Exercise 8.1 The Ideal Paramagnetic Gas and the Law of Mass Action

The goal of this exercise is to understand the statistical mechanics of a mixture of ideal gases undergoing chemical reactions. An application is an ideal gas where paramagnetic atoms may combine to form molecules whose magnetic moment vanishes.
(a) Consider r different substances A_{1}, \ldots, A_{r} (e.g. $A_{1}=\mathrm{H}_{2}, A_{2}=\mathrm{O}_{2}$, and $A_{3}=\mathrm{H}_{2} \mathrm{O}$) that undergo s chemical reactions

$$
\nu_{1}^{\alpha} A_{1}+\cdots+\nu_{r}^{\alpha} A_{r}=0
$$

where $\alpha=1, \ldots, s$ and $\left\{\nu_{i}^{\alpha}\right\}$ are the stoichiometric coefficients of the reaction α (in the above example we have $s=1$ and $\nu_{1}=2, \nu_{2}=1, \nu_{3}=-1$).

Let N_{i} be the number of particles of the substance A_{i}. Now if the system is materially closed the set of possible variations in the number of particles is given by

$$
d N_{i}=\sum_{\alpha=1}^{s} \nu_{i}^{\alpha} d \lambda^{\alpha}
$$

with independent variations $d \lambda^{1}, \ldots, d \lambda^{s}$. Show that, under constant temperature and pressure, the condition for thermodynamic equilibrium reads

$$
\sum_{i=1}^{r} \nu_{i}^{\alpha} \mu_{i}=0
$$

for each $\alpha=1, \ldots, s$.
(b) Let the substance A_{i} be an ideal gas composed of point particles of mass m_{i} and of binding energy E_{i}. The Hamiltonian for the particles of type A_{i} then reads

$$
H_{i}=\sum_{j=1}^{N_{i}}\left(\frac{{\overrightarrow{p_{j}}}^{2}}{2 m_{i}}+E_{i}\right) .
$$

Compute the grand canonical partition function \mathcal{Z} (fixed temperature, volume, and chemical potentials) of the system and show the law of mass action: At equilibrium one has

$$
\prod_{i=1}^{r}\left\langle N_{i}\right\rangle^{\nu_{i}^{\alpha}}=f^{\alpha}\left(T, V, E_{1}, \ldots, E_{r}\right)=\prod_{i=1}^{r}\left(V a_{i} e^{-\beta E_{i}}\right)^{\nu_{i}^{\alpha}}
$$

for each $\alpha=1, \ldots, s$. Here $a_{i}=\left(2 \pi m_{i} k_{B} T\right)^{3 / 2}$.
(b) Consider now an ideal paramagnetic gas under the influence of an external magnetic field H (see also Section 3.5.4 in the lecture notes). The particles A_{+}(resp. A_{-}) of mass m have a magnetic moment M parallel (resp. antiparallel) to the field. Furthermore, an A_{+}and an A_{-}may combine to form a single molecule whose magnetic moment vanishes. The energy released in this reaction is E_{b}. The second possible "reaction" is a flip $A_{ \pm} \mapsto A_{\mp}$. Use the above results to compute the relative magnetization per particle

$$
\sigma=\frac{\left\langle N_{+}\right\rangle-\left\langle N_{-}\right\rangle}{\left\langle N_{+}+N_{-}+N_{0}\right\rangle} .
$$

Discuss the high and low temperature limits. How do the laws of mass action read?

Exercise 8.2 A Semiconductor at Low Temperature

Consider a simple model of a direct band semiconductor, where the band structure of the valence band is given by

$$
\epsilon_{v}(\vec{k})=-\frac{\hbar^{2} \vec{k}^{2}}{2 m_{v}}
$$

and of the conduction band by

$$
\epsilon_{c}(\vec{k})=E_{g}+\frac{\hbar^{2} \vec{k}^{2}}{2 m_{c}}
$$

where m_{v} and m_{c} are effective masses (band curvatures).
(a) Show that the number of electrons N satisfies

$$
N=V \int_{\mathrm{BZ}} 2 \frac{d^{3} k}{(2 \pi)^{3}}=V \int_{\mathrm{BZ}} 2 \frac{d^{3} k}{(2 \pi)^{3}} f\left(\epsilon_{c}(\vec{k})\right)+V \int_{\mathrm{BZ}} 2 \frac{d^{3} k}{(2 \pi)^{3}} f\left(\epsilon_{v}(\vec{k})\right),
$$

where f is the Fermi-Dirac distribution at temperature T and chemical potential μ, and BZ is the Briouillin zone of the crystal lattice. Hint: consider the limit $T \rightarrow 0$.
(b) In order to simplify calculations, we work in the low temperature regime $\mu \gg k_{B} T$ and $E_{g}-\mu \gg k_{B} T$. Use (a) to derive an expression for μ.
(c) Compute the intermal energy as well as the specific heat C_{V}. Assume for this purpose that that the lattice spacing is much smaller than the thermal wavelength of the band electrons. Interpret this result.

