.1.20 of the same reference,

2F1(α, β; γ; 1) =
Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)
,

we obtain ∫ ∞

0

tn−2[jl(ta)]
2dt =

π

24−nan−1

Γ(3− n)

[Γ(4−n
2
)]2

Γ(2l+n−1
2

)

Γ(2l+5−n
2

)
(9.76)

and thus

CSW
l ≃ 2n−4π2(H0η0)

1−nδ2H

(
ΩM

Dg(0)

)2
Γ(3− n)

[Γ(4−n
2
)]2

Γ(2l+n−1
2

)

Γ(2l+5−n
2

)
. (9.77)

For a Harrison-Zel’dovich spectrum (n = 1) we get

l(l + 1)CSW
l =

π

2
δ2H

(
ΩM

Dg(0)

)2

. (9.78)

Because the right-hand side is a constant one usually plots the quantity l(l+1)Cl (often
divided by 2π). The current measurements imply δH = 4.6× 10−5 for ΩM = 0.3 (ΩΛ =
0.7).
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9.6 Influence of gravity waves on

CMB anisotropies

In this section we study the effect of a stochastic gravitational wave background on the
CMB anisotropies. According to Sect. 6.2 such a background is unavoidably produced
in inflationary models.

A. Basic equations. We consider only the case K = 0. Let us first recall some basic
formulae from Sects. 6.2 and 8.6. The metric for tensor modes is of the form

g = a2(η)[−dη2 + (δij + 2Hij)dx
idxj ]. (9.79)

For a mode Hij ∝ exp(ik · x), the tensor amplitudes satisfy

H i
i = 0, H i

jk
j = 0. (9.80)

The tensor perturbations of the energy-momentum tensor can be parametrized as follows

δT 0
0 = 0, δT 0

i = 0, δT i
j = Πi

(T )j , (9.81)

where Πi
(T )j satisfies in k-space

Πi
(T )i = 0, Πi

(T )jk
j = 0. (9.82)

According to (6.59) the Einstein equations reduce to

H ′′
ij + 2

a′

a
H ′

ij + k2Hij = 8πGa2Π(T )ij . (9.83)

The collisionless Boltzmann equation (8.100) becomes for the metric (9.79)

Θ′ + ikµΘ = −H ′
ijγ

iγj . (9.84)

(We leave it as an Exercise to include collisions.) The solution of this equation in terms
of Hij is

Θ(η0,k,γ) = −
∫ η0

0

H ′
ij(η,k)γ

iγje−ikµ(η0−η)dη. (9.85)

For the photon contribution to Πi
(T )j we obtain as in Sect. 8.5

Πi
(T )γj = pγ · 12

∫

[γiγj −
1

3
δij ]Θ

dΩγ

4π
. (9.86)

To this one should add the neutrino contribution, but in what follows we can safely
neglect the source Πi

(T )γj in the Einstein equation (9.83).

B. Harmonic decompositions. We decompose Hij as in Sect. 6.2:

Hij(η,k) =
∑

λ=±2

hλ(η,k)ǫij(k, λ), (9.87)

where the polarization tensor satisfies (6.65). If k = (0, 0, k) then the x, y components
of ǫij(k, λ) are

(ǫij(k, λ)) =
1

2

(
1 ∓i
∓i −1

)

, λ = ±2. (9.88)
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One easily verifies that for this choice of k = (0, 0, k)

ǫij(λ)(γ
iγj − 1

3
δij) =

4√
2

√
π

15
Y2λ(γ), λ = ±2. (9.89)

If we insert this and the expansion

e−ikµ(η0−η) = 4π
∑

L,M

(−i)Ljl(k(η0 − η))Y ∗
LM(k̂)YLM(γ) (9.90)

in (9.85) we obtain for each polarization λ the expansion (dropping the variable η)

Θλ(k,γ) =
∑

l,m

a
(λ)
lm (k)Ylm(γ), (9.91)

with

a
(λ)
lm (k) =

∫

Y ∗
lm(γ)Θλ(k,γ)dΩγ

= −
∫ η0

0

dηh′
λ(η, k)4π

∑

L,M

(−i)LjL(k(η0 − η))Y ∗
LM(k̂)

× 4√
2

√
π

15

∫

Y ∗
lm(γ)Y2λ(γ)YLM(γ)dΩγ. (9.92)

Since k points in the 3-direction we have Y ∗
LM(k̂) = δM0

√
2L+1
4π

. If we also use the

spherical integral

∫

Y ∗
lmY2λYL0dΩ =

[
(2l + 1)5(2L+ 1)

4π

]1/2(
l 2 L
0 0 0

)

(−1)m
(

l 2 L
−m λ 0

)

we obtain

a
(λ)
lm = −

√

8π

3

∫ η0

0

dηh′
λ(η, k)(2l + 1)1/2

∑

L=l,l±2

jL(k(η0 − η))(−i)lXL,λδmλ,

where

(−i)lXL,λ := (−i)L(2L+ 1)

(
l 2 L
0 0 0

)(
l 2 L

−m λ 0

)

.

Note that this is invariant under λ → −λ. With a table of Clebsch-Gordan coefficients
one readily finds

Xl,λ = −
√

3

2
[(l + 2)(l + 1)l(l − 1)]1/2

1

(2l + 3)(2l − 1)
,

Xl+2,λ = −
√

3

8
[· · ·]1/2 1

(2l + 3)(2l + 1)
,

Xl−2,λ = −
√

3

8
[· · ·]1/2 1

(2l + 1)(2l − 1)
,

and thus

∑

L=l,l±2

jLXL,λ = −
√

3

8

[
(l + 2)!

(l − 2)!

]1/2

×
[

jl+2

(2l + 3)(2l + 1)
+ 2

jl
(2l + 3)(2l − 1)

+
jl−2

(2l + 1)(2l− 1)

]

.
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Using twice the recursion relation

jl(x)

x
=

1

2l + 1
(jl−1 + jl+1),

shows that the last square bracket is equal to jl(k(η0 − η))/[k(η0 − η)]2. Thus we find

a
(λ)
lm (k) =

√
π(−i)l

[
(l + 2)!

(l − 2)!

]1/2

×
∫ η0

0

dηh′
λ(η, k)(2l + 1)1/2

jl(k(η0 − η))

[k(η0 − η)]2
δmλ. (9.93)

Recall that so far the wave vector is assumed to point in the 3-direction. For an arbitrary
direction a

(λ)
lm (k) is determined by (see (9.91) and use the fact that a

(λ)
lm (k) is proportional

to δmλ) ∑

m

a
(λ)
lm (k)Ylm(γ) = a

(λ)
lλ (k)Ylλ(R

−1(k̂)γ),

where R(k̂) is the standard rotation3 that takes (0,0,1) to k̂. Let Dl
mλ(k̂) be the corre-

sponding representation matrices. Since

Ylλ(R
−1(k̂)γ) =

∑

m

Dl
mλ(k̂)Ylm(γ),

we obtain
a
(λ)
lm (k) = a

(λ)
lλ (k)Dl

mλ(k̂), (9.94)

where the multipole moments a
(λ)
lλ (k) are given by (9.93) for m = λ.

C. The coefficients Cl for tensor modes. For the computation of the Cl’s due to
gravitational waves we proceed as in Sect. 9.4 for scalar modes. On the basis of (9.91)
and (9.94) we can write

Θλ(η,k,γ) = hλ(ηi, k)
∑

l,m

a
(λ)
lλ (k)

hλ(ηi, k)
Dl

mλ(k̂)Ylm(γ), (9.95)

where ηi is some very early time, e.g., at the end of inflation. A look at (9.93) shows that

the factor a
(λ)
lλ (k)/hλ(ηi, k) involves only h′

λ(η, k)/hλ(ηi, k), and is thus independent of
the initial amplitude of hλ and also independent of λ (see paragraph D below). To take
the stochastic nature of the initial conditions into account we replace the first factor
hλ(ηi, k) in (9.95) by αλ(k) = ξλ(k)hλ(ηi, k), where ξλ(k) are (generalized) random
fields, satisfying

〈ξλ(k)ξ∗λ′(k′)〉 = δλλ′δ3(k − k′).

As a stochastic field, Hij(ηi,k) is then given by

Hij(ηi,k) =
∑

λ=±2

αλ(k)ǫij(k, λ).

According to (6.75) this has indeed the correlation function (6.76). The latter equation
implies that

∑

λ

〈αλ(k)α
∗
λ(k

′)〉 = 2π2

k3
P (prim)
g (k)δ3(k − k′), (9.96)

3The Euler angles are (ϕ, ϑ, 0), where (ϑ, ϕ) are the polar angles of k̂.
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where P
(prim)
g (k) is the primordial power spectrum of the gravitational waves. With this

and the orthogonality properties of the representation matrices
∫

dΩkD
l
mλ(k̂)D

l′∗
m′λ′(k̂) =

4π

2l + 1
δll′δmm′δλλ′ , (9.97)

we obtain at the present time

∑

λ

〈Θλ(x,γ)Θλ(x,γ
′)〉 = 1

4π

∑

l

(2l + 1)CGW
l Pl(γ · γ′), (9.98)

with

CGW
l =

4π

2l + 1

∫ ∞

0

dkk2

(2π)3
2π2

k3
P (prim)
g (k)

∣
∣
∣
∣
∣

a
(λ)
lλ (k)

hλ(ηi, k)

∣
∣
∣
∣
∣

2

.

Finally, inserting here (9.93) gives our main result (ISW contribution of tensor modes):

CGW
l = π

(l + 2)!

(l − 2)!

∫ ∞

0

dk

k
P (prim)
g (k)

∣
∣
∣
∣

∫ η0

ηi≈0

dη
h′(η, k)

h(ηi, k)

jl(k(η0 − η))

[k(η0 − η)]2

∣
∣
∣
∣

2

. (9.99)

Inclusion of collisions becomes only important for polarization effects.
Note that the tensor modes (9.95) are in k̂-space orthogonal to the scalar modes,

which are proportional to Dl
m0(k̂).

D. The modes hλ(η, k). In the Einstein equations (9.83) we neglect the anisotropic
stresses4 Π(T )ij . Then hλ(η, k) satisfies the homogeneous linear differential equation

h′′ + 2
a′

a
h′ + k2h = 0. (9.100)

At very early times, when the modes are still far outside the Hubble horizon, we can
neglect the last term in (9.100), whence h is frozen. For this reason we solve (9.100) with
the initial condition h′(ηi, k) = 0. Moreover, we are only interested in growing modes.

This problem was already discussed in Sect. 6.2.3. For modes which enter the horizon
during the matter dominated era we have the analytic solution (6.99),

hk(η)

hk(0)
= 3

j1(kη)

kη
. (9.101)

From (6.100) we see that for large x (sub-horizon scales) the solution (9.101) decays
as 1/a. The reader may verify that this also holds if the horizon is crossed during
the radiation dominated era. More generally, this fall-off can be derived in the WKB
approximation (Exercise).

For modes which enter the horizon earlier, we introduce again a transfer function
Tg(k):

hk(η)

hk(0)
=: 3

j1(kη)

kη
Tg(k), (9.102)

that has to be determined by solving the differential equation numerically.
On large scales (small l), larger than the Hubble horizon at decoupling, we can use

(9.101). Since
(
j1(x)

x

)′
= −1

x
j2(x), (9.103)

4The contribution of neutrinos due to free streaming is taken into account in Appendix E.5.
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we then have
h′(η, k)

3h(0, k)
= −k

j2(x)

x
, x := kη. (9.104)

Using this in (9.99) gives

CGW
l = 9π

(l + 2)!

(l − 2)!

∫ ∞

0

dk

k
P (prim)
g (k)I2l (k), (9.105)

with

Il(k) =

∫ x0

0

dx
jl(x0 − x)j2(x)

(x0 − x)2x
, x0 := kη0. (9.106)

Remark. Since the power spectrum is often defined in terms of 2Hij, the pre-factor
in (9.105) is then 4 times smaller.

For inflationary models we obtained for the power spectrum Eq. (6.83),

Pg(k) ≃
4

π

H2

M2
P l

∣
∣
∣
∣
k=aH

, (9.107)

and the power index
nT ≃ −2ε. (9.108)

For a flat power spectrum the integrations in (9.105) and (9.106) can perhaps be
done analytically, but I was not able to do achieve this.

E. Numerical results A typical theoretical CMB spectrum is shown in Fig. 9.1. Be-
side the scalar contribution in the sense of cosmological perturbation theory, considered
so far, the tensor contribution due to gravity waves is also plotted. As expected, their
contribution falls off rapidly on scales smaller than the Hubble horizon.

Parameter dependences are discussed in detail in [63] (see especially Fig. 1 of this
reference).

9.7 Polarization

A polarization map of the CMB radiation provides important additional information to
that obtainable from the temperature anisotropies. For example, we can get constraints
about the epoch of reionization. Most importantly, future polarization observations may
reveal a stochastic background of gravity waves, generated in the very early Universe.
In this section we give a brief introduction to the study of CMB polarization. Further
details are provided in Appendix E.

The mechanism which partially polarizes the CMB radiation is similar to that for the
scattered light from the sky. Consider first scattering at a single electron of unpolarized
radiation coming in from all directions. Due to the familiar polarization dependence of
the differential Thomson cross section, the scattered radiation is, in general, polarized.
It is easy to compute the corresponding Stokes parameters. Not surprisingly, they are
not all equal to zero if and only if the intensity distribution of the incoming radiation has
a non-vanishing quadrupole moment. The Stokes parameters Q and U are proportional
to the overlap integral with the combinations Y2,2 ± Y2,−2 of the spherical harmonics,
while V vanishes.) This is basically the reason why a CMB polarization map traces (in
the tight coupling limit) the quadrupole temperature distribution on the last scattering
surface.

The polarization tensor of an all sky map of the CMB radiation can be parametrized
in temperature fluctuation units, relative to the orthonormal basis {dϑ, sinϑ dϕ} of the
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Figure 9.1: Theoretical angular power spectrum for adiabatic initial perturbations and
typical cosmological parameters. The scalar and tensor contributions to the anisotropies
are also shown.
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two sphere, in terms of the Pauli matrices as Θ·1+Qσ3+Uσ1+V σ2. The Stokes parameter
V vanishes since Thomson scattering induces no circular polarization. Therefore, the
polarization properties can be described by the following symmetric trace-free tensor on
S2:

(Pab) =

(
Q U
U −Q

)

. (9.109)

As for gravity waves, the components Q and U transform under a rotation of the
2-bein by an angle α as

Q± iU → e±2iα(Q± iU), (9.110)

and are thus of spin-weight 2. Pab can be decomposed uniquely into ‘electric’ and ‘mag-
netic’ parts:

Pab = E;ab −
1

2
gab∆E +

1

2
(εcaB;bc + εcbB;ac). (9.111)

Expanding here the scalar functions E and B in terms of spherical harmonics, we obtain
an expansion of the form

1

2
Pab =

∞∑

l=2

∑

m

[
aE(lm)Y

E
(lm)ab + aB(lm)Y

B
(lm)ab

]
(9.112)

in terms of the tensor harmonics:

Y E
(lm)ab := Nl(Y(lm);ab −

1

2
gabY(lm);c

c), Y B
(lm)ab :=

1

2
Nl(Y(lm);acε

c
b + a ↔ b), (9.113)

where l ≥ 2 and

Nl ≡
(
2(l − 2)!

(l + 2)!

)1/2

.

Equivalently, one can write this as

Q+ iU =
√
2

∞∑

l=2

∑

m

[
aE(lm) + iaB(lm)

]

2Y
m
l , (9.114)

where sY
m
l are the spin-s harmonics:

sY
m
l (ϑ, ϕ) =

√

2l + 1

4π
Dl

−s,m(R(n)−1) ; (9.115)

as before R(n) is the standard rotation that maps (0,0,1) to the unit vector n with
polar angles (ϑ, ϕ). Equation (9.114) follows from the following two facts: First, (9.111)
is equivalent to

Q± iU = (E ± iB);∓∓ , (9.116)

where the indices ± refer to the components relative to the complex basis e± = 1√
2
(e1∓

e2), i.e., f;±± = ∇2f(e±, e±). Second, the following relation holds

±2Y
m
l =

√
2NlYlm;∓∓ . (9.117)

We do not prove this formula, but remark that a a conceptual proof along the following
line can be made: It is not difficult to show that both sides transform under SO(3) in
the same manner, and furthermore that the transformation law determines the object
uniquely, up to a normalization that depends only on l. The latter is then fixed by
comparing two integrals.
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The multipole moments aE(lm) and aB(lm) are random variables, and we have equations
analogous to those of the temperature fluctuations, with

CTE
l =

1

2l + 1

∑

m

〈aΘ⋆
lmaElm〉, etc. (9.118)

(We have now put the superscript Θ on the alm of the temperature fluctuations.) The
Cl’s determine the various angular correlation functions. For example, one easily finds

〈Θ(n)Q(n′)〉 =
∑

l

CTE
l

2l + 1

4π
NlP

2
l (cos ϑ) (9.119)

(the last factor is the associated Legendre function Pm
l for m = 2).

For the space-time dependent Stokes parameters Q and U of the radiation field we
can perform a normal mode decomposition analogous to

Θ(η,x,γ) = (2π)−3/2

∫

d3k
∑

l

θl(η, k)Gl(x,γ;k), (9.120)

where
Gl(x,γ;k) = (−i)lPl(k̂ · γ) exp(ik · x). (9.121)

If, for simplicity, we again consider only scalar perturbations this reads

Q± iU = (2π)−3/2

∫

d3k
∑

l

(El ± iBl) ±2G
0
l , (9.122)

where

sG
m
l (x,γ;k) = (−i)l

(
2l + 1

4π

)1/2

sY
m
l (γ) exp(ik · x), (9.123)

if the mode vector k is chosen as the polar axis. (Note that Gl in (9.121) is equal to

0G
0
l .)
The Boltzmann equation for the Stokes parameters (see Appendix E) implies a cou-

pled hierarchy for the moments θl, El, and Bl [64], [65]. It turns out that the Bl vanish for
scalar perturbations. Non-vanishing magnetic multipoles would be a unique signature
for a spectrum of gravity waves, except for very small scales, where gravitational lensing
also contributes (second order effect). We give here, without derivation, the equations
for the El for scalar modes:

E ′
l = k

{
(l2 − 4)1/2

2l − 1
El−1 −

[(l + 1)2 − 4]1/2

2l + 1
El+1

}

− τ ′(El +
√
6Pδl,2), (9.124)

where

P =
1

10
[θ2 −

√
6E2]. (9.125)

The analog of the integral representation (9.51) is

El(η0)

2l + 1
= −3

2

√

(l + 2)!

(l − 2)!

∫ η0

0

dηe−τ(η)τ ′P (η)
jl(k(η0 − η))

(k(η0 − η))2
. (9.126)

For large scales the first term in (9.125) dominates, and the El are thus determined
by θ2.
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For large l we may use the tight coupling approximation in which E2 = −
√
6P ⇒

P = θ2/4. In the sudden decoupling approximation, the present electric multipole mo-
ments can thus be expressed in terms of the brightness quadrupole moment on the last
scattering surface and spherical Bessel functions as

El(η0, k)

2l + 1
≃ 3

8
θ2(ηdec, k)

l2jl(kη0)

(kη0)2
. (9.127)

Here one sees how the observable El’s trace the quadrupole temperature anisotropy on
the last scattering surface. In the tight coupling approximation the latter is proportional
to the dipole moment θ1.

We give also the explicit expressions for the EE and BB angular power spectra from
tensor modes (see Appendix E):

CEE
l = 24π

∫ ∞

0

dk

k
P (prim)
g (k)

∣
∣
∣
∣

∫ η0

ηi≈0

dηe−τ(η)τ ′
P (2)(η, k)

h(ηi, k)
εl(k(η0 − η))

∣
∣
∣
∣

2

, (9.128)

where εl(x) is the following function

εl(x) =
1

4

[

−jl(x) + j
′′

l (x) + 2
jl(x)

x2
+ 4

j′l(x)

x

]

, (9.129)

and P (2) is given by (9.125), but with the tensor multipole moments θ
(2)
2 , E

(2)
2 . For BB

one has to replace εl by

βl(x) = −1

2

[

jl(x) + 2
jl(x)

x

].

(9.130)

We repeat that BB receives only contributions from tensor modes.

9.8 Observational results and cosmological

parameters

In recent years several experiments gave clear evidence for multiple peaks in the angular
temperature power spectrum at positions expected on the basis of the simplest infla-
tionary models and big bang nucleosynthesis [66]. These results have been confirmed
and substantially improved by the first year WMAP data [67], [68], [72]. Fortunately,
the improved data after three years of integration are now available [69]. Below we give
a brief summary of some of the most important results.

Figure 9.2 shows the 3 year data of WMAP for the TT angular power spectrum, and
the best fit (power law) ΛCDM model. The latter is a spatially flat model and involves
the following six parameters: Ωbh

2
0, ΩMh2

0, H0, amplitude of fluctuations, σ8, optical
depth τ , and the spectral index, ns, of the primordial scalar power spectrum (see Sect.
6.2). As an update we also show the corresponding plot of the 7 year WMAP data and
some other recent data [71].

Figure 9.4 shows in addition the TE polarization data [70]. There are now also EE
data that lead to a further reduction of the allowed parameter space. The first column
in Table 1 shows the best fit values of the six parameters, using only the WMAP data.

Figure 9.5 shows the prediction of the model for the luminosity-redshift relation,
together with the SLNS data [32] mentioned in Sect. 1.3. For other predictions and
corresponding data sets, see [69].

Combining theWMAP results with other astronomical data reduces the uncertainties
for some of the six parameters. This is illustrated in the second column which shows
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Figure 9.2: Three-year WMAP data for the temperature-temperature (TT) power spec-
trum. The black line is the best fit ΛCDM model for the three-year WMAP data.
(Adapted from Figure 2 of Ref. [69].)
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Figure 9.3: Seven-year WMAP data for the temperature-temperature (TT) power spec-
trum, along with spectra from the ACBAR and QUaD experiments. The solid line the
best-fitting flatΛCDM model to the WMAP data alone. (From Figure 7 of Ref. [71].)
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Figure 9.4: WMAP data for the temperature-polarization TE power spectrum. The best
fit ΛCDM model is also shown. (Adapted from Figure 25 of Ref. [70].)
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Figure 9.5: Prediction for the luminosity-redshift relation from the ΛCDM model model
fit to the WMAP data only. The ordinate is the deviation of the distance modulous from
the empty universe model. The prediction is compared to the SNLS data [32]. (From
Figure 8 of Ref. [69].)

the 68% confidence ranges of a joint likelihood analysis when the power spectrum from
the completed 2dFGRS [73] is added. In [69] other joint constraints are listed (see their
Tables 5,6). In Figure 9.6 we reproduce one of many plots in [69] that shows the joint
marginalized contours in the (ΩM , h0)-plane.

The parameter space of the cosmological model can be extended in various ways.
Because of intrinsic degeneracies, the CMB data alone no more determine unambiguously
the cosmological model parameters. We illustrate this for non-flat models. For these the
WMAP data (in particular the position of the first acoustic peak) restricts the curvature
parameter ΩK to a narrow region around the degeneracy line ΩK = −0.3040+0.4067 ΩΛ.
This does not exclude models with ΩΛ = 0. However, when for instance the Hubble
constant is restricted to an acceptable range, the universe must be nearly flat. For
example, the restriction h0 = 0.72 ± 0.08 implies that ΩK = −0.003+0.013

−0.017 and ΩΛ =
0.758+0.035

−0.058. Other strong limits are given in Table 11 of [69], assuming that w = −1. But
even when this is relaxed, the combined data constrain ΩK and w significantly (see Figure
17 of [69]). The marginalized best fit values are w = −1.062+0.128

−0.079, ΩK = −0.024+0.016
−0.013

at the 68% confidence level.
The restrictions on w – assumed to have no z-dependence – for a flat model are

illustrated in Figure 9.7 .
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Figure 9.6: Joint marginalized contours (68% and 95% confidence levels) in the (ΩM , h0)-
plane for WMAP only (solid lines) and additional data (filled red) for the power-law
ΛCDM model. (From Figure 10 in [69].)
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Figure 9.7: Constraints on the equation of state parameter w in a flat universe model
when WMAP data are combined with the 2dFGRS data. (From Figure 15 in [69].)

Table 1.
Parameter WMAP alone WMAP + 2dFGRS

100Ωbh
2
0 2.233+0.072

−0.091 2.223+0.066
−0.083

ΩMh2
0 0.1268+0.0072

−0.0095 0.1262+0.0045
−0.0062

h0 0.734+0.028
−0.038 0.732+0.018

−0.025

ΩM 0.238+0.030
−0.041 0.236+0.016

−0.029

σ8 0.744+0.050
−0.060 0.737+0.033

−0.045

τ 0.088+0.028
−0.034 0.083+0.027

−0.031

ns 0.951+0.015
−0.019 0.948+0.014

−0.018

Another interesting result is that reionization of the Universe has set in at a redshift
of zr = 10.9+2.7

−2.3. Later we shall add some remarks on what has been learnt about the
primordial power spectrum.

Before the new results possible admixtures of isocurvature modes were not strongly
constraint. But now the measured temperature-polarization correlations imply that the
primordial fluctuations were primarily adiabatic. Admixtures of isocurvature modes do
not improve the fit.

It is most remarkable that a six parameter cosmological model is able to fit such
a rich body of astronomical observations. There seems to be little room for significant
modifications of the successful ΛCDM model.

WMAP has determined the amplitude of the primordial power spectrum. The value
of WMAP7 is

P
(prim)
R (kcmb) = 2.4× 10−9, kcmb = 0.002 Mpc−1. (9.131)
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Using (6.46) this implies
1

πM2
P l

H2

ε
= 2.4× 10−9, (9.132)

hence the Hubble parameter during inflation is

H ≃ 1015ε1/2 GeV. (9.133)

With (6.36) and r = 16ε this gives

U1/4 ≃ 1016 GeV
( r

0.01

)1/4
. (9.134)

For a comparison with observations the power index, ns, for scalar perturbations is
of particular interest. In terms of the slow-roll parameters and it is given by (see (6.89))

ns − 1 = 2δ − 4ε ≃ −6εU + 2ηU . (9.135)

The WMAP7 data constrain the ratio r = 4Pg/PR by r < 0.36, and slightly stronger
if also other data are used. Therefore, we can conclude that the energy scale of inflation
(9.134) has to be smaller than a few times 1016 GeV. A positive detection of the B -
mode in the CMB polarization would provide a lower bound for U1/4.

It is most remarkable that the WMAP data match the basic inflationary predictions,
and are even well fit by the simplest model U ∝ ϕ2.

9.9 Baryon acoustic oscillations

In Sect. 9.2 we saw that the spectrum of acoustic oscillations of the photon-baryon fluid
imprints a preferred scale in the density of matter, namely the comoving sound horizon,
s∗ := rs(ηdec), at recombination. The CMB data show that

s∗ = 147 ± 2Mpc. (9.136)

These sound waves remain imprinted in the baryon distribution after recombination.
Through gravitational interactions they are transmitted with small amplitude to the
dark matter, and should show up in the galaxy distribution.

The characteristic scale s∗ of the expected baryon acoustic oscillations (BAO) has
been discovered in measurements from galaxy clustering in the transverse and line-of-
sight directions [74]. The data determine the following effective distance measure [75]

DV (z) :=
[

(1 + z)2D2
A(z)

cz

H(z)

]1/3

, (9.137)

where DA(z) is the proper angular diameter distance (see subsection 1.1.5). Hence they
provide an important constraint forH(z). In [74] results out to two redshifts, z = 0.2 and
z = 0.35, have been reported. The reader should have a look at the implied constraint
in Fig. 1.6.

Future redshift surveys will improve BAOmeasurements. Their analysis faces system-
atic uncertainties such as: effects of non-linear gravitational evolution, scale-dependent
differencies between clustering of galaxies and of dark matter (bias), and redshift dis-
tortions of the clustering.

Updates For improvements on the observational front and their analysis I refer to the
article [82].
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9.10 Concluding remarks

In these lectures we have discussed some of the wide range of astronomical data that
support the following ‘concordance model’: The Universe is spatially flat and dominated
by a Dark Energy component and weakly interacting cold dark matter. Furthermore, the
primordial fluctuations are adiabatic, nearly scale invariant and Gaussian, as predicted
in simple inflationary models. It is very likely that the present concordance model will
survive phenomenologically.

A dominant Dark Energy component with density parameter ≃ 0.7 is so surprising
that many authors have examined whether this conclusion is really unavoidable. On the
basis of the available data one can now say with considerable confidence that if general
relativity is assumed to be also valid on cosmological scales, the existence of such a
dark energy component that dominates the recent universe is almost inevitable. The
alternative possibility that general relativity has to be modified on distances comparable
to the Hubble scale is currently discussed a lot. It turns out that observational data
are restricting theoretical speculations more and more. Moreover, some of the recent
proposals have serious defects on a fundamental level (ghosts, acausalities, superluminal
fluctuations). For a recent discussion, see, e.g., [80].

* * *

The dark energy problems will presumably stay with us for a long time. Under-
standing the nature of DE is widely considered as one of the main goals of cosmological
research for the next decade and beyond.
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Appendix A

Random fields, power spectra,
filtering

In this appendix we introduce a few basic tools for random fields on R3.

Translational invariant random fields, spectral measures

Let ξ(x) be such a random field which is translational invariant in the wide sense,
meaning that the first two moments are translational invariant:

〈ξ(x+ a)〉 = 〈ξ(x)〉, 〈ξ(x+ a)ξ(x′ + a)〉 = 〈ξ(x)ξ(x′)〉
for all translations a. Then the correlation function 〈ξ(x)ξ(x′)〉 depends only on the
difference x− x′,

〈ξ(x)ξ(x′)〉 = Cξ(x− x′). (A.1)

The function Cξ is positive semi-definite in the sense that for any finite set xj ∈ R3 and
numbers zj , 1 ≤ j ≤ n, we have the inequality

n∑

j,k=1

Cξ(xj − x′
k)zjz

∗
k ≥ 0.

A theorem of Bochner and Herglotz ([83], Chapter II) tells us that Cξ is the Fourier
transform of a finite positive measure σ, known as the spectral measure:

Cξ(x) =

∫

R3

eik·xdσ(k). (A.2)

If σ has a density P (relative to the Lebesque measure) this spectral density is also called
the power spectrum of the stochastic field ξ. We adopt the normalization

Cξ(x− x′) = 〈ξ(x)ξ(x′)〉 = 1

(2π)3

∫

Pξ(k)e
ik·(x−x′)d3k. (A.3)

A (wide sense) translational invariant random field has in a precise sense a Fourier
representation. Formally, this is written as

ξ(x) = (2π)−3/2

∫

ξ̂(k)eik·xd3k. (A.4)

The Fourier transfom ξ̂(k) is, however, not an ordinary stochastic field, but must be
interpreted in a distributional sense as a generalized random field. This is obviously so,
because (A.3) implies formally

〈ξ̂(k)ξ̂(k′)∗〉 = δ(3)(k− k′)Pξ(k). (A.5)
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(One might, therefore, prefer to work in a finite volume with periodic boundary condi-
tions, but even then the Fourier transform is often a generalized random field). In what
follows we proceed – as in all physics texts – in a formal manner. For the interested
reader a few mathematical precisions (plus literature) will be given at the end of this
appendix.

Filtering

Let W be a window function (filter) and define the filtered ξ by

ξW = ξ ⋆ W. (A.6)

With our convention we have for the Fourier transforms

ξ̂W = (2π)3/2ξ̂ Ŵ . (A.7)

Therefore,

PξW (k) = (2π)3
∣
∣
∣Ŵ (k)

∣
∣
∣

2

Pξ(k). (A.8)

With (A.3) this gives, in particular,

〈ξ2W (x)〉 =
∫ ∣
∣
∣Ŵ (k)

∣
∣
∣

2

Pξ(k)d
3k. (A.9)

Example

For W we choose a top-hat:

W (x) =
1

V
θ(R− |x|), V =

4π

3
R3, (A.10)

where θ is the Heaviside function. The Fourier transform is readily found to be

Ŵ (k) = (2π)−3/2W̃ (kR), W̃ (kR) :=
3(sin kR− kR cos kR)

(kR)3
. (A.11)

Thus,

PξW (k) =
∣
∣
∣W̃ (kR)

∣
∣
∣

2

Pξ(k). (A.12)

For a spherically symmetric situation we get from (A.9)

〈ξ2W (x)〉 = 1

2π2

∫ ∣
∣
∣W̃ (kR)

∣
∣
∣

2

Pξ(k)k
2dk (A.13)

(independent of x).
For this reason one often works with the following definition of the power spectrum

Pξ(k) :=
k3

2π2
Pξ(k). (A.14)

Then the last equation becomes

〈ξ2W (x)〉 =
∫ ∣
∣
∣W̃ (kR)

∣
∣
∣

2

Pξ(k)
dk

k
. (A.15)

If ξ is the density fluctuation field δ(x), the filtered fluctuation σ2
R on the scale R is

σ2
R =

∫ ∣
∣
∣W̃ (kR)

∣
∣
∣

2

Pδ(k)
dk

k
. (A.16)
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Spherical decompositions

We consider now isotropic power spectra, Pξ(k), k = |k|.
Insert in (A.3) the well-known decomposition

eik·x =
∑

l

(2l + 1)iljl(kr)Pl(k̂ · x̂) (A.17)

and use the addition theorem for spherical harmonics

Pl(k̂ · x̂) = 4π

2l + 1

l∑

m=−l

Y ∗
lm(x̂)Ylm(k̂) (A.18)

to get

Cξ(x− x′) =
1

2π2

∫

dkPξ(k)k
2

∞∑

l=0

(2l + 1))jl(kr)jl(kr
′)Pl(x̂ · x̂′) ,

or with (A.14)

Cξ(x− x′) =
∑

l

2l + 1

4π
ClPl(x̂ · x̂′) , (A.19)

where

Cl = 4π

∫ ∞

0

dk

k
Pξ(k)jl(kr)jl(kr

′) . (A.20)

It is also useful to perform a spherical decomposition of the random field ξ(x). For
this we insert in the Fourier representation (A.1) the spherical decomposition (A.17)
and obtain

ξ(x) =

∫ ∞

0

dk
∑

l,m

ξlm(k)Zklm(r, x̂), (A.21)

where

Zklm(r, x̂) =

√

2

π
kjl(kr)Ylm(x̂), (A.22)

and

ξlm(k) = ilk

∫

ξ̂(k, k̂)Y ∗
lm(k̂)dΩk̂. (A.23)

We show below that the basis (A.22) is orthonormal,

∫

Z∗
klmZk′l′m′d3x = δ(k − k′)δll′δmm′ . (A.24)

Using (A.23), one finds

〈ξlm(k)ξ∗l′m′(k′)〉 = Pξ(k)δ(k − k′)δll′δmm′ . (A.25)

Proof of (A.24). Insert in

1

(2π)3

∫

eik·(x−x′)d3k = δ3(x− x′)

the decomposition

eik·x = 4π
∑

l,m

iljl(kr)Y
∗
lm(x̂)Ylm(k̂).
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The left-hand side becomes

2

π

∫

dkk2
∑

l,m

jl(kr)jl(kr
′)Y ∗

lm(x̂)Ylm(k̂).

From δ3(x− x′) = 1
r2
δ(r − r′)δS2(x̂, x̂′), and the completeness relation

∑

l,m

Y ∗
lm(x̂)Ylm(x̂

′) = δS2(x̂, x̂′), (A.26)

we conclude that

∫ ∞

0

[√

2

π
rjl(kr)

][√

2

π
rjl(kr

′)

]

k2dk = δ(r − r′).

This is equivalent to (A.24).

Checks. Decompose ξ(x) as

ξ(x) =
∑

lm

alm(r)Ylm(x̂). (A.27)

Then (A.19) implies
〈alm〉 = 0, 〈a⋆lmal′m′〉 = δll′δmm′Cl, (A.28)

Using (A.21) and (A.22) we obtain

alm(r) = il
∫ ∞

0

dkkξlm(k)

√

2

π
jl(kr). (A.29)

Inserting this in (A.28) and using (A.25) gives again (A.20). As a further check we note
that (making use of of Eq. 10.1.50 in [51])

〈|ξ(x)|2〉 =
∑

l

2l + 1

4π
Cl =

∫ ∞

0

dk

k
Pξ(k)

∑

l

(2l + 1)j2l (kr) =

∫ ∞

0

dk

k
Pξ(k),

in agreement with (A.15).

Projection on the sky

When we lack distance information we can observe the correlation function of the fol-
lowing random field on the two-sphere

η(x̂) =

∫ ∞

0

ξ(r, x̂)r2φ(r)dr, (A.30)

where φ(r) is a weighting function, normalized as

∫ ∞

0

φ(r)r2dr = 1.

Inserting the decomposition (A.27) we obtain

η(x̂) =
∑

lm

ãlmYlm(x̂), (A.31)
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with

ãlm =

∫ ∞

0

alm(r)r
2φ(r)dr. (A.32)

The formulae (A.20) and (A.28) give for the angular power spectrum

C̃l := 〈|ãlm|2〉 = 4π

∫ ∞

0

dk

k
Pξ(k)

[∫

jl(kr)r
2φ(r)dr

]2

. (A.33)

The angular correlation function is

〈η(x̂)η(x̂′)〉 =
∑

l

2l + 1

4π
C̃lPl(x̂ · x̂′) . (A.34)

Sometimes small angle approximations are useful. These could be obtained from the
previous formulae by using asymptotic expressions for the Legendre polynomials and
Bessel functions. Instead, one can repeat the derivations by approximating the metric on
the two-sphere for a small patch by the Euclidean metric dθ21+dθ22, where x̂ ≃ (θ1, θ2, 1)
with small θi. In a Fourier integral we use the approximation k ·x ≃ rk⊥ ·θ+ rk‖, where
k⊥, k‖ are the perpendicular and longitudinal components of k, respectively. From the
definition (A.30) and (A.3) we then obtain in a first step for the correlation function
w(θ) of η the expression (taking x′ along the polar axis)

w(θ) =

∫

drdr′r2φ(r)r′2φ(r′)

∫
d3k

(2π)3
P(k) exp[irk⊥ · θ + ik‖(r − r′)].

For a slowly varying φ(r) we can replace φ(r′) by φ(r). Then the r′-integration gives
2πδ(k‖), and we obtain after a simple substitution

w(θ) =

∫
d2s

(2π)2
exp(is · θ)

∫ ∞

0

drr2φ2(r)Pξ(s/r).

This implies the following Limber relation between the power spectra

Pη(s) =

∫ ∞

0

Pξ(s/r)r
2φ2(r)dr. (A.35)

Using a well-known integral representation for the Bessel function J0(x), we get

w(θ) =

∫ ∞

0

ds

s
Pη(s)J0(sθ), Pη(s) =

s2

2π
P(s). (A.36)

In terms of Pξ, Pη the Limber equation becomes

Pη(s) =
π

s

∫ ∞

0

Pξ(s/r)r
5φ2(r)dr. (A.37)

If we insert this in the previous equation we obtain

w(θ) =

∫ ∞

0

drr4φ2(r)

∫ ∞

0

dk

k2
J0(krθ)πPξ(k). (A.38)

With the help of Eq. 9.1.24 of [51] one easily finds that the last equation can be rewritten
as a relation between the two correlation functions:

w(θ) =

∫ ∞

0

r4φ2(r)

∫ ∞

−∞
Cξ(

√
u2 + r2θ2)du. (A.39)
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Mathematical precisions for generalized stochastic fields

As emphasized earlier, the Fourier transform of a translational invariant stochastic field
on R

n is a generalized stochastic field; meaningful are only ‘smeared’ quantities ξ(f)
with test functions f . More precisely, a generalized stochastic field is a linear map from
test functions, for instance from the space S(Rn), to random variables.

For a (wide sense) translational invariant generalized random field the correlation
function C(f, g) := 〈ξ(f)ξ(g)〉− 〈ξ(f)ξ〉〈ξ(g)ξ〉 is a positive semi-definite bilinear form,
and thus by the Bochner-Schwartz theorem ([83], Chapter II) of the form

C(f, g) =

∫

Rn

f̂(k)ĝ(k)∗dσ(k), (A.40)

where σ is a positive measure of at most polynomial growth (= spectral measure).
For a discussion of the Fourier representation of ξ we need the notion of an orthogonal
stochastic measure. This is a map which associates to each Borel set ∆ of Rn a stochastic
variable Z(∆), satisfying the following three properties:

• Z(∆) is σ-additive in the sense1: For a countable disjoint union ∆ =
⋃∞

n=1∆n,

〈∣
∣
∣Z(∆)−

n∑

k=1

Z(∆k)
∣
∣
∣

2〉

→ 0

for n → ∞ (countable additivity in the mean).
• There exists a measure σ on R

n, such that

〈Z(∆1)Z(∆2)
∗〉 = σ(∆1 ∩∆2).

In particular, 〈|Z(∆)|2〉 = σ(∆), 〈Z(∆1)Z(∆2)
∗〉 = 0, for every pair of disjoint sets.

• 〈Z(∆)〉 = 0.
Given an orthogonal stochastic measure Z(·), one can naturally define integrals for

functions from L2(σ). For details we refer to [84], Sect.VI.2. With this notion one can
then show that a translational invariant generalized stochastic process with vanishing
average (〈ξ(f)〉 = 0) has a Fourier representation of the form

ξ(f) =

∫

f̂dZ (≡ Z(f̂)), (A.41)

so Z is the Fourier transform of ξ. (For a derivation, see [83], Sect. III.3.) The represen-
tation (A.41) and (A.40) imply

〈Z(f)Z(g)∗〉 =
∫

f(k)g(k)∗dσ(k). (A.42)

This is the mathematically rigorous formulation of the formal equation (A.5), while
(A.40) is the precise formulation of (A.3) for generalized random fields.The double role
of the spectral measure in (A.40) and (A.42) can be regarded as the generalized version
of the Wiener-Khintchin relation.

1One can not expect that Z(·) is measure valued in the usual sense, since paths of random fields
(e.g. Brownian motion) have in general unbounded variations. Therefore, a weak form of σ-additivity
has to be imposed. Beside countable additivity in the mean other convergence conditions are sometimes
assumed.
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Appendix B

Collision integral for Thomson
scattering

The main goal of this Appendix is the derivation of equation (8.67) for the collision
integral in the Thomson limit.

When we work relative to an orthonormal tetrad the collision integral has the same
form as in special relativity. So let first consider this case.

Collision integral for two-body scattering

In SR the Boltzmann equation (8.27) reduces to

pµ∂µf = C[f ] (B.1)

or

∂tf + vi∂if =
1

p0
C[f ]. (B.2)

In order to find the explicit expression for C[f ] things become easier if the following
non-relativistic normalization of the one-particle states |p, λ〉 is adopted:

〈p′, λ′|p, λ〉 = (2π)3δλ,λ′δ(3)(p′ − p). (B.3)

(Some readers may even prefer to discretize the momenta by using a finite volume with
periodic boundary conditions.) Correspondingly, the one-particle distribution functions
f are normalized according to

∫

f(p)
gd3p

(2π)3
= n, (B.4)

where g is the statistical weight (= 2 for electrons and photons), and n is the particle
number density.

The S-matrix element for a 2-body collision p, q → p′, q′ has the form (suppressing
polarization indices)

〈p′, q′|S − 1|p, q〉 = −i(2π)4δ(4)(p′ + q′ − p− q)〈p′, q′|T |p, q〉. (B.5)

Because of our non-invariant normalization we introduce the Lorentz invariant matrix
element M by

〈p′, q′|T |p, q〉 = M

(2p02q02p′02q′0)1/2
. (B.6)
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The transition probability per unit time and unit volume is then (see, e.g., Sect. 64 of
[76])

dW = (2π)4
1

2p02q0
|M |2δ(4)(p′ + q′ − p− q)

d3p′

(2π)32p′0
d3q′

(2π)32q′0
. (B.7)

Since we ignore in the following polarization effects, we average |M |2 over all polariza-
tions (helicities) of the initial and final particles. This average is denoted by |M |2. Per
polarization we still have the formula (B.7), but with |M |2 replaced by |M |2. From time
reversal invariance we conclude that |M |2 remains invariant under p, q ↔ p′, q′.

With the standard arguments we can now write down the collision integral. For
definiteness we consider Compton scattering γ(p) + e−(q) → γ(p′) + e−(q′) and denote
the distribution functions of the photons and electrons by f(p) and f(e)(q), respectively.
In the following expression we neglect the Pauli suppression factors 1− f(e), since in our
applications the electrons are highly non-degenerate. Explicitly, we have

1

p0
C[f ] =

1

2p0

∫
2d3q

(2π)32q′0
2d3q′

(2π)32q′0
2d3p′

(2π)32p′0
(2π)4|M |2δ(4)(p′ + q′ − p− q)

×
{
(1 + f(p)) f(p′)f(e)(q

′)− (1 + f(p′)) f(p)f(e)(q)
}
. (B.8)

At this point we return to the normalization of the one-particle distributions adopted
in Sect. 8.1. This amounts to the substitution f → 4π3f . Performing this in (B.1) and
(B.8) we get for the collision integral

C[f ] =
1

16π2

∫
d3q

q0
d3q′

q′0
d3p′

p′0
|M |2δ(4)(p′ + q′ − p− q)

×
{(

1 + 4π3f(p)
)

f(p′)f(e)(q
′)−

(
1 + 4π3f(p′)

)
f(p)f(e)(q)

}

.

(B.9)

The invariant function |M |2 is explicitly known, and can for instance be expressed in
terms of the Mandelstam variables s, t, u (see Sect. 86 of [76]).

The integral with respect to d3q′ can trivially be done

C[f ] =
1

16π2

∫
d3q

q0
1

q′0
d3p′

p′0
δ(p′0 + q′0 − p0 − q0)|M |2 × {· · ·}. (B.10)

The integral with respect to p′ can most easily be evaluated by going to the rest frame
of qµ. Then

∫

d3p′
1

p′0q′0
δ(p′0 + q′0 − p0 − q0) · ·· =

∫

dΩp̂′

∫

d|p′| |p
′|

q′0
δ(m+ q′0 − p0 − q0) · · · .

We introduce the following notation: With respect to the rest system of qµ let ω := p0 =
|p|, ω′ := p′0 = |p′|, E ′ =

√

q′2 +m2. Then the last integral is equal to

ω′

E ′
1

|1 + ∂E ′/∂ω′| =
ω′2

mω
.

In getting the last expression we have used energy and momentum conservation.
So far we are left with

C[f ] =
1

16π2m

∫
d3q

q0

∫

dΩp̂′

ω′2

ω
|M |2 × {· · ·}. (B.11)
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In the rest system of qµ the following expression for |M |2 can be found in many books
(for a derivation, see [77])

|M |2 = 3πm2σT

[
ω′

ω
+

ω

ω′ − sin2 ϑ

]

, (B.12)

where ϑ is the scattering angle in that frame. For an arbitrary frame, the combination
dΩp̂′

ω′2

ω
|M |2 has to be treated as a Lorentz invariant object.

At this point we take the non-relativistic limit ω/m → 0, in which ω′ ≃ ω and C[f ]
reduces to the simple expression

C[f ] =
3

16π
σTωne

∫

dΩp̂′(1 + cos2 ϑ)[f(p′)− f(p)]. (B.13)

Derivation of (8.67)

In Sect. 8.4 the components pµ of the four-momentum p refer to the tetrad eµ defined
in (8.43). Relative to this1 we introduced the notation pµ = (p, pγi). The electron four-
velocity is according to (3.156) given to first order by

u(e) =
1

a
(1− A)∂η +

1

a
γijv(e)|j∂j = e0 + vi(e)ei; vi(e) = v(e)i = êi(v(e)). (B.14)

Now ω in (B.13) is the energy of the four-momentum p in the rest frame of the electrons,
thus

ω = −〈p, u(e)〉 = p[1− êi(v(e))γ
i]. (B.15)

Similarly,
ω′ = −〈p′, u(e)〉 = p′[1− êi(v(e))γ

′i]. (B.16)

Since in the non-relativistic limit ω′ = ω, we obtain the relation

p′[1− êi(v(e))γ
′i] = p[1− êi(v(e))γ

i]. (B.17)

Therefore, to first order

f(p′, γ′i) = f (0)(p′) + δf(p′, γ′i)

= f (0)(p) +
∂f (0)

∂p
(p′ − p) + δf(p, γ′i)

= f (0)(p) + p
∂f (0)

∂p
êi(v(e))(γ

′i − γi) + δf(p, γ′i). (B.18)

Remember that the surface element dΩp̂′ in (B.13) also refers to the rest system. This
is related to the surface element dΩγ′ by2

dΩp̂′ =

(
p′

ω′

)2

dΩγ′ = [1 + 2êi(v(e))γ
′i]dΩγ′ . (B.19)

1Without specifying the gauge one can easily generalize the following relative to the tetrad defined
by (8.32).

2Under a Lorentz transformation, the surface element for photons transforms as

dΩ = (ω′/ω)2dΩ′

(Exercise).
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Inserting (B.18) and (B.19) into (B.13) gives to first order, with the notation of Sect.
8.5,

C[f ] = neσTp

[

〈δf〉 − δf − p
∂f (0)

∂p
êi(v(e))γ

i +
3

4
Qijγ

iγj

]

, (B.20)

that is the announced equation (8.67).
This approximation suffices completely for our applications. The first order correc-

tions to the Thomson limit have also been worked out [78].
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Appendix C

Ergodicity for (generalized) random
fields

In Sect. 6.2.3 we have replaced a spatial average by a stochastic average. Since this is
often done in cosmology, we add some remarks about what is behind this procedure.

Mathematical remarks on generalized random fields

Let φ be a generalized random field. Each ‘smeared’ φ(f) is a random variable on some
probability space (Ω,F , µ). Often one can choose Ω = S ′(RD), F : σ-algebra generated
by cylindrical sets, and φ(f) the ‘coordinate function’

φ(f)(ω) = 〈ω, f〉, ω ∈ S ′(RD), f ∈ S(RD).

Notation: We use the letter φ for elements of Ω and interpret φ(f) as the coordinate
function: φ 7→ 〈φ, f〉.

Let τa denote the translation of RD by a. This induces translations of Ω, as well
as of random variables such as A = φ(f1) · · · φ(fn), which we all denote by the same
symbol τa. Assume that µ is an invariant measure on (Ω,F) which is also ergodic: For
any measurable subset M ∈ Ω which is invariant under translations µ(M) equals 0 or 1.
Then the following Birkhoff ergodic theorem holds: “spatial average (of individual
realization)= stochastic average”, i.e., µ-almost always

lim
Λ↑RD

1

|Λ|

∫

Λ

τaA da = 〈A〉µ, (C.1)

where Λ is a finite hypercube, and the right-hand side denotes the stochastic average of
the random variable A.

Generalized random fields on a torus. Often it is convenient to work on a “big”
torus TD with volume V = LD. Then Ω = D′(TD) (periodic distributions), etc. The
Fourier transform and cotransform are topological isomorphisms between D(TD) and
S(∆D), ∆D := (2π/L)DZD, the rapidly decreasing (tempered) sequences1. These pro-
vide, in turn, isomorphisms between D′(TD) and S ′(∆D). Each (periodic) distribution
S ∈ D′(TD) can be expanded in a convergent Fourier series

S =
∑

k∈∆D

ck(S)χk, χk(x) :=
1√
V
eik·x (C.2)

1For proofs of this and some other statements below, see W. Schempp and B. Dressler, Einführung
in die harmonische Analyse (Teubner, 1980), Sect. I.8.
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(χk regarded as a distribution), where

ck(S) = 〈χk | S〉. (C.3)

Written symbolically,

S(x) =
1√
V

∑

k∈∆D

Ske
ik·x, Sk =

1√
V

∫

S(x)e−ik·x dx. (C.4)

Let us consider the correlation functions 〈φ(f)φ(g)〉µ. In terms of the Fourier expan-
sion for φ(x), we have

〈φ(x)φ(y)〉µ =
1

V

∑

k,k′

〈φkφ
∗
k′〉µei(k·x−k′·y).

This is only translationally invariant if the tempered sequences φk are uncorrelated,

〈φkφ
∗
k′〉µ = δkk′〈|φk|2〉µ.

Then

〈φ(x)φ(y)〉µ =
1

V

∑

k

〈|φk|2〉µ eik·(x−y). (C.5)

By definition, the power spectrum Pφ(k) of the generalized random field φ is (propor-
tional to) the Fourier transform of the correlation function (distribution)

〈φ(x)φ(y)〉µ =
1

V

∑

k∈∆D

Pφ(k)e
ik·(x−y). (C.6)

Therefore,
Pφ(k) = 〈|φk|2〉µ. (C.7)

(Note that in the continuum limit: V −1
∑

k∈∆D ... −→ (2π)−3
∫
d3k ... .)

If the measure is ergodic with respect to translations τa, we obtain µ-almost always
the same result if we take for a particular realization of φ(x) its spatial average. This
follows from Birkhoff’s ergodic theorem, stated above, together with the following well-
known theorem of H. Weyl:

Theorem (H. Weyl). Let f be a continuous function on the torus TD, then

lim
Λ↑RD

1

|Λ|

∫

Λ

f ◦ τa da =

∫

TD

f dλ, (C.8)

where λ is the invariant normalized measure on TD.
One can prove this in a first step by direct computation for trigonometric polyno-

mials, and then make use of the Stone-Weierstrass theorem. (For details, see Arnold’s
“Mathematical methods of classical mechanics”, Sect. 51.)

A discrete example for ergodic random fields

Proving ergodicity is usually very difficult. Below we give an example of a discrete
random Gaussian field, for which this can be established without much effort.

Let Ω = RZD

, and consider the discrete random field φx(ω) = ωx, where ω : ZD → R,
and ωx denotes the value of ω at site x ∈ ZD. We assume that the random field φx is
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Gaussian, and that the underlying probability measure µ is invariant under translations.
Then the correlation function C(x− y) = 〈φxφy〉 depends only on the difference x− y.
Being of positive type, we have by the Bochner-Herglotz theorem a representation of
the form

C(x) =

∫

TD

eik·x dσ(k), (C.9)

where σ is a positive measure.
Now we can formulate an interesting fact:

Theorem (Fomin, Maruyama). (1) The random field φx is ergodic (i.e., the proba-
bility measure µ is ergodic relative to discrete translations τa), if and only if the measure
σ is nonatomic. (2) The translations are mixing if σ is absolutely continuous with respect
to λ.

For a proof, see Cornfeld, Fomin, and Sinai, Ergodic Theory, Springer (Grundlehren,
245), Sect.14.2. (I was able to simplify this proof somewhat.)
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Appendix D

Proof of a decomposition theorem
for symmetric tensors on spaces
with constant curvature

We give here a simple, rigorous existence proof of the decomposition theorem, discussed
in Sect. 3.1.1. We recall that in cosmological perturbation theory one can regard the
various perturbation amplitudes as time dependent tensor fields on a three-dimensional
Riemannian space (M, g) of constant curvature K. For skew-symmetric tensor fields
(p-forms) there is on arbitrary compact Riemannian manifolds the profound Hodge
decomposition into an orthogonal direct sum of exact, coexact, and harmonic forms.
No analogous decomposition for symmetric tensor fields, say, is available in general.
However, when the space has constant curvature, a symmetric tensor field tij can be
decomposed as follows:

tij = t
(S)
ij + t

(V )
ij + t

(T )
ij , (D.1)

where

t
(S)
ij =

1

3
tkkgij + (∇i∇j −

1

3
gij∇2)f , (D.2)

t
(V )
ij = ∇iξj +∇jξi, (D.3)

t
(T )
ij : t(T )i

i = 0; ∇jt
(T )ij = 0. (D.4)

In these equations f is a function on M and ξi a vector field with vanishing divergence;
∇2 denotes gij∇i∇j on (M, g). (Note that this does not agree with the Laplace-Beltrami
operator △ for differential forms, except on functions. But for tensor fields this is the
natural extension of the Laplace operator on functions.) The three components are easily
shown to be orthogonal to each other with respect to the scalar product.

〈t, s〉 =
∫

Σ

tijs
ijdµ , (D.5)

where µ is the Riemannian measure for the metric g. This fact implies that the decom-
position of tij is unique. Below we give a rigorous existence proof.

Some tools

In this subsection (M, g) can be an arbitrary compact (closed) Riemannian manifold.
On this we consider operators

L = −△ + k, k ∈ R. (D.6)
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Specializing existence and regularity results from the theory of elliptic partial differen-
tials equations, established for instance in chapter 5 of [79], the following holds:

(i) The equation Lu = f , with f ∈ C∞(M) has a solution u ∈ C∞(M) if and
only if f is orthogonal to the smooth functions v satisfying Lv = 0. In particular,
△(C∞(M)) = H⊥: the orthogonal complement of the harmonic functions H in C∞(M).

(ii) In the space of smooth functions the equation Lu = f has always a unique
solution, if k is not an eigenvalue of the operator △.

(iii) If k is an eigenvalue of △, and f is orthogonal to the smooth eigenfunctions w
of △ with eigenvalue k, then there are smooth solutions of Lu = f . Any two of them
differ by such an eigenfunction w.

In passing we note that L2-completeness, as well as uniform completeness of the
smooth eigenfunctions of △ holds. We will, however, not use this fact. We also recall
that harmonic functions on M are constant.

Proof of the decomposition theorem

Let now (M, g) be an n-dimensional Riemannian space of constant curvature K. Then
the Ricci tensor and Ricci scalar are given by

Rij = (n− 1)Kgij, R = n(n− 1)K. (D.7)

Below we shall use the following consequence of the Ricci identity:

∇2∇iωj = ∇i∇2ωj +K[(n− 1)∇iωj + 2∇jωi − 2gij∇kωk]. (D.8)

For definiteness we consider only the compact case. (In the non-compact case, for
K < 0, one has to impose fall-off conditions.)

The decomposition theorem follows immediately, once we have shown that for any
symmetric traceless tensor tij there exists a covariant vector field Ai, such that

tij −∇iAj −∇jA +
2

n
gij∇kAk (D.9)

is transversal, i.e., satisfies the second equation in (D.4). (Apply in a second step the
decomposition (D.12) below.) With the help of the Ricci identity and (D.7) this condition
can be written as

[∇2 + (n− 1)K]Ai +

(

1− 2

n

)

∇i(∇jA
j) = ∇jtij . (D.10)

So, the existence of a decomposition (D.1) is equivalent to the question of whether there
is a covariant vector field satisfying equation (D.10). We now show that this question
has a positive answer.

Applying ∇i on (D.10) , and using as a special case of (D.8) the identity ∇i∇2Ai =
∇2∇iAi + (n− 1)K∇iA

i, we obtain

(△+ nK)∇iAi =
n

2(n− 1)
∇i∇jtij . (D.11)

As a special case of the Hodge decomposition, Ai can be uniquely decomposed into an
direct orthogonal sum of the form

Ai = Vi +∇iS, ∇iVi = 0, (D.12)
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whence
∇iAi = △S. (D.13)

Then (D.11) becomes

△[(△+ nK)S] =
n

2(n− 1)
∇i∇jtij . (D.14)

Note that λ1 := −nK is an eigenvalue of △. Since the right-hand side of this equation
is by Gauss’ theorem in H⊥, equation (D.14) has, up to an additive constant, a unique
solutions for (△+ nK)S. Equation (D.10) can be rewritten as

[∇2 + (n− 1)K]Vi = ∇jtij −
2(n− 1)

n
∇i(△S + nKS) . (D.15)

There are certainly solutions of (D.14) and (D.15). For the latter one has to use
property (ii) of Sect. 1.1 for 1-forms. The left-hand side of (D.15) is equal to the operator
△ + 2(n − 1)K applied on the 1-form belonging to Vi. For any solution of the two
equations, Ai given by (D.12) then satisfies equation (D.10). Indeed, applying ∇i on
(D.15) and using (D.14) leads to [△ + 2(n− 1)K]∇iVi = 0, hence ∇iVi = 0. Then, the
definition (D.12) implies ∇iAi = △S. If one now replaces Vi in (D.15) by Vi = Ai−∇iS
and sets △S = ∇iAi in the resulting equation, one recovers (D.10).

This concludes the proof.
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Appendix E

Boltzmann equation for density
matrix and Stokes parameters

E.1 Some preparations

E.1.1 Density matrix for one-photon states

Pure one-photon states with 3-momentum p and linear transversal polarization vectors
ǫ(1)(p̂), and ǫ(2)(p̂) span the space C2, and mixtures are described by density matrices,
that is positive hermitian 2× 2 matrices

ρ =
1

2

3∑

µ=0

sµσµ =

(
s0 + s3 s1 − is2
s1 + is2 s0 − s3

)

. (E.1)

The standard notation for the Stokes parameters sµ is s0 = I, s1 = U, s2 = V, s3 =
Q. The Born rule implies that the probability for measuring the polarization ǫ(p̂) =
∑

a=1,2 αaǫ
(a) in the state ρ is

probρ(ǫ) = tr(ρPǫ)/trρ, (E.2)

where Pǫ is the projection on ǫ. Relative to the basis ǫ(a) the matrix elements of this
projection operator are αbα

∗
a. Since αa = ǫ · ǫ(a), we have

probρ(ǫ) = ǫ∗iPijǫj/trP, Pij = ǫ
(a)∗
i ρabǫ

(b)
j . (E.3)

One easily verifies that under a rotation of the basis ǫ(a) by an angle α in the
transversal plane, the Stokes parameters transform as s0 → s0, s2 → s2, s3 ± is1 →
e±2iα(s3 ± is1). Hence, s2 = V = 0 has an invariant meaning. This is to be expected,
because V vanishes if there is no circular polarization.

E.1.2 Change of ρ in a scattering process

Consider a scattering process of a photon with initial direction n′ and polarization vector
ǫ(n′) to the final state ǫ(n), and let M(n,n′) = ǫ∗i (n)Aikǫk(n

′) be the scattering matrix
element. Then the final density matrix P(f) is given in terms of the initial P, up to a
normalization, by

P(f) = APA† (E.4)

(normalizations will be fixed later). In terms of the ρ’s this becomes

ρ(f) = BρB†, Bab = ǫ
(a)∗
i (n)Aijǫ

(b)
j (n′). (E.5)
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For Thomson scattering Aij ∝ δij, so up to a normalization

Bab = ǫ(a)(n)∗ · ǫ(b)(n′). (E.6)

In the special case, when ǫ(1) = ǫ‖, ǫ(2) = ǫ⊥, etc, where ‖, ⊥ denote the directions in
and perpendicular to the scattering plane, respectively, the matrix B becomes in terms
of the scattering angle β:

B =

(
cos β 0
0 1

)

=
1

2
(cos β + 1)12 +

1

2
(cos−1)σ3. (E.7)

The change of the Stokes parameters sµ → s
(f)
µ in the scattering process is

s(f)µ (n) = tr(ρ(f)σµ) =
3

4
sν(n

′)tr(BσνB
†σµ). (E.8)

The normalization is chosen such that

1

4π

∫

S2

dΩns
(f)
0 (n) = s0.

For the special case we obtain

s
(f)
0 =

3

4
[s0(1 + cos2 β)− s3 sin

2 β],

s
(f)
1 =

3

2
s1 cos β,

s
(f)
2 =

3

2
s2 sin β,

s
(f)
3 =

3

4
[−s0 sin

2 β + s3(1 + cos2 β)]. (E.9)

One sees from this that Thomson scattering produces no circular polarization. Therefore,
we will later set V = 0.

For later use we express the transformation sµ → s
(f)
µ in terms of spin harmonic

functions sY
m
l of n and n′. For this, we recall a few tools.

If n ∈ S2 let S(n) denote the standard rotation e3 7→ n,

S(n) = eϕI3eϑI2, (ϑ, ϕ) : polar angles of n, (E.10)

where Ik, k = 1, 2, 3 are the infinitesimal generators of SO(3). Explicitly,

S(n) =









cosϑ cosϕ − sinϕ sin ϑ cosϕ

cosϑ sinϕ cosϕ sinϑ sinϕ

− sin ϑ 0 cosϑ









. (E.11)

For a rotation R ∈ SO(3) the Euler angles are defined by R(α, β, γ) = eαI3eβI2eγI3 . The
spin-harmonics can be defined in terms of the representation matrices Dl by

sYl,m(n) =

√

2l + 1

4π
Dl

−s,m(S
−1(n)). (E.12)

Starting from
Dl(S−1(n)S(n′)) = Dl(S−1(n)Dl(S−1(n′))†,
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and taking the matrix element 〈l,−s|...|l, m〉 gives
∑

m′

Dl
−s,m′(S−1(n))Dl

m,m′(S−1(n′)) = Dl
−s,m(S

−1(n)S(n′)),

so
4π

2l + 1

∑

m′

sYl,m′(n) −mY
∗
l,m′(n′) = Dl

−s,m(S
−1(n)S(n′)). (E.13)

The matrix in (E.6) can be written as

Bab = [S−1(n)S(n′)]ab, a, b = 1, 2. (E.14)

Let
S−1(n)S(n′) = e−γI3e−βI2e−αI3 , (E.15)

β = scattering angle of n′ 7→ n. Then

Bab = 〈e(a)|e−γI3e−βI2e−αI3 |e(b)〉 (E.16)

or
B = R(−γ)B̃(β)R(−α), (E.17)

with

R(ϕ)ab = 〈e(a)|eϕI3|e(b)〉, R(ϕ) =

(
cosϕ − sinϕ
sinϕ cosϕ

)

, (E.18)

and

B̃ab(β) = 〈e(a)|e−βI2|e(b)〉, B̃(β) =

(
cos β 0
0 1

)

. (E.19)

Inserting (E.17) into (E.8) gives

s(f)µ (n) =
3

4
sν(n

′)tr[R(−γ)B̃(β)R(−α)σνR(α)B̃(β)R(γ)σµ]

=
3

4
sνtr[B̃(β)(R(−α)σνR(α))B̃(β)(R(γ)σµR(−γ))]. (E.20)

Here we use

R(ϕ)(σ3 ∓ iσ1)R(−ϕ) = e±2iϕ(σ3 ∓ iσ1),

R(ϕ)σνR(−ϕ) = σν for ν = 0, 2 , (E.21)

and obtain the following: If the three-component vector S = (s0, s3 + is1, s3 − is1)
T is

given for the special case α = γ = 0 by

S(f)(n) = Σ(β)S(n′), (E.22)

then we have in the general case, but for s2 = V = 0,

S(f)(n) = [R̃(−γ)Σ(β)R̃(−α)]S(n′), (E.23)

where R̃(ϕ) = diag(1, e2iϕe−2iϕ).
The special case is given in (E.9), with the result

Σ(β) =
3

4









cos2 β + 1 −1
2
sin β −1

2
sin2 β

− sin2 β 1
2
(cos β + 1)2 1

2
(cos β − 1)2

− sin2 β 1
2
(cos β − 1)2 1

2
(cos β + 1)2









. (E.24)
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or

Σ(β) =
3

4









Y2,0 + 2
√
5Y0,0 −

√
3
2
Y2,0 −

√
6Y2,0

−
√
6 2Y2,0 3 2Y2,0 3 2Y2,0

−
√

3
2 −2Y2,0 3 −2Y2,0 3 −2Y2,0









, (E.25)

where the arguments of all functions are equal to (β, 0). Finally, we apply (E.13) in the
form (making use of (E.15) and (E.12))

e−iγs
sYl,m(β, α) =

4π

2l + 1

∑

m′

sYl,m′(n) −mY
∗
l,m′(n′) = Dl

−s,m(S
−1(n)S(n′)) (E.26)

(addition theorem for spin harmonics), and obtain

R̃(−γ)Σ(β)R̃(−α) =
4

10
P(n,n′) + diag (1, 0, 0), (E.27)

P(n,n′) =

2∑

m=−2

Pm(n,n
′), (E.28)

with

Pm(n,n
′) =









Y2,m
′ Y2,m −

√
3
2 2Y2,m

′ Y2,m −
√

3
2 −2Y2,m

′ Y2,m

−
√
6Y2,m

′
2Y2,m 3 2Y2,m

′
2Y2,m 3 −2Y2,m

′
2Y2,m

−
√
6Y2,m

′
−2Y2,m 3 2Y2,m

′
−2Y2,m 3 −2Y2,m

′
−2Y2,m









, (E.29)

where Yℓ,m
′ ≡ Y ∗

ℓ,m(n
′) and sYℓ,m

′ ≡ sY
∗
ℓ,m(n

′) and the unprimed harmonics are with
respect to n.

Footnote For certain considerations one has to know the transformation property
of spin-harmonics under rotations. To derive this we need the following decomposition:
S(Rn) = RS(n)R(α(R,n), where the last factor denotes a rotation by an angle α around
the three-direction. Using this and the definition (E.12) of the spin-harmonics one finds
the transformation law

sYlm(Rn) = eisα(R,n)
∑

m′

sYlm′(n)Dl
m′m(R

−1). (E.30)

The rotation R(α(R,n)) also enters in the transformation of the standard frame field
ǫ(a)(n) = S(n)e(a), a = 1, 2 on the 2-sphere, and of the associated circular polarization
vectors ǫ±(n) = S(n)e±, e± := (e(1) ± ie(2))/

√
2 :

ǫ±(Rn) = e±iα(R,n)Rǫ±(n); (E.31)

so ǫ±(Rn) is rotated relative to Rǫ±(n) by the angle α(R,n).
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E.2 Boltzmann equation for the density matrix

We recall the Boltzmann equation for Thomson scattering in the unpolarized approxi-
mation. Written slightly differently, Equation (8.70) reads for K = 0

(∂η + ni∂i)δf −
[
Φ′ + ni∂iΨ

]
q
∂f (0)

∂q

= axeneσT

{

−δf(q,n) +
3

4

∫
dΩ′

4π
[(n · n′)2 + 1]δf(q,n′)− q

∂f (0)

∂q
n ·V

}

.

(E.32)

For tensor modes the square bracket on the left hand side has to be replaced by
−∂ηHijn

inj (see (8.99)). For the one-particle density matrix, ρab(q,n) we have a similar
equation. Recall that in a scattering process (n′ → n) the density matrix changes ac-
cording to (E.5) and (E.6). Assuming that the unperturbed density matrix ρ(0) describes
an unpolarized situation (ρ(0) ∝ 12), we expect that the linearized Boltzmann equation
becomes

(∂η + ni∂i)δρ−
[
Φ′ + ni∂iΨ

]
q
∂ρ(0)

∂q

= axeneσT

{

−δρ(q,n) +
3

2

∫
dΩ′

4π
B(n,n′)δρ(q,n′)B†(n,n′)− q

∂ρ(0)

∂q
n ·V

}

.

(E.33)

For the factor in front of the integral note the following: Taking the trace of this equation
gives for f := trρ equation (E.32) for δρ = δf 1

2
12, since

tr(BB†) = (δij − ninj)(δij − n′
in

′
j) = 1 + (n · n′)2.

We shall show later that the right hand side of (E.33) can be derived in a straightforward
manner from the von Neumann equation for the density operator. The Liouville operator
on the left is reasonably chosen in the sense of a semi-classical approximation.

We now translate the basic Boltzmann equation (E.33) to equations for the Stokes
parameters. A convenient form is obtained with the results of the previous section. We
normalize the Stokes parameters (generalizing (8.75)) as follows

δρ(q,n) = −q
∂ρ(0)

∂q

1

2
[Θ12 + Uσ1 + V σ2 +Qσ3]. (E.34)

As we shall see, the equations for the Stokes parameters Θ(q, η), etc, contain q only as a
parameter, because of the energy independence of the Thomson cross section. Therefore
they satisfy the same equations as the integrated quantities, defined similarly to (8.72))
by

1

2
[Θ12 + Uσ1 + V σ2 +Qσ3] =

∫
δρq3dq

4
∫
tr(ρ(0))q3dq

.

Now, we use the results of Sect. E.1.2, where we showed that that the transformation
δρ(q,n′) → B(n,n′)δρ(q,n′)B†(n,n′) corresponds to

S(n′) → 4

10
P(n,n′)S(n′) + (Θ, 0, 0)T . (E.35)

Recall S(n) = (Θ, Q+ iU,Q− iU)T (n). The Stokes parameter V satisfies an uncoupled
homogeneous equation (without source terms). Hence V = 0 is a solution, and this is
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the right one if the radiation field is unpolarized at some early time. For S(q,n, η) we
obtain the following Boltzmann equation :

L[S] = axeneσT

{

−S(n) + 1

10

∫

dΩ′
P(n,n′)S(n′) +

[∫
dΩ′

4π
Θ(n′) + n ·V

]

(1, 0, 0)T
}

,

(E.36)
where L is the Liouville operator, given by

L − (∂η + ni∂i) = (1, 0, 0)T ×
{

Φ′ + ni∂iΨ : scalar metric perturbations;
H ′

ijn
inj : tensor metric perturbations.

(E.37)

The last term in (E.36)is the dipole contribution, which affects only Θ. This form of
the B-equation, with the integral kernel given by (E.28) and (E.29) in terms of spin
harmonics, will be very useful for a harmonic analysis.

E.3 Harmonic decompositions

In Fourier space we perform a decomposition of the Stokes parameters S(k,n, η). For
the special direction (001) of the mode vector k we set

Θ(η,k,n) =
∑

l

2∑

m=−2

θ
(m)
l (η, k)(−i)l

4π

2l + 1
Ylm(n), (E.38)

(Q± iU)(η,k,n) =
∑

l

2∑

m=−2

(E
(m)
l ± iB

(m)
l )(−i)l

4π

2l + 1
±2Yl,m(n). (E.39)

The restriction |m| ≤ 2 is a consequence of the form of the integral kernel (E.29). The
collision integral in (E.36) can be expressed in terms of the l = 2 moments:

∫

Pm(n,n
′)S(n′) = (−i)2

√

4π

5








(θ
(m)
2 −

√
6E

(m)
2 )Y2m(n)

−
√
6(θ

(m)
2 −

√
6E

(m)
2 ) 2Y2,m(n)

−
√
6(θ

(m)
2 −

√
6E

(m)
2 ) −2Y2,m(n)








. (E.40)

Therefore, the three components of (E.36) become (recall τ ′ = axeneσT )

L[Θ] = −τ ′Θ(n) + τ ′
2∑

m=−2

[ 1

10
(θ

(m)
2 −

√
6E

(m)
2 )(−i)2

4π

5
Y2m(n) + δm,0θ

(0)
0

+ Doppler term
]

(E.41)

(there are no tensor (m = ±2) contributions to the Doppler term; scalar (m = 0)
contribution = −ik̂ · nVb), and

L[Q± iU ] = −τ ′(Q± iU)(n) + τ ′
2∑

m=−2

[

−
√
6
1

10
(θ

(m)
2 −

√
6E

(m)
2 )(−i)2

4π

5
±2Y2,m(n)

]

.

(E.42)
From now on we consider only scalar and tensor perturbations, indexed by S and λ = ±2,
respectively. Let1

Hijn
inj =

∑

λ=±2

Hλ(η, k)(−i)2
√

4π

5
Y2λ(n), P (m) :=

1

10
(θ

(m)
2 −

√
6E

(m)
2 ), (E.43)

1Hλ(η, k) is related to hλ(η, k), introduced in (9.87), by Hλ(η, k) = −
√

2/3hλ(η, k).
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then we can write (E.41), (E.42) in the form

Θ(S)′ + (ik · n+ τ ′)Θ(S) = −Φ′ + ik · nΨ
+ τ ′[θ

(0)
0 − ik̂ · nVb + P (0)(−i)2

4π

5
Y2,0(n)],

Θ(λ)′ + (ik · n+ τ ′)Θ(λ) = (τ ′P (λ) −H ′
λ)(−i)2

4π

5
Y2λ(n); (E.44)

(Q(S) ± iU (S))′ + (ik · n+ τ ′)(Q(S) ± iU (S)) = −τ ′
√
6P (0)(−i)2

4π

5
Y2,0(n),

(Q(λ) ± iU (λ))′ + (ik · n+ τ ′)(Q(λ) ± iU (λ)) = −τ ′
√
6P (λ)(−i)2

4π

5
±2Y2,λ(n).

(E.45)

To this we add the following remarks. (i) Hλ is independent of λ. This follows from
Einstein equation if the anisotropic stress for tensor modes is independent of λ (see
later). It is, however, not a priori excluded that there exists some chirality, but we will
ignore this. (ii) In this case the source terms (P (λ), Hλ in the equations above are
independent of λ. Indeed, we shall see that the moment equations are invariant under
λ → −λ, if the moments are kept, except for B

(λ)
l → −B

(λ)
l .

Everything that follows will be deduced from these equations.

E.4 Integral representations for tensor

perturbations

The previous equations for the components of S(S,T ) are all of the form y′+g(x)y = h(x).
As in Sect. 9.3 we have for instance

Θ(λ)(η0,k,n) =

∫ η0

0

dηe−τ(η,η0)(−H ′ + τ ′P (2))(−i)2
4π

5
Y2λ(n)e

−ik·n(η0−η). (E.46)

From this we want to derive an integral representation for the moments θ
(λ)
l defined in

(E.38). Using the orthonormality of the spherical harmonics we have

(−i)l
4π

2l + 1
θ
(λ)
l =

∫

Y ∗
lλ(n)Θ

(λ)(k,n)dΩn. (E.47)

Here, we have to insert the integral representation (E.46). To proceed, and also for
similar calculations for the other multipoles, we need a decomposition of sYJM(n)e−ik·n

in terms of spin harmonics. If k̂ = e3 = (0, 0, 1) this is of the form

sYJM(n)e−ik·n =
∑

l,m

c
(sJM)
lm (k) sYlm(n). (E.48)

The expansion coefficients are given by

c
(sJM)
lm (k) =

∫

sYlm(n) sYJM(n)e−ik·ndΩn. (E.49)

Using the well-known expansion of e−ik·n in terms of spherical harmonics, we get

c
(sJM)
lm (k) =

√
4π
∑

L

√
2L+ 1(−i)LjL(k)

∫

sYlm sYJMYL0dΩn. (E.50)
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This will be worked out below for J = 2, s = 0,±2. (For s = 0 this was already done
in Sect. 9.3.)

From the Clebsch-Gordan series and the definition (E.12) of the spin-harmonics one
obtains the following useful spherical integral

∫

−m′Y ∗
lm −m′

1
Yl1m1 −m′

2
Yl2m2

dΩ =

√

(2l1 + 1)(2l2 + 1)(2l + 1)

4π(2l + 1)

× (l1m
′
1l2m

′
2|lm)(l1m1l2m2|lm). (E.51)

Especially, we have in terms of 3j-symbols

∫

sY
∗
lm sY2λYL0dΩ =

[
(2l + 1)5(2L+ 1)

4π

]1/2(
l 2 L
s −s 0

)

(−1)m
(

l 2 L
−m λ 0

)

.

(E.52)
With a table of Clebsch-Gordan coefficients and repeated use of recursion relations for
spherical Bessel functions one finds the useful expansions:

(−i)2
4π

5
Y2λ(n)e

−ixk̂·n =
∑

l

√

4π(2l + 1)(−i)lα
(λ)
l (x)Ylλ(n) (E.53)

(−i)2
4π

5
±2Y2,λ(n)e

−ixk̂·n =
∑

l

√

4π(2l + 1)(−i)l(ε
(λ)
l (x)± iβ

(λ)
l (x)) ±2Yl,λ(n),

(E.54)

with

α
(±2)
l (x) =

√

3

8

(l + 2)!

(l − 2)!

jl(x)

x2
, (E.55)

ε
(±2)
l (x) =

1

4

[

−jl + j′′l + 2
jl
x2

+ 4
j′l
x

]

, (E.56)

β
(±2)
l (x) = ±1

2
(j′l + 2jl/x). (E.57)

Together with (E.46) and (E.47) we obtain the integral representations

θ
(λ)
l (η0, k)

2l + 1
=

∫ η0

0

dηe−τ(η,η0)(−H ′ + τ ′P (2))α
(λ)
l (k(η0 − η)), (E.58)

E
(λ)
l (η0, k)

2l + 1
= −

√
6

∫ η0

0

dηe−τ(η,η0)τ ′P (2)ε
(λ)
l (k(η0 − η)), (E.59)

B
(λ)
l (η0, k)

2l + 1
= −

√
6

∫ η0

0

dηe−τ(η,η0)τ ′P (2)β
(λ)
l (k(η0 − η)). (E.60)

E.5 A closed system of equations for H and P (2)

From (E.58) – (E.60) we see that all tensor multipoles are determined, once we know H
and P (2). We now derive a closed system for these perturbation amplitudes.

For P (2), defined in (E.43), we obtain from (E.58) and (E.59) for l = 2, together with
(E.55) and (E.56),

P (2) =
3

2

∫ η

0

dη′e−τ

[

−H ′ j2(x)

x2
+ τ ′P (2)

(
2j2(x)

x2
+ j0(x)− 2

j1(x)

x

)]

(E.61)
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(x := k(η− η′)). This is an integral equation for P (2), involving the metric perturbation
H . We now derive a closed equation for this quantity, by making use of the Einstein
equation (9.83)

H ′′
ij + 2

a′

a
H ′

ij + k2Hij = 8πGa2Π(T )ij . (E.62)

The anisotropic stress is dominated by neutrino fluctuations because of free stream-
ing, while photons have a short mean free path. Therefore we can use (9.86), but for
neutrinos:

Π(T )ij = pν · 12
∫

[ninj −
1

3
δij ]Θ

dΩ

4π
. (E.63)

Expanding Θ as in (E.38), one can derive

ninjΠ(T )ij =
8

5
pν
∑

λ=±2

N
(λ)
2 (−i)2

√

4π

5
Y2λ(n), (E.64)

where N
(m)
l denote the neutrino multipole moments. Now we contract (E.62) with ninj

and use beside (E.64) also (E.43) to get

H ′′
λ + 2

a′

a
H ′

λ + k2Hλ = 8πGa2
8

5
pνN

(λ)
2 . (E.65)

Finally, we apply (E.58) for neutrinos (no collision term) to get the following basic
integro-differential equation for H (Hλ is independent of λ = ±2):

H ′′ + 2
a′

a
H ′ + k2H = −24fν(η)

(
a′

a

)2 ∫ η

0

dη′H ′(η′)
j2(k(η − η′))

[k(η − η′)]2
, (E.66)

where fν(η) is the fraction of the total energy in neutrinos:

fν(η) =
ρν(η)

ρ(η)
=

fν(0)

1 + a(η)/aeq
,

fν(0) =
Ων

Ωγ+Ων
≃ 0.405; for a/aeq ≪ 1 we have fν(η) ≃ fν(0). This equation can even be

solved analytically if the modes enter the horizon during the radiation dominated phase
[81].

The generalization of the previous expression (9.99 ) for the tensor contribution to
the TT correlation, including collisions and polarization effects, is

CTT
l = π

(l + 2)!

(l − 2)!

∫ ∞

0

dk

k
P (prim)
g (k) (E.67)

×
∣
∣
∣
∣

∫ η0

ηi≈0

dηe−τ τ
′P (2)(η, k)−H ′(η, k)

H(ηi, k)

jl(k(η0 − η))

[k(η0 − η)]2

∣
∣
∣
∣

2

. (E.68)

E.6 Boltzmann hierarchies

The Boltzmann hierarchies for scalar and tensor perturbations can be read off from
(E.44) and (E.45). Beside the harmonic decompositions (E.38) and (E.39) one has to
use for expressing k·n sYl,m(n) as a sum of spin harmonics. Note that k·n = (4π/3)1/2Y10.
With a table of Clebsch-Gordan coefficients one readily finds

√

4π

3
Y10Ylm =

cs,l,m
√

(2l + 1)(2l − 1)
sYl−1,m

− ms
√

(2l + 1)(2l − 1)
sYl,m +

cs,l+1,m
√

(2l + 1)(2l − 1)
sYl+1,m, (E.69)
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Figure E.1: Temperature autocorrelations for ΛCDM models. From [55].

with

cs,l,m =

√

(l2 −m2)(l2 − s2)

l2
. (E.70)

This gives, for instance, for ℓ ≥ 2, m ≥ 0:

E
(m)′

ℓ = k

[

c2,ℓ,m
(2ℓ− 1)

E
(m)
ℓ−1 −

2m

ℓ(ℓ+ 1)
B

(m)
ℓ − c2,ℓ+1,m

(2ℓ+ 3)
E

(m)
ℓ+1

]

− τ ′[E
(m)
ℓ +

√
6P (m)δℓ,2] ,

B
(m)′

ℓ = k

[

c2,ℓ,m
(2ℓ− 1)

B
(m)
ℓ−1 +

2m

ℓ(ℓ+ 1)
E

(m)
ℓ − c2,ℓ+1,m

(2ℓ+ 3)
B

(m)
ℓ+1

]

− τ ′B
(m)
ℓ . (E.71)

For parity reasons, the source P (2) enters only in the E-mode quadrupole. One also
sees that for m = 0 the B-modes do not couple to the E-modes, hence B

(0)
ℓ = 0. The

equations for m = −|m| show that E
(−|m|)
ℓ = E

(|m|)
ℓ , B

(−|m|)
ℓ = −B

(|m|)
ℓ (P (−2) = P (2)).

We conclude this appendix with numerical results (Figs. E.1, E.2) for some of the
angular power spectra CXX

l , taken from [55].
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