FS15

Hand in: 22.04.15

1. Lorentz transformations on the celestial sphere

The position of the stars on the celestial sphere is the direction their light comes from. The light of a star comes from different directions w.r.t. two inertial systems (aberration), because they are rotated or moved w.r.t. each other. Consequently, the two observers see the starry sky in a different way. Show: The transformation is Möbius.

A transformation on the extended complex plane $\mathbb{C} \cup \{\infty\}$ is called Möbius if it is of the form

$$z \mapsto \frac{az+b}{cz+d}$$
, $(a,b,c,d \in \mathbb{C})$,

with $ad - bc \neq 0$. The composition of Möbius transformations corresponds to the product of the matrices

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \,.$$

Two matrices A, B define the same transformation if and only if $B = \lambda A$, $\lambda \neq 0$. The scaling det A = 1 only leaves the choice $\lambda = \pm 1$. Therefore the Möbius group is $SL(2, \mathbb{C})/\{\pm 1\}$.

The plane $\mathbb{C} \cup \{\infty\}$ can be considered as Riemann sphere $S^2 = \{\vec{v} \in \mathbb{R}^3 | |\vec{v}| = 1\}$ via the stereographic projection. In both descriptions (plane and sphere), a transformation is Möbius if and only if it is circle- and orientation-preserving.

Show that a Lorentz transformation $\Lambda \in L^{\uparrow}_{+}$ induces a Möbius transformation $\pm A$ on S^{2} when the latter is perceived as the celestial sphere of the directions of the light. For this purpose, note that Lorentz transformations are characterized by the following properties:

i) Invariance of form of the law of inertia

$$\vec{x} = \vec{b} + \vec{v}t \quad \Longleftrightarrow \quad \vec{x}' = \vec{b}' + \vec{v}'t';$$

ii) Invariance of the speed of light (c = 1)

$$|\vec{v}| = 1 \quad \Longleftrightarrow \quad |\vec{v}'| = 1 \,.$$

Consider the map $S : \mathbb{R}^3 \to \mathbb{R}^3$, $\vec{v} \to \vec{v}'$, which is induced by Λ on the velocities. Show that S is collinear, even though S, in contrast to $\Lambda : \mathbb{R}^4 \to \mathbb{R}^4$, is not linear. *Hint:* What is the meaning of the property "the points $\vec{v}_1, \vec{v}_2, \vec{v}_3$ lie on a line in \mathbb{R}^3 " in terms of inertial trajectories in \mathbb{R}^{1+3} ?

With the help of (ii), conclude that S maps circles in S^2 on circles in S^2 . *Hint:* What is such a circle with respect to $S^2 \subset \mathbb{R}^3$?

The result can be summarized in the isomorphism

$$L^{\uparrow}_{\pm} \cong \mathrm{SL}(2,\mathbb{C})/\{\pm 1\}.$$

2. Doppler shift and aberration

(a) Let the field $\varphi(\vec{x},t)$ be a scalar field under Lorentz transformations $x' = \Lambda x$, i.e. $\varphi'(x') = \varphi(\Lambda^{-1}x')$. Show that for a wave $\varphi(\vec{x},t) = e^{i(\vec{k}\vec{x}-\omega t)}$, the frequency and the wave vector form a 4-vector $k \equiv (\omega/c, \vec{k})$.

Henceforth let K and K' be connected via a boost $\Lambda = \Lambda(v\vec{e}_1)$ in 1-direction. Consider light with direction of propagation \vec{e} and frequency ω w.r.t. K.

(b) Let $\vec{e} = \vec{e_1}$. Compute the frequency w.r.t. K' (Doppler shift).

(c) Let $\vec{e} = \vec{e}_2$. Determine the angle $\alpha(v)$ between the wave vector and the 2-axis w.r.t. K' (Aberration).

3. Calculating with tensors

For a 2-dimensional vector space, let a metric in the basis e_1, e_2 be given by

$$(g_{\mu\nu}) = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \,.$$

The tensor T of type $\binom{0}{2}$ shall be defined by $T(a,b) = 2a^{1}b^{2}$, where (a^{μ}) and (b^{μ}) are the components of the vectors a and b w.r.t. the basis (e_{μ}) .

(a) Determine the matrices $(T_{\mu\nu}), (T^{\mu\nu}), (T^{\mu\nu}), (T^{\mu\nu})$. What is the trace of T?

(b) Consider the basis transformation $\bar{e}_1 = e_1 + 2e_2$, $\bar{e}_2 = e_1$. Determine the transformation matrices $\Lambda^{\mu}{}_{\nu}$, $\Lambda^{\mu}{}_{\nu}{}^{\nu}$, as well as the components $\bar{g}_{\mu\nu}$, $\bar{T}^{\mu\nu}$.