Theoretical Physics, Problem Set 9.

FS15
Hand in: 29.04.15

1. Field of a uniformly moved charge

A point charge e is moving on an inertial trajectory $\vec{x}=\vec{v} t, \vec{v}=(v, 0,0)$. Compute the fields $\vec{E}(\vec{x}, t), \vec{B}(\vec{x}, t)$. In which directions is $\vec{E}(\vec{x}, t=0)$ the strongest and weakest at the same distance $|\vec{x}|$ from the charge respectively?
Hint: Compute first the fields in the rest frame of the particle.

2. Dual field tensor

Define the dual field tensor

$$
\begin{equation*}
\mathcal{F}_{\rho \sigma}=\frac{1}{2} F^{\mu \nu} \varepsilon_{\mu \nu \rho \sigma} \tag{1}
\end{equation*}
$$

and the dual current

$$
\mathcal{J}_{\nu \rho \sigma}=j^{\mu} \varepsilon_{\mu \nu \rho \sigma},
$$

where $\varepsilon_{\mu \nu \rho \sigma}$ is the completely antisymmetric tensor with $\varepsilon_{0123}=+1$ (parity of the permutation (0123) $\mapsto(\mu \nu \rho \sigma))$.
Remark: Here duality is not meant in terms of the dual space, but of the Hodge duality (s. Anhang B, inessential for this exercise). It follows that \mathcal{F} and \mathcal{J} are tensors; alternatively also from Exercise 1.2 , whereby $|g|^{1 / 2} \varepsilon_{\mu \nu \rho \sigma},\left(g=\operatorname{det}\left(g_{\mu \nu}\right)\right)$ is a tensor under arbitrary coordinate transformations ($\varepsilon_{\mu \nu \rho \sigma}$ under Lorentz transformations respectively).
i) Express the tensor components $\mathcal{F}_{\mu \nu}$ in terms of \vec{E} and \vec{B}. The duality turns out to be an electric-magnetic one.
ii) Show: The Maxwell equations read

$$
\begin{aligned}
\mathcal{F}_{, \mu}^{\mu \nu} & =0, \\
\mathcal{F}_{\rho \sigma, \mu}+\mathcal{F}_{\mu \rho, \sigma}+\mathcal{F}_{\sigma \mu, \rho} & =-\frac{1}{c} \mathcal{J}_{\rho \sigma \mu} .
\end{aligned}
$$

Hint: Show

$$
\begin{equation*}
\mathcal{F}_{\rho \sigma, \mu}+\mathcal{F}_{\mu \rho, \sigma}+\mathcal{F}_{\sigma \mu, \rho}=F_{, \alpha}^{\alpha \nu} \varepsilon_{\mu \nu \rho \sigma} . \tag{2}
\end{equation*}
$$

In the (\vec{E}, \vec{B})-notation, the left-hand sides of the homogeneous and the inhomogeneous Maxwell equations emerge from each other under $(\vec{E}, \vec{B}) \leadsto(-\vec{B}, \vec{E})$. The equations above express this symmetry in relativistic notation.

