Exercise 12.1 Dielectric Susceptibility of Free Electrons

Consider a non-interacting one-dimensional gas of spinless electrons, $\mathcal{H}=\frac{1}{L} \sum_{k} \frac{k^{2}}{2 m} c_{k}^{\dagger} c_{k}$ (with $\hbar=1$). We want to evaluate its linear response to an external scalar potential, i.e. a perturbation of the form $\delta \mathcal{H}=-e \int d x \phi(x, t) n^{-}(x)=-e \int d x \phi(x, t) c^{\dagger}(x) c(x)$.
a) In order to do so, use the Kubo-formula (section 6.1) for the dielectric susceptibility, and show that it can be written as

$$
\begin{align*}
\chi_{e}\left(x-x^{\prime}, t-t^{\prime}\right) & =i \Theta\left(t-t^{\prime}\right)\left\langle\left[\hat{n}_{H}^{+}(x, t), \hat{n}_{H}^{-}\left(x^{\prime}, t^{\prime}\right)\right]\right\rangle_{\mathcal{H}} \\
& =\sum_{q} \int \frac{d \omega}{2 \pi} \underbrace{\sum_{k} \frac{f\left(\epsilon_{k}\right)-f\left(\epsilon_{k+q}\right)}{\omega+\epsilon_{k}-\epsilon_{k+q}+i \eta}}_{\chi(q, \omega)}, \tag{1}
\end{align*}
$$

where $f(\epsilon)$ denotes the Fermi function, and the integrand in the second line is the Fourier-transform $\chi(q, \omega)$ of $\chi\left(x-x^{\prime}, t-t^{\prime}\right)$.
b) The imaginary part of the so-called Lindhard function $\chi(q, \omega)$ obtained in a) encodes the spectrum of the (charge-)excitations that couple to $\phi(x, t)$. Excitations exist only for regions in the $q-\omega$-plane for which $\Im \chi(q, \omega) \neq 0$. Sketch these regions! (Hint: First show that $\chi(q, \omega)$ can be written as

$$
\begin{equation*}
\chi(q, \omega)=\sum_{|k| \leq k_{F}}\left[\frac{1}{\omega+\epsilon_{k}-\epsilon_{k+q}+i \eta}-\frac{1}{\omega-\epsilon_{k}+\epsilon_{k+q}+i 0}\right] \tag{2}
\end{equation*}
$$

Take the continuum limit and obtain $\Im \chi(q, \omega)$ using the Dirac identity

$$
\begin{equation*}
\frac{1}{x \pm i 0}=\mathrm{P} \frac{1}{x} \mp i \pi \delta(x), \tag{3}
\end{equation*}
$$

where P denotes the Cauchy principal value, and integration over x is implied.)

Exercise 12.2 High-Temperature Expansion of the 2D Ising Model

Consider an Ising system on a regular, two-dimensional lattice with energy

$$
\begin{equation*}
H=-J \sum_{\langle i, j\rangle} \sigma_{i} \sigma_{j}-\sum_{i} h_{i} \sigma_{i}, \tag{4}
\end{equation*}
$$

where $\langle i, j\rangle$ denotes pairs of nearest neighbours.
a) Show that in general $\operatorname{Tr} \sigma_{i}^{2 n+1} X=0$, where X denotes any combination of observables (except σ_{i}), and that $\operatorname{Tr} \sigma_{i}^{2 n_{i}} \sigma_{i}^{2 n_{j}} \ldots \sigma_{k}^{2 n_{k}}=2^{N}$, where N is the number of sites.
b) Show that

$$
\begin{equation*}
\chi_{0}:=\left.\frac{1}{N \beta^{2}} \sum_{i, j} \partial_{h_{i}} \partial_{h_{j}} \log Z\right|_{h=0}=1+\frac{1}{N} \frac{\operatorname{Tr} \sum_{i \neq j} \sigma_{i} \sigma_{j} e^{-\beta H_{0}}}{\operatorname{Tr} e^{-\beta H_{0}}} \tag{5}
\end{equation*}
$$

where $Z=\operatorname{Tr} e^{-\beta H}$ and $H_{0}=\left.H\right|_{h=0}$.
b) Using the relation

$$
\begin{equation*}
e^{\beta J \sigma_{i} \sigma_{j}}=\cosh (\beta J)\left(1+w \sigma_{i} \sigma_{j}\right) \tag{6}
\end{equation*}
$$

$w=\tanh \beta J$, discussed in the lecture, expand the numerator and the denominator of the expression for χ in powers of w. Expand the numerator to second order, and the denominator to zeroth order, assuming that each site on the lattice has q nearest neighbours!

