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In 2004 I started my graduate studies at ETH Zuerich, Switzerland. Part of the course
requirement was a 2 semester course on Quantum Mechanics which happened to be lectured
by Prof. Froehlich and was (over large sections) basically a course in applied group theory.
Since the latter was new for many of us we struggled and were quite happy when Professor
Graf offered a lecture just on that: the basics of group theory and its application for SU(2)
and Sn (particularly relevant in Quantum mechanics).

It was an eye-opening course and - thanks to my good friend Thomas Willwacher - lots of
fun. Thomas would sit for hours with me, explaining all the little details. It was the best
time of my graduate studies in physics and so I hope that my notes will add not only to a
better understanding but also contribute to just having fun with the physics in Quantum
Mechanics.

1 Context

To my knowledge there are 3 ways to tackle a problem in physics:

1. we can try to solve the differential equations analytically (which often is not possible);

2. we can do numerical calculations using a computer;

3. we can exploit the problems symmetry and use group theory to solve the problem

Even though the 3rd option is ignored in most physics courses we encounter it more often
than we think:

• The Hydrogen Atom: when we solve the hydrogen atom in quantum mechanics,
we find the eigenfunctions for the Hamilton operator H

Hψn,l,m,m̃ = Enψn,l,m,m̃ (1)

3 of those 4 quantisation numbers have a meaning that comes straight from the
problem’s symmetry with respect to rotation.
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• Fermions & Bosons:

• electron wave-function in a crystal: when we solve the quantum-mechanical
problem for a periodic potential V (x) (i.e. a crystal) we have to solve the equation:(

p2

2m
+ V (x)

)
︸ ︷︷ ︸

H1e

Φn(x) = EnΦn(x) (2)

and are thought that the solution to that problem are the so called Bloch functions,
which for a one dimensional potential with periodicity R can be written as follows:

Φk(x) + exp(ikx) · uk(x) (3)

where k := 2π/R and uk(x) is a periodic function. Again this result is directly derived
from the problems translational symmetry.

• band structure

• Zeemann effect

Those are just a few prominent examples. Many more can be made. The point I’m trying
to make here is simply that because most problems in physics have a symmetry, their
solution reflects that and in order to understand it better it is worth spending some time
on trying to understand symmetry and how to express it mathematically - which group
theory allows us to do.

So symmetry is relevant in physics (I tried to show that); the language with which we
can express symmetry is contained in group theory (I hope that for now you will believe
that); my strategy is to introduce basics about group theory and then go on to the basics
of representations; after that I’d like to have a look at the groups SU(2) and Sn which are
particularly important in QM.
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2 Groups and Homomorphisms

Motivation: A representation T on a groupG is a homomorphism T : (G, ◦) −→ (GL(V ), ◦),
where V is a C-vectorspace. That’s the motivation to have a closer look at those structures
(groups) and the maps between them, that respect this structure (homomorphisms);

A group G is defined as a set of elements {a, b, c, ...} for which an operation ? is defined:

? : G×G −→ G

(g, h) 7−→ ?(g, h) ≡ gh

This operation is defined between any 2 elements of the group and it has the following
properties:

• Associativity: for all a, b, c ∈ G the following is true: a(bc) = (ab)c

• Unit element: G contains an element e known as identity of unit element such
that ea = a ∀ a ∈ G

• Inverse element: for all a ∈ G there exists a corresponding element a−1 ∈ G (called
inverse element such that a−1a = e

If the group is such that for all a, b ∈ G the relation ab = ba holds true than the multipli-
cation is called commutative and the group itself is called Abelian. A subgroup G̃ of
G is a non-empty subset G̃ ⊆ G that is itself a group (which means it must be closed!).
The unit element {e} is a trivial subgroup of any group.

Exercise: Show first, that aa−1 = e (rather difficult), with this that ae = a (medium), and
finally that the unit element is unique (easy). If you can, try and find an example of a set
that fulfills the very similar looking axioms ae = a and a−1a = e that is not a group!

Examples Here are some examples that are relevant for us in the future:

• Permutation Group Sn: this is the set of all bijective maps π : {1, 2, 3, ..., n} −→
{1, 2, 3, ..., n}. The product of this group is defined canonically: (π1 ◦ π2)(i) :=
π1(π2(i)).

• General Linear Group GL(V ): for every R/C vector-space V the set of all in-
vertible, linear maps α : V −→ V forms with the canonical multiplication a group
called GL(V ). If dim(V ) = n is finite, then by choosing a basis in V we can define
GL(n,R/C) := {all invertible real/complex valued n× n matrices} (this is a consis-
tent definition since V ' Rn/Cn).

• SU(2) := {A ∈ GL(2,C) : detA = 1 and A∗A = 1}
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• SO(3) := {A ∈ GL(3,R) : detA = 1 and ATA = 1}

• (R2,+)

A counter-example is (Z, ·), wich is not a group.

A homomorphism φ between two groups G and H is a map φ : G −→ H that respects
the group multiplication. This means that φ(ab) = φ(a)φ(b). If φ is bijective, then it is
called an Isomorphism. The Kernel of φ is the set of all Elements in G that are mapped
onto the unit-element in eH ∈ H:

Kerφ := {g ∈ G : φ(g) = eH}

The Image of φ, on the other hand, is the set of all elements that is reached by the map:

Imφ := {φ(g) : g ∈ G}

Exercise: show that (i) φ(eG) = eH and that φ(g)−1 = φ(g−1) (ii) Kerφ / Imφ are a
subgroup of G / H (iii) φ injective ⇔ Kerφ = eH

From this it follows easily that G is isomorphic to the homomorphism’s image Imφ ⊆ H
if and only if Kerφ = {eH} or in short

G ' Imφ ⇔ Kerφ = {eH} (4)

Exercise: Let G be a group and H ⊆ G be a subgroup of G. (i) show that

g
A∼ g̃ :⇐⇒ ∃ h ∈ H such that g = hg̃

g
B∼ g̃ g = g̃h

A∼ and
B∼ are equivalence-relations (i.e. that they are reflexiv, symmetric and transitiv) (ii)

show that [g]A = Hg (called right coset) and similary that [g]B = gH (called left coset)
for all g ∈ G

With this it is easy to see that G/H := {[g]A/B : g ∈ G} as the set of all right / left cosets
is well defined. At this point it makes sense to try and define canonically a multiplication
on G/H by [g] · [h] := [g · h]. Unfortunately this multiplication is only well defined if H is
a invariant subgroup which is a subgroup where right and left cosets coincide.
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Exercise: show that if H ⊆ G is an invariant subgroup, the multiplication [g] · [h] := [g · h]
on G/H is well defined.

with that it is easy to define the factor group: Let G be a group and H be an invariant
subgroup; then G/H becomes with the canonical multiplication a group itself called the
factor group.

Proposition Let G, H be groups and let φ : G −→ H be a homomorphism between these
groups; then Kerφ is an invariant subgroup;
Proof as we already know, Kerφ is a subgroup of G; it remains to proof that (Kerφ) · g =
g · (Kerφ) for all g ∈ G
”⊆”: let k ∈ Kerφ; then k · g = (g · g−1) · k · g = g · (g−1 · k · g)︸ ︷︷ ︸

∈Kerφ

Main Theorem Let G, H be groups and let φ : G −→ H be a homomorphism between
these groups; then G/Kerφ ' Imφ

Proof the homomorphism [g]
Φ7−→ φ(g) is well defined (exercise), surjective (trivial) and

injective (to proof: KerΦ = [eG], ”⊇” is trivial, ”⊆” lets consider [g] ∈ KerΦ =⇒ φ(g) =
eH =⇒ g ∈ Kerφ = [e] =⇒ [g] = [e] (that Kerφ = [e] we know from our previous thoughts
about left and right cosets: we know that for an invariant subgroup H we can write for
any g ∈ G that [g] = gH = Hg and since here the invariant subgroup is Kerφ we know
that [e] = eKerφ = Kerφ)

summary: We learned that the kernel Kerφ of a homomorphism φ on a group G is always
not only a subgroup but an invariant subgroup. This allows us not only to define the
factor-group G/Kerφ but show that it is isomorphic to the image Imφ.
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3 Group-algebra and class-functions

Motivation Each representation can be assigned a function f : G −→ C, which is an
element of the group-algebra C [G]. This function f will become central in analyzing the
representation itself and it has interesting properties. One of these properties is, that it
is constant on the conjugacy classes of G and is hence called a class-function. This is the
motivation for us to introduce all this terminology.

Let G be a group; the set {f : G −→ C} of all complex valued functions on G is called
the group-algebra 1 C [G]. In C [G] addition ”+” and multiplication ”*” are defined
point-wise. While the definition of the former is done canonically, the latter is defined by
convolution:

(f1 ∗ f2)(g) =
∑
h∈G

f1(g · h−1) · f2(h) (5)

Furthermore the expression:

〈f, h〉 :=
1

|G|
∑
g∈G

f(g)h(g) (6)

defines a scalar product on C [G].

Exercise: (i) show that the multiplication on C [G] is well defined, i.e. that associativity
and distributivity apply; (ii) show that the the functions δg ∈ C [G] with δg(h) = 1 if h = g
and δg(h) = 0 else, forms a basis in C [G]; (iii) show that (δh ∗ f)(g) = f(h−1g) 2 and
(f ∗ δh)(g) = f(gh−1); (iv) show that δg ∗ δh = δgh

3;

The conjugacy classes of groupG are defined by the equivalence-classes of the equivalence-
relation:

g ∼ g̃ :⇐⇒ ∃h ∈ G such that g = hg̃h−1 (7)

Functions f ∈ C [G] that are constant on the conjugacy classes are called class-functions.

1A K-algebra A is a C-vector space with regard to (A,+). In addition there is a multiplication ”∗”
defined on (A, ∗) for which associativity and distributivity apply.

2(δh ∗ f)(g)
Def.
=
∑
h̃∈G

(
δh(g · h̃−1) · f(h̃)

)
; the only non-zero term contributing to the sum is the one

for which g · h̃−1 !
= h holds true; the rest is obvious

3δg ∗ δh(g̃) = δg(g̃h
−1) is obvious from exercise (iii) by setting f ≡ δg; this expression is only non-zero

for g̃h−1 = g which completes the proof
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Example: In order to get a better feeling for this equivalence relationship, lets have a look
at two groups and their conjugacy classes:

• the permutation class S3

• R2

Main Theorem The class-functions K of C [G] form the center4 Z (C [G]) of G

Proof let f ∈ K be choosen arbitrarily

by definition f(hgh−1) = f(g) ∀ h, g ∈ G
g̃≡hg⇐⇒ f(g̃h−1) = f(h−1g̃) ∀ h, g̃ ∈ G

see above exercise⇐⇒ f ∗ δh = δh ∗ f
Span(δh)=C[G]⇐⇒ f ∗ f̃ = f̃ ∗ f ∀ f̃ ∈ C [G]

4The center of a group G is the set of all elements that commute with every other element of the group
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4 Representations and Schur’s Lemmata

Let’s start with a number of definitions that will be needed for the rest of this chapter: a
representation T of a group G on a C-vectorspace V is a homomorphism T : (G, ◦) −→
(GL(V ), ◦). T is called a unitary representation on (V, 〈·, ·〉) if it respects the scalar
product:

〈Tg(u), Tg(v)〉 = 〈u, v〉 ∀ u, v ∈ V and ∀ g ∈ G (8)

Let now U ⊆ V be a subspace of V ; if Tg(U) ⊆ U ∀ g ∈ G, then U is called an invariant
subspace of V with respect to T . Let now U 6= {0}; if U contains no invariant subspaces
with respect to T except for the trivial ones (i.e. {0} and itself), then T |U is called an
irreducible representation.

Let T and T̃ be two representation on V and Ṽ respectively. They are called equivalent
representations if there is an Isomorphism L : V −→ Ṽ such that ∀ g ∈ G the following
holds true:

L ◦ Tg = T̃g ◦ L which means that

V
L−−−−→ Ṽ

Tg

x xT̃g
V −−−−→

L
Ṽ

is commutative (9)

This allows us now to define the character χT of a representation T as:

χT (g) := tr (Tg) (10)

It is an element of the group-algebra C and obviously well defined: let T̃ be a representation
equivalent to T :

χ
T̃

(g)
Def
= tr

(
T̃g

)
equ. 9

= tr
(
L ◦ Tg ◦ L−1

)
= tr

(
L−1 ◦ L ◦ Tg

)
= tr (Tg)

Def.
= χT (g) (11)

The interesting thing is now, that any representation is equivalent to a unitary one if the
basis in V is chosen appropriately (without proof). To make things easier we shall from
here on assume the following:

• that the representations at hand are unitary (without loss of generality);

• that the groups on which they act are finite (without loss of generality and in order
to avoid the rather technical Haar measure);

• that the vector spaces on which they are defined are finite dimensional (unless stated
otherwise);
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Theorem 1. Let T be a unitary representation of G on V , where V is a Hilbertspace;
Then T can be completely decomposed into irreducible representations Tj

T = T1 ⊕ T2 ⊕ T3 ⊕ ... (12)

where the same irreducible representation can appear several times.

Proof. if T is irreducible we are already done; if T is not irreducible then there exists a
W ⊆ V which is invariant under T ; since T is unitary the following statement holds true
for all g ∈ G:

〈w, v〉 = 〈Tg(w), Tg(v)〉 for all w, v ∈ V (13)

Naturally this expression holds true in particular for w ∈ W and v ∈ W⊥; Since Tg(w) ∈
W (by virtue of W being an invariant subspace), Tg(v) must be in W⊥ (since 〈w, v〉 =
〈Tg(w), Tg(v)〉 = 0); this means that W⊥ is an invariant subspace under T as well; This
decomposition can be carried out until T |W⊆V is irreducible.

Even though this decomposition is not unique, the multiplicity nα of a certain irre-
ducible representation Tα in this sum is! On the following pages we would like to work
our way to a result, that allows us to determine nα with the help of the charakter of T and
Tα according to:

nα = 〈χTα , χT 〉 (14)
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Schur’s Lemmata

Lemma 1. (a) Let T and T̃ be irreducible representations on V and Ṽ respectively; let
furthermore L : V −→ Ṽ be linear such that

L ◦ Tg = T̃g ◦ L ∀ g ∈ G (15)

then L = 0 or L is a isomorphism (i.e. T is equivalent to T̃ ).

(b) Let T be an irreducible representation on V and let L : V −→ V be linear with

L ◦ Tg = Tg ◦ L ∀ g ∈ G (16)

then L = λ idV .

Proof. (a) 1) Ker(L) is invariant with respect to T: have to show that for

v ∈ Ker(V ) =⇒ Tg(v) ∈ Ker(L)
Deffinition⇐⇒ L(Tg(v)) = 0 (17)

since L(Tg(v))
equ.15

= T̃g(L(v))
v∈Ker(V )

= T̃g(0)
T̃ linear

= 0, equ.17 is obvious.

2) Im(L) is invariant with respect to T̃ : have to show that for any g ∈ G

v ∈ V =⇒ T̃g(L(v)) ∈ Im(L)
Deffinition⇐⇒ ∃w ∈ V such that T̃g(L(v)) = L(w) (18)

since T̃g(L(v))
equ.15

= L(Tg(v)), equ.18 is obvious when choosing w := Tg(v).

3) since for an irreducible representation the only invariant subspaces are {0} and the
vectorspace itself we can argue as follows

Ker(L) is invariant w. r. to T ∧ Im(L) is invariant w. r. to T̃

⇓ T/T̃ irred. ⇓

{
A︷ ︸︸ ︷

Ker(L) = {0} ∨
B︷ ︸︸ ︷

Ker(L) = V } ∧ {
C︷ ︸︸ ︷

Im(L) = {0} ∨
D︷ ︸︸ ︷

Im(L) = V }

m

(A ∧ C) ∨ (B ∧ C) ∨ (B ∧ D)︸ ︷︷ ︸
L=0

∨ (A ∧ D)︸ ︷︷ ︸
L is Isomorphism

(19)

(b) from equ.(16) it follows, that for any λ ∈ C the expression (L − λ · idV )Tg = Tg(L −
λ · idV ) holds true as well. With Lemma 1b it follows that L − λ · idV = 0 or that
L − λ · idV is an isomorphism. I now choose λ to be an eigen-value of L. It follows
that L− λ · idV cannot be an isomorphism and that hence L = λ idV .
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Quite naturally the question is now how one can possibly find such an L (as mentioned in
the previous Lemma) that commutes with T and T̃ . The answer to that question is given
in the next theorem

Lemma 2. (a) Let T and T̃ be irreducible representations of G on V and Ṽ respectively;
let furthermore A : V −→ Ṽ be linear and

L :=
1

|G|
∑
g∈G

T̃g−1ATg (20)

then either L = 0 or T is equivalent to T̃ .

(b) Let T be an irreducible representation on V and let A and L be as in a); then

L =
tr(A)

dim(V )
· idV (21)

Proof. (a) All we need to show is that LTh = T̃hL for any h ∈ G:

LTh
Def
=

 1

|G|
∑
g∈G

T̃g−1ATg

Th =
1

|G|
∑
g∈G

T̃g−1ATgh =
1

|G|
∑
g̃∈G

T̃hg̃−1ATg̃

= T̃h ·

 1

|G|
∑
g̃∈G

T̃g̃−1ATg̃

 = T̃h L

With Lemma 1a) the proposition is obvious.

(b) With Lemma 1(b) we know that

L = λ idV =⇒ tr(L) = λ dim(V ) (22)

From its definition it is obvious that

tr(L) =
1

|G|
∑
g∈G

tr
(
T̃g−1ATg

)
=

1

|G|
∑
g∈G

tr
(
TgT̃g−1A

)
= tr(A) (23)

From equ. 22 and equ. 23 that λ = tr(A)
dim(V ) and therefore (Lemma 1(b)) the proposition

follows
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If we now choose A cleverly, we can actually show that the matrix-element-functions (T )ij
and (T̃ )ij ∈ C [G] are orthogonal to each other for non-equivalent representations.

Lemma 3. (a) Let T and T̃ be irreducible representations of G on V and Ṽ respectively;
if T is not equivalent to T̃ then

〈(T̃ )ij , (T )kl〉 = 0 (24)

(b) Let T be an irreducible representation on V ; then

〈(T )ij , (T )kl〉 =
1

dim(V )
δikδjl (25)

Proof. (a) let ei be basis in V , ẽj basis in Ṽ , let α and β ∈ N be arbitrary but fixed; if we
know define A as follows

A : V −→ Ṽ

ei 7−→ δαi ẽβ

then it is easy to see that A is linear (projection); with L defined as in Lemma 2(a) we
can therefore write:

Lij
Def.
=

1

|G|
∑
g∈G

(
T̃g−1ATg

)
ij

=
1

|G|
∑
g∈G

(T̃g−1)ik(A)kl (Tg)lj (26)

Since T̃ is linear we know that T̃g−1 =
(
T̃g

)−1
and since T̃ is also unitary, we know

that
(
T̃g

)−1
=
(
T̃g

)∗
≡
(
T̃g

)T
. With this, and knowing that (A)kl = δkβδlα, we can

continue equ. a:

Lij
equ. a

=
1

|G|
∑
g∈G

(T̃g)ki δkβ δlα (Tg)lj =
1

|G|
∑
g∈G

(T̃g)βi (Tg)αj ≡ 〈(T̃ )βi, (T )αj〉 (27)

from Lemma 2(a) we know that if T̃ and T are not equivalent, then L = 0 and therefore
especially (L)ij = 0 for i, j ∈ N which proofs the Lemma;

(b) from Lemma 2(b) we know that

Lij =

(
tr(A)

dim(V )
idV

)
ij

=
δβα

dim(V )
δij (28)

With equ.a the Lemma is proven.
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This leads us to our key result:

Theorem 2. (a) Let T and T̃ be irreducible representations of G on V and Ṽ respectively;
if T is not equivalent to T̃ then

〈χ
T̃
, χT 〉 = 0 (29)

(b) Let T and T̃ be irreducible representations on V which are equivalent; then

〈χ
T̃
, χT 〉 = 1 (30)

Proof. (a)

〈χ
T̃
, χT 〉

Def. ??
=

1

|G|
∑
g ∈G

χ
T̃

(g) χT (g) (31)

Def. ??
=

1

|G|
∑
g ∈G

tr(T̃g) tr(Tg) (32)

Def. ??
=

1

|G|
∑
g ∈G

{
Σi(T̃g)ii Σj(Tg)jj

}
(33)

=
∑
i,j

 1

|G|
∑
g ∈G

(T̃g)ii (Tg)jj

 (34)

Def. ??
=

∑
i,j

〈(T̃ )ii, (T )jj〉 (35)

equ. ??
=

 0 for T̃ , T not equivalent

Σi,j
1

dim(V )δijδij = Σi
1

dim(V ) = 1 for T̃ , T equivalent
(36)

(b) see (a)

The cool thing in this last step is that by going from Lemma 3 to the main theorem just
proven, we managed to go from (dimV )2 functions on G to a single class-function on G
which still characterizes the irreducible representations well enough to extract how many
are contained in a given representation T :
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Corollary 1. (a) The irreducible representations of a finite group are finite dimensional.

(b) The irreducible representations of an Abelian group are 1-dimensional.

(c) Let T be a representation of G on V and Tα irreducible representation of G; the
multiplicity nα of Tα in T is given by:

nα = 〈χTα , χT 〉 (37)

(d) Let T be a representation of G on V and nα the multiplicity of the irreducible repre-
sentations in its decomposition; then the following relation holds true:

〈χT , χT 〉 =
∑
α

n2
α (38)

Proof. (a) Let T be irreducible representation of G on V 6= {0} (not necessarily finite-
dimensional) with |G| <∞; if we now pick v ∈ V with v 6= 0 arbitrary but fixed and
define W := span {Tg(v) : g ∈ G}, then the following statements hold true:

• W is finite dimensional because its generating system is finite.

• W 6= {0} and W ⊆ V is invariant under T
T irred.
=⇒ V = W .

This proofs the assertion.

(b) let T be an irreducible representation of G on V 6= {0} with G being Abelian; for
h ∈ G arbitrary but fixed it is obvious that Tg Th = Tgh = Thg = Th Tg for all g ∈ G;
with Lemma 1 we know that Th = λ idV ; since T is irreducible (i.e. it has no invariant
subspaces except for V and {0}), it has to be one-dimensional;

(c) as proven at the beginning of this chapter it is possible to write T as a sum of its
constituent irred. representations: T =

⊕
nαTα. Since χT1⊕T2 = χT1 + χT2 holds true

trivially, we can write:

〈χTα , χT 〉 = 〈χTα , χ⊕
nβTβ
〉 = 〈χTα ,

∑
β

nβ χTβ 〉 =
∑
β

nβ 〈χTα , χTβ 〉︸ ︷︷ ︸
δαβ

Theo. 2
= nα (39)

(d) as in (c) we can write:

〈χT , χT 〉 = 〈χ⊕
nαTα

, χ⊕
nβTβ
〉 =

∑
α,β

nα nβ 〈χTα , χTβ 〉︸ ︷︷ ︸
δαβ

=
∑
α

n2
α (40)
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Corollary 2. (a) the characters χT of a representation are class functions

(b) χT (e) = dim(V )

(c) χ
T⊕T̃

= χT + χ
T̃

(d) χT (g−1) = χT (g)

Proof. (a) exercise - you have to show that for h ∈ G arbitrary but fixed χT (g) =
χT (h−1gh) for all g ∈ G, use definition character and the relation tr(ABC) = tr(CAB).

(b) exercise - use T (e) = id (linearity of T !).

(c) exercise - you have to show that tr(Tg ⊕ T̃g) = tr(Tg) + tr(T̃g) which is easy looking at
the definition of V ⊕ Ṽ .

(d) exercise - look at definition of character and use the fact that Tg is unitary (i.e.

Tg−1 = T−1
g = T T .
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Theorem of Peter Weyl

Having derived the orthogonality relations and some simple Corrolaries following from
them, we now would like to find out more about irreducible representations, their dimen-
sions, their matrix-elements and their characters. In this quest the regular representa-
tion T reg will be very helpful

T reg : G −→ GL (C(G)) (41)

g 7−→ T reg
g with T reg

g (f) := δg ∗ f (42)

This regular representation has a bunch of very interesting properties. Let’s start with two
of them that are fairly easy to see:

Lemma 4. (a) For its character χ
T reg the following relation holds true:

χ
T reg (g) =

{
|G| for g = e
0 otherwise

(43)

(b) Another interesting property of T reg is that it contains each and every irreducible
representation Tα of G. Furthermore the multiplicity nα for Tα in T reg is equal to the
irreducible representation’s dimension dα.

(c) let C, C̃ ⊆ G be conjugation classes in G, arbitrary but fixed; then

|C|
|G|

k∑
α=1

χ
Tα

(C̃)χ
Tα

(C) = δC̃C (44)

Proof. (a) The first assertion is easy to see: χ
T reg (e)

Def.
= tr (T reg(e)) = tr(idC(G)) =

dim(C[G] = |G|. To see that for all g 6= e the character is 0, we only have to remember
that δg ∗ δh = δgh. This means that if we choose the set B = {δg : g ∈ G} as a basis in
C(G)), any T reg(g) with g ∈ G will map each and every basis-element in B onto one
and only one element in B again. For g 6= e we know furthermore that no element in
B is mapped onto itself. That means that the trace of the matrix describing Tg for
g 6= e disappears.

(b) as was shown with the main theorem 1c), the multiplicity nα for Tα in T reg is:

nα = 〈χ
Tα
, χ

T reg 〉 =
1

|G|
∑
g∈G

χ
Tα

(g)χ
T reg (g) (45)

=
1

|G|
χ
Tα

(e)χ
T reg (e) =

1

|G|
dα |G| = dα (46)

(c) without proof
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With those Lemmata we can now tackle the the main theorem of this section, the theorem
of Peter Weyl:

Theorem 3. (a) Let Tα be the set of non-equivalent, irreducible representations of G

with dimensions dα (α = 1, ..., k); then B :=
{
Tαij : α = 1, ..., k and i, j = 1, ..., dα

}
is basis of the group-algebra C[G].

(b) Let M :=
{
χTα : α = 1, ..., k

}
be the set of characters belonging to the above set of

irreducible representations; then M is basis of the set of class-functions in C[G], i.e.
of Z(C[G]).

Proof. (a) For the proof of this assertion we simply have to calculate 〈χ
T reg , χT reg 〉 in two

different ways:

〈χ
T reg , χT reg 〉 =


∑k

α=1 n
2
α

equ. 4
=

∑k
α=1 d

2
α

1
|G|
∑

g∈G χT reg (g)χ
T reg (g) = 1

|G| χT reg (e)χ
T reg (e) = |G|

(47)

It is obvious from its definition that
∑k

α=1 d
2
α is the number of function in B. Those

functions are - according to Schur’s Lemmata - all orthogonal to each other and there-
fore linearly independent. From equ. 47 we also know that

∑k
α=1 d

2
α = |G| which is the

dimension of the space those functions live in. By definition they therefore constitute
a basis.

(b) The set {δC̃C : C, C̃conjugation classes of G} is trivially a basis of Z(C[G]).
according to Lemma 4 the set {χTα : l = 1, ..., k} is generating system of the basis
which means of Z(C[G]) itself. {χTα : l = 1, ..., k} is also linearly independent and
therefore itself a basis.

Corollary 3. (a) A group G has as many non-equivalent, irreducible representations as
it has conjugacy classes.

(b) An Abelian group G has |G| non-equivalent, irreducible representations .

Proof. (a) In theorem 3b) we were able to show that the characters
{
χTα : α = 1, ..., k

}
belonging to the non-equivalent, irreducible representations of G are a basis for the
set of class functions. Therefore there are as many irreducible representations as there
are class-functions.

17



(b) for an Abelian group the there are as many conjugacy classes as the group has elements.
With Corollary 3a) the assertion is self-evident.

With those important tools in mind we can now come to a quite cool theorem that allows
us to explicitly write down the projector of any invariant subspace WTα of a representation
T that contains all of the irreducible representations Tα and is called the isotypical
component. To be more precise: Let T : G −→ GL(V ) be a representation of G on
V ; let Tα be the set of non-equivalent, irreducible representations of G (α = 1, ..., k) with
dimensions dα and multiplicity nα = 〈χ

Tα
, χT 〉; From theorem 1 we know that V can be

written as a direct sum of sub-vector spaces V i
Tα on which T |V iTα ' T

α is irreducible:

V = V 1
T 1 ⊕ V 2

T 1 ⊕ ...⊕ V n1

T 1︸ ︷︷ ︸
WT1

⊕ ... ⊕ V 1
Tk ⊕ V

2
Tk ⊕ ...⊕ V

nk
Tk︸ ︷︷ ︸

W
Tk

(48)

The sum of all the subvectorspaces
⊕

i=1,..,nα
V i
Tα that belong to the same irreducible

representation Tα is called an isotypical component of T .

Theorem 4. The projector PTα with PTα(V ) = WTα is given by:

PTα =
dα
|G|

∑
g∈G

χ
Tα

(g) T (g) (49)

Proof. still need to do that

Knowing the isotypical components of a given representation can be a very useful thing in
physics. Let us e.g. imagine that a given quantum mechanical system has a symmetry group
G and that therefore the system’s Hamilton operator H commutes with the representation
ρ : G −→ GL(V ):

[ρg, H] = 0 for all g ∈ G (50)

Then it is straight forward to show that the WT i (i = 1, ..., k) already block-diaganolize H.

To this end let us look at the invariant subspace U := V i
Tα of ρ and the projector PU :

V −→ U . In order to see that PU commutes with ρ

[ρg, PU ] = 0 for all g ∈ G (51)

let us consider a v 6= 0 in V and its unique decomposition:

v = u︸︷︷︸∈

U

+ w︸︷︷︸∈

U⊥

(52)
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Since U is an invariant subspace of ρ we know that u ∈ U implies ρ(u) ∈ U and since
furthermore ρ is unitary5 we also know that 〈u,w〉 = 0 implies 〈ρ(u), ρ(w)〉 = 0. This can
be summarized as follows:

ρ(v) = ρ(u)︸︷︷︸∈

U

+ ρ(w)︸︷︷︸∈

U⊥

(53)

With this it is trivial to see that PU (ρg(v)) = PU (ρg(u)) + 0 = ρg(u) = ρg(PU (v)) for any
v ∈ V and any g ∈ G.

If we now consider a second invariant subspace Ũ = V j
Tβ

(α 6= β) and the two irreducible

representations T := ρ|U and T̃ := ρ|Ũ along with the linear operator L := PUH :

Ũ −→ U , then Schur’s first Lemma is applicable and L must be either an isomorphism
(which would contradict our assumption α 6= β) or equal to 0:

PUH|Ũ = 0 (54)

Since this line of reasoning is true for any U := V i
Tα and any Ũ = V j

Tβ
as long as α 6= β, it is

safe to say that H will never map a vector v 6= 0 from one isotypical component WTα onto
another one WTβ . But that is just another way of saying that the isotypical components
are invariant subspace for H.

5any representation can be assumed to be unitary without loss of generality
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